分析:1.此题考查的是对 0 -0 的特殊处理。当遇到 0 时候把此人转为1000存储, 所以读数据的时候要以字符串形式读取 2.遍历每张照片,把与男主女主对应的异性亲密度用sum数字累加起来, 并维护maxn[1] maxn[2], 为男主女主的最亲密值 和ans[1], ans[2]容器,为最亲密异性id。 3.判断男主女主是否互为最亲密,如果是,输出并return 0, 否则分别输出他们的最亲密好友 4.注意输出时候,因为把0当1000存储,会导致0号人排在最后,这是不符题意的,输出之前排个序,让1000排在最前面 #include #include #include #include using namespace std; bool cmp (int a, int b) { if(abs(a) == 1000) return true; if(abs(b) == 1000) return false; return abs(a) < abs(b); } int main(){ int n, m, num, k, sex[1010] = {0}, love[3]; double sum[1010] = {0}, maxn[3] = {0} ; string s; cin >> n >> m; vector> v(m), ans(3); for(int i = 0; i < m; i++) { cin >> k; for(int j = 0; j < k; j++){ cin >> s; if(s == "0") s = "1000"; if(s == "-0") s = "-1000"; num = stoi(s); sex[abs(num)] = num; v[i].push_back(num); } } for(int i = 1; i <= 2; i++) { cin >> s; if(s == "0") s = "1000"; if(s == "-0") s = "-1000"; love[i] = stoi(s); } for(int k = 1; k <= 2; k++) { for(int i = 0; i < m; i++) { int flag = 0; for(int j = 0; j < v[i].size(); j++){ if(v[i][j] == love[k]) { flag = 1; break; } } if(flag == 1) { for(int j = 0; j < v[i].size(); j++){ if(love[k] * v[i][j] < 0) { sum[(int)abs(v[i][j])] += 1.0 / v[i].size(); } } } } } maxn[1] = maxn[2] = -1; for(int k = 1; k <= 2; k++) { for(int i = 1; i <= 1000; i++) { if(love[k] * sex[i] < 0) { if(sum[i] > maxn[k]) { maxn[k] = sum[i]; ans[k].clear(); ans[k].push_back(sex[i]); }else if(sum[i] == maxn[k]) { ans[k].push_back(sex[i]); } } } } if(maxn[1] == sum[(int)abs(love[2])] && maxn[2] == sum[(int)abs(love[1])]) { string s1 = to_string(love[1]), s2 = to_string(love[2]); if(love[1] == 1000) s1 = "0"; if(love[1] == -1000) s1 = "-0"; if(love[2] == 1000) s2 = "0"; if(love[2] == -1000) s2 = "-0"; cout << s1 << " " << s2 << endl; return 0; } for(int k = 1; k <= 2; k++) { sort(ans[k].begin(), ans[k].end(), cmp); for(int i = 0; i < ans[k].size(); i++) { string s1 = to_string(love[k]), s2 = to_string(ans[k][i]); if(love[k] == 1000) s1 = "0"; if(love[k] == -1000) s1 = "-0"; if(ans[k][i] == 1000) s2 = "0"; if(ans[k][i] == -1000) s2 = "-0"; cout << s1 << " " << s2 << endl; } } return 0; }