From 292b8dcb5d1e7295a4ee89711755f1f3af93efa4 Mon Sep 17 00:00:00 2001 From: Didnelpsun <48906416+Didnelpsun@users.noreply.github.com> Date: Thu, 14 Jan 2021 02:15:04 +0800 Subject: [PATCH] =?UTF-8?q?=E6=9B=B4=E6=96=B0=E5=87=86=E5=A4=87?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 1.1-perpare/perpare.md | 86 -------------------------- 1.1-perpare/perpare.tex | 130 +++++++++++++++++++++++++++++++++++----- 2 files changed, 115 insertions(+), 101 deletions(-) delete mode 100644 1.1-perpare/perpare.md diff --git a/1.1-perpare/perpare.md b/1.1-perpare/perpare.md deleted file mode 100644 index b8a163d..0000000 --- a/1.1-perpare/perpare.md +++ /dev/null @@ -1,86 +0,0 @@ -# 准备 - -**参考教材**:张宇考研数学基础三十讲。 - -**高等数学难题最多**,数学一的高等数学重点在高数下。 - -## 函数的概念与特性 - -###  函数 - -一个x对应一个y,一个y可以对应多个x。 - -###  反函数 - -###  复合函数 - -###  有界性 - -###  单调性 - -###  奇偶性 - -###  周期性 - -## 函数的图像 - -###  直角坐标系图像 - -####   常见图像 - -1. 基本初等函数与初等函数 - -2.分段函数 - -####   图像变换 - -1.平移变换 - -2.堆成变换 - -3.伸缩变换 - -###  极坐标系图像 - -####   描点法 - -1.心形线(外摆线) - -2.玫瑰线 - -3.阿基米德螺线 - -4.伯努利双扭线 - -####   直角坐标系下画极坐标图像 - -###  参数法 - -####   摆线(平摆线) - -####   星形线(内摆线) - -## 常用基础知识 - -###  数列 - -###  三角函数 - -###  指数运算法则 - -###  对数运算法则 - -###  一元二次方程基础 - -###  因式分解公式 - -###  阶乘与双阶乘 - -###  常用不等式 - -+ $\frac{e^x-e^{-x}}{2}$:双曲正弦。 -+ $\frac{e^x+e^{-x}}{2}$:双曲余弦。 -+ $\ln(x+\sqrt{x^2+1})$:反双曲正弦。 -+ $\ln(x+\sqrt{x^2-1})$:反双曲余弦。 - -+ 见到$\sqrt{u}$,$\sqrt[3]{u}$,用u即可研究最值。 diff --git a/1.1-perpare/perpare.tex b/1.1-perpare/perpare.tex index de1fab0..047f297 100644 --- a/1.1-perpare/perpare.tex +++ b/1.1-perpare/perpare.tex @@ -6,8 +6,8 @@ % 因为所以 \usepackage{amsmath} % 数学公式 -\setcounter{tocdepth}{4} -\setcounter{secnumdepth}{4} +\setcounter{tocdepth}{5} +\setcounter{secnumdepth}{5} % 设置四级目录 \usepackage{geometry} \geometry{papersize={21cm,29.7cm}} @@ -147,11 +147,11 @@ $,求$f[f(x)]$ \right. $ -然后画图:\\ +然后画图:\bigskip \begin{tikzpicture}[domain=-1:9.5] \draw[-latex](-1.5,0) -- (9.5,0) node[below]{$x-axis$}; - \draw[-latex](0,-1.5) -- (0, 1.5) node[above]{$y-aixs$}; + \draw[-latex](0,-1.5) -- (0, 1.5) node[above]{$y-axis$}; \draw[very thin, gray, densely dashed](-1.5,1.5)grid(9.5,-1.5); \draw [black, thick](-0.25,-1.5) -- (1,1); \draw[black, thick,domain=1:9.5] plot (\x, {ln(sqrt(\x))}); @@ -209,7 +209,7 @@ $ \subsection{周期性} -$f(x+T)=f(x)$,其中T为周期。 \\ +$f(x+T)=f(x)$,其中T为周期。 \bigskip \textcolor{red}{重要结论:} @@ -226,28 +226,128 @@ $f(x+T)=f(x)$,其中T为周期。 \\ \section{函数的图像} \subsection{直角坐标系图像} \subsubsection{常见图像} -\paragraph{基本初等函数与初等函数} +\paragraph{基本初等函数与初等函数} \leavevmode \bigskip 基本初等函数包括:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数。 -1. 常数函数:$y=A$,A为常数,图像平行于x轴: +\subparagraph{常数函数} \leavevmode \bigskip + +$y=A$,A为常数,图像平行于x轴: \begin{tikzpicture}[domain=-1:5] \draw[-latex](-1,0) -- (5,0) node[below]{$x-axis$}; - \draw[-latex](0,-0.5) -- (0, 1.5) node[above]{$y-aixs$}; + \draw[-latex](0,-0.5) -- (0, 1.5) node[above]{$y-axis$}; \draw[black, thick](-1,1) -- (5,1) node[below]{$y=A$}; \end{tikzpicture} -2. 幂函数:$y=x^{\mu}$,$\mu$为实数,当$x>0$,$y=x^{\mu}$都有定义: +\subparagraph{幂函数} \leavevmode \bigskip + +$y=x^{\mu}$,$\mu$为实数,当$x>0$,$y=x^{\mu}$都有定义: \begin{tikzpicture}[scale=0.9] \draw[-latex](-2,0) -- (2,0) node[below]{$x-axis$}; - \draw[-latex](0,-2) -- (0,4) node[above]{$y-aixs$}; - \draw[black, thick,domain=0.3:2] plot (\x,1/\x) node[below]{$\mu =-1$}; - \draw[black, thick,domain=-2:-0.5] plot (\x,1/\x) node[above]{$\mu =-1$}; - \draw[black, thick,domain=0.01:2] plot (\x, {sqrt(\x)}) node[below]{$\mu =\frac{1}{2}$}; - \draw[black, thick,domain=-2:2] plot (\x,\x) node[above]{$\mu =1$}; - \draw[black, thick,domain=-2:2] plot (\x, {\x*\x}) node[above]{$\mu =2$}; + \draw[-latex](0,-2) -- (0,4) node[above]{$y-axis$}; + \draw[black, thick, domain=0.3:2] plot (\x,1/\x) node[below]{$\mu =-1$}; + \draw[black, thick, domain=-2:-0.5] plot (\x,1/\x) node[above]{$\mu =-1$}; + \draw[black, thick, domain=0.01:2] plot (\x, {sqrt(\x)}) node[below]{$\mu =\frac{1}{2}$}; + \draw[black, thick, domain=-2:2] plot (\x,\x) node[above]{$\mu =1$}; + \draw[black, thick, domain=-2:2] plot (\x, {\x*\x}) node[above]{$\mu =2$}; +\end{tikzpicture} + +所以对于幂函数,可以根据不同幂下相同单调性来研究最值: + +\begin{enumerate} + \item $\sqrt{u},\sqrt[3]{u}$可以使用$u$来研究。 + \item $\vert u\vert$可以使用$u^2$来研究。 + \item $\frac{1}{u},u>0$可以使用$u$来研究,但是最值相反。 + \item $u_1u_2...u_n$可以使用$\sum_{i=1}^{n}\ln u_i$来研究。 +\end{enumerate} + +\subparagraph{指数函数} \leavevmode \bigskip + +$y=a^x(a>0,a\neq 1)$: + +\begin{tikzpicture}[scale=0.9] + \draw[-latex](-2,0) -- (2,0) node[below]{$x-axis$}; + \draw[-latex](0,-0.5) -- (0,4) node[above]{$y-axis$}; + \draw[black, thick, domain=-2:2] plot (\x,{pow(1/2,\x)}) node at (-1.5,2){$01$}; +\end{tikzpicture} + +指数函数具有如下性质: + +\begin{enumerate} + \item 特殊函数值:$a^0=1$。 + \item 定义域:$(-\infty, +\infty)$,值域:$(0,+\infty)$。 + \item 单调性:$a>1$,$y=a^x$单调增,$00,a\neq 1)$为$y=a^x$的反函数: + +\begin{tikzpicture}[scale=0.9] + \draw[-latex](-0.5,0) -- (4,0) node[below]{$x-axis$}; + \draw[-latex](0,-2) -- (0,2) node[above]{$y-axis$}; + \draw[black, thick, domain=0.2:4] plot (\x,{ln(1/\x)}) node at (e,1.5){$01$}; +\end{tikzpicture} + +对数函数具有如下性质: + +\begin{enumerate} + \item 特殊函数值:$\log_a1=0$,$log_aa=1,\ln 1=0,\ln e=1$。 + \item 定义域:$(0, +\infty)$,值域:$(-\infty,+\infty)$。 + \item 单调性:$a>1$,$y=\log_ax$单调增,$00,u>0)$ +\end{enumerate} + +\subparagraph{三角函数} \leavevmode \bigskip + +正弦函数: + +\begin{tikzpicture}[scale=0.9] + \draw[-latex](-5,0) -- (5,0) node[below]{$x-axis$}; + \draw[-latex](0,-1.5) -- (0,2) node[above]{$y-axis$}; + \draw[black, thick, domain=-5:5] plot (\x,{sin(\x r)}) node at (0,1.5){$\sin(x)$}; + \draw [black, densely dashed](-5,1) -- (5,1) node[below]{$x=1$}; + \draw [black, densely dashed](-5,-1) -- (5,-1) node[below]{$x=-1$}; + \draw [black, densely dashed](-pi/2*3,1) -- (-pi/2*3,0) node[below]{$-\frac{3\pi}{2}$}; + \draw [black, densely dashed](-pi,0) -- (-pi,0) node[below]{$-\pi$}; + \draw [black, densely dashed](-pi/2,-1) -- (-pi/2,0) node[above]{$-\frac{\pi}{2}$}; + \draw [black, densely dashed](0,0) -- (0,0) node[above]{$0$}; + \draw [black, densely dashed](pi/2,1) -- (pi/2,0) node[below]{$\frac{\pi}{2}$}; + \draw [black, densely dashed](pi,0) -- (pi,0) node[below]{$\pi$}; +\end{tikzpicture} + +余弦函数: + +\begin{tikzpicture}[scale=0.9] + \draw[-latex](-5,0) -- (5,0) node[below]{$x-axis$}; + \draw[-latex](0,-1.5) -- (0,2) node[above]{$y-axis$}; + \draw[black, thick, domain=-5:5] plot (\x,{cos(\x r)}) node at (0,1.5){$\sin(x)$}; + \draw [black, densely dashed](-5,1) -- (5,1) node[below]{$x=1$}; + \draw [black, densely dashed](-5,-1) -- (5,-1) node[below]{$x=-1$}; + \draw [black, densely dashed](-pi/2*3,0) -- (-pi/2*3,0) node[below]{$-\frac{3\pi}{2}$}; + \draw [black, densely dashed](-pi,-1) -- (-pi,0) node[above]{$-\pi$}; + \draw [black, densely dashed](-pi/2,0) -- (-pi/2,0) node[below]{$-\frac{\pi}{2}$}; + \draw [black, densely dashed](0,1) -- (0,0) node[below]{$0$}; + \draw [black, densely dashed](pi/2,0) -- (pi/2,0) node[below]{$\frac{\pi}{2}$}; + \draw [black, densely dashed](pi,-1) -- (pi,0) node[above]{$\pi$}; +\end{tikzpicture} + +\subparagraph{反三角函数} \leavevmode \bigskip + +反正弦函数: + +\begin{tikzpicture} + \draw[-latex](-1.5,0) -- (1.5,0) node[below]{$x-axis$}; + \draw[-latex](0,-2) -- (0,2) node[above]{$y-axis$}; + \draw[black, thick, domain=-5:5] plot (\x,{arcsin(\x r)}) node at (1,pi/2){$\sin(x)$}; \end{tikzpicture} \paragraph{分段函数}