diff --git a/advanced-math/3-function-and-limit/function-and-limit.tex b/advanced-math/3-function-and-limit/function-and-limit.tex index 05748ae..0adcab2 100644 --- a/advanced-math/3-function-and-limit/function-and-limit.tex +++ b/advanced-math/3-function-and-limit/function-and-limit.tex @@ -3,7 +3,6 @@ % 使用颜色 \definecolor{orange}{RGB}{255,127,0} \definecolor{violet}{RGB}{192,0,255} -\definecolor{aqua}{RGB}{0,255,255} \usepackage{geometry} \setcounter{tocdepth}{5} \setcounter{secnumdepth}{5} @@ -28,6 +27,8 @@ % 超链接 \usepackage{tikz} % 绘图 +\usepackage{mathtools} +% 有字的长箭头 \author{Didnelpsun} \title{函数与极限} \begin{document} @@ -542,7 +543,7 @@ $ & \lim_{x\to-\infty}x(\sqrt{x^2+100}+x) \\ & \lim_{x\to-\infty}x\dfrac{x^2+100-x^2}{\sqrt{x^100}-x} \\ & = \lim_{x\to-\infty}\dfrac{100x}{\sqrt{x^2+100}-x} \\ - & \Rightarrow^{\text{令}x=-t} \lim_{t\to+\infty}\dfrac{-100t}{\sqrt{t^2+100}+t} \\ + & \xRightarrow{\text{令}x=-t}\lim_{t\to+\infty}\dfrac{-100t}{\sqrt{t^2+100}+t} \\ & = \lim_{t\to+\infty}\dfrac{-100}{\sqrt{1+\dfrac{100}{t^2}}+1} \\ & = -50 \end{aligned} @@ -558,7 +559,7 @@ $ \begin{aligned} & \lim_{x\to 1^-}\ln x\ln(1-x) \\ & = \lim_{x\to 1^-}(x-1)\ln(1-x) \\ - & \Rightarrow^{令t=1-x} =-\lim_{t\to 0^+}t\ln t \\ + & \xRightarrow{令t=1-x} =-\lim_{t\to 0^+}t\ln t \\ & = -\lim_{t\to 0^+}\dfrac{\ln t}{\dfrac{1}{t}} \\ & = -\lim_{t\to 0^+}\dfrac{\dfrac{1}{t}}{-\dfrac{1}{t^2}} \\ & = \lim_{t\to 0^+}t \\ @@ -617,9 +618,9 @@ $\infty-\infty$型\textbf{例题11:}求极限$\lim_{x\to+\infty}[x^2(e^{\frac{ $ \begin{aligned} & \lim_{x\to+\infty}[x^2(e^{\frac{1}{x}}-1)-x] \\ - & \Rightarrow^{\text{令}x=\frac{1}{t}}\lim_{t\to 0^+}\left(\dfrac{e^t-1}{x^2}-\dfrac{1}{t}\right) \\ + & \xRightarrow{\text{令}x=\frac{1}{t}}\lim_{t\to 0^+}\left(\dfrac{e^t-1}{x^2}-\dfrac{1}{t}\right) \\ & \lim_{t\to 0^+}\dfrac{e^t-1-t}{t^2} \\ - & \Rightarrow^{\text{泰勒展开}e^x}\lim_{t\to 0^+}\dfrac{\dfrac{1}{2}x^2}{x^2} \\ + & \xRightarrow{\text{泰勒展开}e^x}\lim_{t\to 0^+}\dfrac{\dfrac{1}{2}x^2}{x^2} \\ & =\dfrac{1}{2} \end{aligned} $ diff --git a/advanced-math/4-single-variable-function-differential-calculus/single-variable-function-differential-calculus.tex b/advanced-math/4-single-variable-function-differential-calculus/single-variable-function-differential-calculus.tex index ce24d29..84500b2 100644 --- a/advanced-math/4-single-variable-function-differential-calculus/single-variable-function-differential-calculus.tex +++ b/advanced-math/4-single-variable-function-differential-calculus/single-variable-function-differential-calculus.tex @@ -1,9 +1,10 @@ \documentclass[UTF8]{ctexart} % UTF8编码,ctexart现实中文 -\usepackage{color} +\usepackage{xcolor} % 使用颜色 \definecolor{orange}{RGB}{255,127,0} \definecolor{violet}{RGB}{192,0,255} +\definecolor{aqua}{RGB}{0,255,255} \usepackage{geometry} \setcounter{tocdepth}{4} \setcounter{secnumdepth}{4} @@ -22,6 +23,8 @@ \usepackage{setspace} \renewcommand{\baselinestretch}{1.5} % 1.5倍行距 +\usepackage{tikz} +% 绘图 \author{Didnelpsun} \title{一元函数微分学} \begin{document} @@ -151,11 +154,117 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{ 由此,可导必可微,可微必可导。 +\begin{tikzpicture}[scale=0.9] + \draw[-latex](-0.5,0) -- (4.5,0) node[below]{$x$}; + \draw[-latex](0,-0.5) -- (0,4) node[above]{$y$}; + \draw[black, thick, domain=1.5:3] plot (\x,{pow(\x-1,2)/2+1}) node[above]{$y(x)$}; + \filldraw[black] (0,0) node[below]{$O$}; + \draw[black, densely dashed](1.5,1.125) -- (1.5,0) node[below]{$x_0$}; + \draw[black, densely dashed](1.5,1.125) -- (0,1.125) node[left]{$y_0$}; + \draw[black, densely dashed](3,3) -- (3,0) node[below]{$x_0+\Delta x$}; + \draw[black, densely dashed](3,3) -- (0,3) node[left]{$y_0+\Delta x$}; + \draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\rm{d}yx+b$}; + \draw[<->, black](1.5,1.125) -- (3,1.125); + \draw[<->, black](4,1.125) -- (4,3); + \draw[<->, black](3.25,1.125) -- (3.25,1.875); + \draw[<->, black](3.25,3) -- (3.25,1.875); + \draw[black](3,3) -- (4.5,3); + \draw[black](3,1.125) -- (4.5,1.125); + \draw[black](3,1.875) -- (3.75,1.875); + \filldraw[black] (2.25,0.75) node{$\Delta x$}; + \filldraw[black] (4.3,2) node{$\Delta y$}; + \filldraw[black] (3.5,1.5) node{\scriptsize{$\rm{d}y$}}; + \filldraw[black] (3.5,2.5) node{\scriptsize{$o(\Delta x)$}}; +\end{tikzpicture} + +所以可微就是用简单线性取代复杂线性,如图用直线取替代曲线。 + \section{导数与微分计算} \subsection{四则运算} + +若函数可导: + +\begin{enumerate} + \item 和差的导数或微分:$[u(x)\pm v(x)]'=u'(x)\pm v'(x)$,$\rm{d}[u(x)\pm v(x)]=\rm{d}u(x)\pm\rm{d}v(x)$。 + \item 积的导数或微分:$[u(x)v(x)]'=u'(x)v(x)+u(x)v'(x)$,$\rm{d}[u(x)v(x)]=u(x)\rm{d}v(x)+v(x)\rm{d}u(x)$,$[u(x)v(x)w(x)]'=u'(x)v(x)w(x)+u(x)v'(x)w(x)+u(x)v(x)+w'(x)$。 + \item 商的导数:$\left[\dfrac{u(x)}{v(x)}\right]'=\dfrac{u'(x)v(x)-u(x)v'(x)}{[v(x)]^2}$,$\rm{d}\left[\dfrac{u(x)}{v(x)}\right]=\dfrac{v(x)\rm{d}u(x)-u(x)\rm{d}v(x)}{[v(x)]^2}$,$v(x)\neq 0$。 + \item 复合函数的导数:链式求导法则$\dfrac{\rm{d}u}{\rm{d}x}=\dfrac{\rm{d}u}{\rm{d}y}\cdot\dfrac{\rm{d}y}{\rm{d}x}$。 +\end{enumerate} + \subsection{分段函数的导数} + +设$f(x)=\left\{ + \begin{array}{lcl} + f_1(x), & & x\geqslant x_0 \\ + f_2(x), & & xx_0,f'(x)=f_1'(x),x<0,f'(x)=f_2'(x)$。 + \subsection{复合函数的导数与微分形式不变性} + +$u=g(x)$在$x$可导,$y=f(u)$在$u=g(x)$处可导,则$\{f[g(x)]\}'=f'[g(x)]g'(x)$,$\rm{d}\{f[g(x)]\}=f'[g(x)]g'(x)\rm{d}x$。 + +一阶微分形式不变性指:$\rm{d}f(\varsigma)=f'(\varsigma)\rm{d}\varsigma$,无论$\varsigma$是什么。(类似导数的链式求导法则) + +\textbf{例题7:}设$f(x)=\Pi_{n=1}^{100}\left(\tan\dfrac{\pi x^a}{4}-n\right)$,则$f'(1)$为? + +原式=$\left(\tan\dfrac{\pi x}{4}-1\right)\left(\tan\dfrac{\pi x^2}{4}-2\right)\cdots\left(\tan\dfrac{\pi x^100}{4}-100\right)$。 + +令$\left(\tan\dfrac{\pi x^2}{4}-2\right)\cdots\left(\tan\dfrac{\pi x^100}{4}-100\right)=g(x)$。 + +$\therefore f(x)=\left(\tan\dfrac{\pi x}{4}-1\right)\cdot g(x)$。 + +$\therefore f'(x)=\sec^2\dfrac{\pi x}{4}\cdot\dfrac{\pi}{4}\cdot g(x)+\left(\tan\dfrac{\pi x}{4}-1\right)\cdot g'(x)$。 + +$\therefore$根据导数的四则运算,需要导数的乘积为每一项求导乘以其他不求导项的和,而$\tan\dfrac{\pi x}{4}-1$当$x=1$时为0,只要它不求导,其他的项都必然是0,所以原式的后面的结果都是0。 + +$\therefore$ + +$ +\begin{aligned} + f'(1) & =f'(x)\vert_{x=1} \\ + & =\dfrac{\pi}{2}\cdot g(1)+0\cdot g'(x) \\ + & =\dfrac{\pi}{2}\cdot g(1) \\ + & =\dfrac{\pi}{2}(-1)(-2)\cdots(-99) \\ + & =-\dfrac{\pi}{2}\cdot 99! +\end{aligned} +$ + +\textbf{例题8:}设$y=e^{\sin(\ln x)}$,求$\rm{d}y$。 + +$\because y=e^{\sin(\ln x)} \therefore$ + +$ +\begin{aligned} + \rm{d}y &=\rm{d}e^{\sin(\ln x)} \\ + & =e^{\sin(\ln x)}\cdot\rm{d}(\sin(\ln x)) \\ + & =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\rm{d}\ln x \\ + & =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\rm{d}x +\end{aligned} +$ + \subsection{反函数导数} + +\textcolor{aqua}{\textbf{定理:}}$y=f(x)$可导,且$f'(x)\neq 0$,则存在反函数$x=\varphi(y)$,且$\dfrac{\rm{d}x}{\rm{d}y}=\dfrac{1}{\dfrac{\rm{d}y}{\rm{d}x}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$。 + +$y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有反函数。 + +\textbf{例题9:}求$y=\arcsin x,x\in(-1,1)$与$y=\arctan x$的导数。 + +首先反三角函数就是三角函数的反函数、 + +求$y=\arcsin x$,即$x=\sin y$。 + +$\therefore\dfrac{\rm{d}\arcsin x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\sin y}{\rm{d}y}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$。 + +求$y=\arctan x$,就$x=\tan y$。 + +$\therefore\dfrac{\rm{d}\arctan x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\tan y}{\rm{d}y}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$。 + \subsection{参数方程函数导数} \subsection{隐函数求导法} \subsection{对数求导法} @@ -165,5 +274,10 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{ \subsubsection{莱布尼茨公式} \subsubsection{泰勒公式} \subsection{变限积分求导公式} + +必然会考。 + +已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}x$,$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$。 + \subsection{基本求导公式} \end{document}