diff --git a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf index 4ee7ca7..dadcc04 100644 Binary files a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf and b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf differ diff --git a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex index 2a4041a..0a47b8f 100644 --- a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex +++ b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex @@ -92,7 +92,7 @@ $\dfrac{\partial^2u}{\partial y^2}=\dfrac{\partial}{\partial y}\left(\dfrac{\par \paragraph{特殊值反代} \leavevmode \medskip -若是给出的不等式后还给出对应的特殊值,可以直接代入然后反代求出函数,而不用链式法则。 +若是给出的不等式后还给出对应的特殊值,可以直接代入然后反代求出函数,而不用链式法则。这里一般只能当一个变量为0才能带入,因为0与其他数运算后不变。 \textbf{例题:}设$z=e^x+y^2+f(x+y)$,且当$y=0$时,$z=x^3$,则求$\dfrac{\partial z}{\partial x}$。