From 292b8dcb5d1e7295a4ee89711755f1f3af93efa4 Mon Sep 17 00:00:00 2001
From: Didnelpsun <48906416+Didnelpsun@users.noreply.github.com>
Date: Thu, 14 Jan 2021 02:15:04 +0800
Subject: [PATCH] =?UTF-8?q?=E6=9B=B4=E6=96=B0=E5=87=86=E5=A4=87?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
1.1-perpare/perpare.md | 86 --------------------------
1.1-perpare/perpare.tex | 130 +++++++++++++++++++++++++++++++++++-----
2 files changed, 115 insertions(+), 101 deletions(-)
delete mode 100644 1.1-perpare/perpare.md
diff --git a/1.1-perpare/perpare.md b/1.1-perpare/perpare.md
deleted file mode 100644
index b8a163d..0000000
--- a/1.1-perpare/perpare.md
+++ /dev/null
@@ -1,86 +0,0 @@
-# 准备
-
-**参考教材**:张宇考研数学基础三十讲。
-
-**高等数学难题最多**,数学一的高等数学重点在高数下。
-
-## 函数的概念与特性
-
-### 函数
-
-一个x对应一个y,一个y可以对应多个x。
-
-### 反函数
-
-### 复合函数
-
-### 有界性
-
-### 单调性
-
-### 奇偶性
-
-### 周期性
-
-## 函数的图像
-
-### 直角坐标系图像
-
-#### 常见图像
-
-1. 基本初等函数与初等函数
-
-2.分段函数
-
-#### 图像变换
-
-1.平移变换
-
-2.堆成变换
-
-3.伸缩变换
-
-### 极坐标系图像
-
-#### 描点法
-
-1.心形线(外摆线)
-
-2.玫瑰线
-
-3.阿基米德螺线
-
-4.伯努利双扭线
-
-#### 直角坐标系下画极坐标图像
-
-### 参数法
-
-#### 摆线(平摆线)
-
-#### 星形线(内摆线)
-
-## 常用基础知识
-
-### 数列
-
-### 三角函数
-
-### 指数运算法则
-
-### 对数运算法则
-
-### 一元二次方程基础
-
-### 因式分解公式
-
-### 阶乘与双阶乘
-
-### 常用不等式
-
-+ $\frac{e^x-e^{-x}}{2}$:双曲正弦。
-+ $\frac{e^x+e^{-x}}{2}$:双曲余弦。
-+ $\ln(x+\sqrt{x^2+1})$:反双曲正弦。
-+ $\ln(x+\sqrt{x^2-1})$:反双曲余弦。
-
-+ 见到$\sqrt{u}$,$\sqrt[3]{u}$,用u即可研究最值。
diff --git a/1.1-perpare/perpare.tex b/1.1-perpare/perpare.tex
index de1fab0..047f297 100644
--- a/1.1-perpare/perpare.tex
+++ b/1.1-perpare/perpare.tex
@@ -6,8 +6,8 @@
% 因为所以
\usepackage{amsmath}
% 数学公式
-\setcounter{tocdepth}{4}
-\setcounter{secnumdepth}{4}
+\setcounter{tocdepth}{5}
+\setcounter{secnumdepth}{5}
% 设置四级目录
\usepackage{geometry}
\geometry{papersize={21cm,29.7cm}}
@@ -147,11 +147,11 @@ $,求$f[f(x)]$
\right.
$
-然后画图:\\
+然后画图:\bigskip
\begin{tikzpicture}[domain=-1:9.5]
\draw[-latex](-1.5,0) -- (9.5,0) node[below]{$x-axis$};
- \draw[-latex](0,-1.5) -- (0, 1.5) node[above]{$y-aixs$};
+ \draw[-latex](0,-1.5) -- (0, 1.5) node[above]{$y-axis$};
\draw[very thin, gray, densely dashed](-1.5,1.5)grid(9.5,-1.5);
\draw [black, thick](-0.25,-1.5) -- (1,1);
\draw[black, thick,domain=1:9.5] plot (\x, {ln(sqrt(\x))});
@@ -209,7 +209,7 @@ $
\subsection{周期性}
-$f(x+T)=f(x)$,其中T为周期。 \\
+$f(x+T)=f(x)$,其中T为周期。 \bigskip
\textcolor{red}{重要结论:}
@@ -226,28 +226,128 @@ $f(x+T)=f(x)$,其中T为周期。 \\
\section{函数的图像}
\subsection{直角坐标系图像}
\subsubsection{常见图像}
-\paragraph{基本初等函数与初等函数}
+\paragraph{基本初等函数与初等函数} \leavevmode \bigskip
基本初等函数包括:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数。
-1. 常数函数:$y=A$,A为常数,图像平行于x轴:
+\subparagraph{常数函数} \leavevmode \bigskip
+
+$y=A$,A为常数,图像平行于x轴:
\begin{tikzpicture}[domain=-1:5]
\draw[-latex](-1,0) -- (5,0) node[below]{$x-axis$};
- \draw[-latex](0,-0.5) -- (0, 1.5) node[above]{$y-aixs$};
+ \draw[-latex](0,-0.5) -- (0, 1.5) node[above]{$y-axis$};
\draw[black, thick](-1,1) -- (5,1) node[below]{$y=A$};
\end{tikzpicture}
-2. 幂函数:$y=x^{\mu}$,$\mu$为实数,当$x>0$,$y=x^{\mu}$都有定义:
+\subparagraph{幂函数} \leavevmode \bigskip
+
+$y=x^{\mu}$,$\mu$为实数,当$x>0$,$y=x^{\mu}$都有定义:
\begin{tikzpicture}[scale=0.9]
\draw[-latex](-2,0) -- (2,0) node[below]{$x-axis$};
- \draw[-latex](0,-2) -- (0,4) node[above]{$y-aixs$};
- \draw[black, thick,domain=0.3:2] plot (\x,1/\x) node[below]{$\mu =-1$};
- \draw[black, thick,domain=-2:-0.5] plot (\x,1/\x) node[above]{$\mu =-1$};
- \draw[black, thick,domain=0.01:2] plot (\x, {sqrt(\x)}) node[below]{$\mu =\frac{1}{2}$};
- \draw[black, thick,domain=-2:2] plot (\x,\x) node[above]{$\mu =1$};
- \draw[black, thick,domain=-2:2] plot (\x, {\x*\x}) node[above]{$\mu =2$};
+ \draw[-latex](0,-2) -- (0,4) node[above]{$y-axis$};
+ \draw[black, thick, domain=0.3:2] plot (\x,1/\x) node[below]{$\mu =-1$};
+ \draw[black, thick, domain=-2:-0.5] plot (\x,1/\x) node[above]{$\mu =-1$};
+ \draw[black, thick, domain=0.01:2] plot (\x, {sqrt(\x)}) node[below]{$\mu =\frac{1}{2}$};
+ \draw[black, thick, domain=-2:2] plot (\x,\x) node[above]{$\mu =1$};
+ \draw[black, thick, domain=-2:2] plot (\x, {\x*\x}) node[above]{$\mu =2$};
+\end{tikzpicture}
+
+所以对于幂函数,可以根据不同幂下相同单调性来研究最值:
+
+\begin{enumerate}
+ \item $\sqrt{u},\sqrt[3]{u}$可以使用$u$来研究。
+ \item $\vert u\vert$可以使用$u^2$来研究。
+ \item $\frac{1}{u},u>0$可以使用$u$来研究,但是最值相反。
+ \item $u_1u_2...u_n$可以使用$\sum_{i=1}^{n}\ln u_i$来研究。
+\end{enumerate}
+
+\subparagraph{指数函数} \leavevmode \bigskip
+
+$y=a^x(a>0,a\neq 1)$:
+
+\begin{tikzpicture}[scale=0.9]
+ \draw[-latex](-2,0) -- (2,0) node[below]{$x-axis$};
+ \draw[-latex](0,-0.5) -- (0,4) node[above]{$y-axis$};
+ \draw[black, thick, domain=-2:2] plot (\x,{pow(1/2,\x)}) node at (-1.5,2){$01$};
+\end{tikzpicture}
+
+指数函数具有如下性质:
+
+\begin{enumerate}
+ \item 特殊函数值:$a^0=1$。
+ \item 定义域:$(-\infty, +\infty)$,值域:$(0,+\infty)$。
+ \item 单调性:$a>1$,$y=a^x$单调增,$00,a\neq 1)$为$y=a^x$的反函数:
+
+\begin{tikzpicture}[scale=0.9]
+ \draw[-latex](-0.5,0) -- (4,0) node[below]{$x-axis$};
+ \draw[-latex](0,-2) -- (0,2) node[above]{$y-axis$};
+ \draw[black, thick, domain=0.2:4] plot (\x,{ln(1/\x)}) node at (e,1.5){$01$};
+\end{tikzpicture}
+
+对数函数具有如下性质:
+
+\begin{enumerate}
+ \item 特殊函数值:$\log_a1=0$,$log_aa=1,\ln 1=0,\ln e=1$。
+ \item 定义域:$(0, +\infty)$,值域:$(-\infty,+\infty)$。
+ \item 单调性:$a>1$,$y=\log_ax$单调增,$00,u>0)$
+\end{enumerate}
+
+\subparagraph{三角函数} \leavevmode \bigskip
+
+正弦函数:
+
+\begin{tikzpicture}[scale=0.9]
+ \draw[-latex](-5,0) -- (5,0) node[below]{$x-axis$};
+ \draw[-latex](0,-1.5) -- (0,2) node[above]{$y-axis$};
+ \draw[black, thick, domain=-5:5] plot (\x,{sin(\x r)}) node at (0,1.5){$\sin(x)$};
+ \draw [black, densely dashed](-5,1) -- (5,1) node[below]{$x=1$};
+ \draw [black, densely dashed](-5,-1) -- (5,-1) node[below]{$x=-1$};
+ \draw [black, densely dashed](-pi/2*3,1) -- (-pi/2*3,0) node[below]{$-\frac{3\pi}{2}$};
+ \draw [black, densely dashed](-pi,0) -- (-pi,0) node[below]{$-\pi$};
+ \draw [black, densely dashed](-pi/2,-1) -- (-pi/2,0) node[above]{$-\frac{\pi}{2}$};
+ \draw [black, densely dashed](0,0) -- (0,0) node[above]{$0$};
+ \draw [black, densely dashed](pi/2,1) -- (pi/2,0) node[below]{$\frac{\pi}{2}$};
+ \draw [black, densely dashed](pi,0) -- (pi,0) node[below]{$\pi$};
+\end{tikzpicture}
+
+余弦函数:
+
+\begin{tikzpicture}[scale=0.9]
+ \draw[-latex](-5,0) -- (5,0) node[below]{$x-axis$};
+ \draw[-latex](0,-1.5) -- (0,2) node[above]{$y-axis$};
+ \draw[black, thick, domain=-5:5] plot (\x,{cos(\x r)}) node at (0,1.5){$\sin(x)$};
+ \draw [black, densely dashed](-5,1) -- (5,1) node[below]{$x=1$};
+ \draw [black, densely dashed](-5,-1) -- (5,-1) node[below]{$x=-1$};
+ \draw [black, densely dashed](-pi/2*3,0) -- (-pi/2*3,0) node[below]{$-\frac{3\pi}{2}$};
+ \draw [black, densely dashed](-pi,-1) -- (-pi,0) node[above]{$-\pi$};
+ \draw [black, densely dashed](-pi/2,0) -- (-pi/2,0) node[below]{$-\frac{\pi}{2}$};
+ \draw [black, densely dashed](0,1) -- (0,0) node[below]{$0$};
+ \draw [black, densely dashed](pi/2,0) -- (pi/2,0) node[below]{$\frac{\pi}{2}$};
+ \draw [black, densely dashed](pi,-1) -- (pi,0) node[above]{$\pi$};
+\end{tikzpicture}
+
+\subparagraph{反三角函数} \leavevmode \bigskip
+
+反正弦函数:
+
+\begin{tikzpicture}
+ \draw[-latex](-1.5,0) -- (1.5,0) node[below]{$x-axis$};
+ \draw[-latex](0,-2) -- (0,2) node[above]{$y-axis$};
+ \draw[black, thick, domain=-5:5] plot (\x,{arcsin(\x r)}) node at (1,pi/2){$\sin(x)$};
\end{tikzpicture}
\paragraph{分段函数}