From 4653c6311b8aa81bc191fcd3a5104686bc551bb9 Mon Sep 17 00:00:00 2001 From: Didnelpsun <48906416+Didnelpsun@users.noreply.github.com> Date: Mon, 15 Feb 2021 00:42:48 +0800 Subject: [PATCH] Update derivative-and-differentiate.tex --- .../derivative-and-differentiate.tex | 20 +++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) diff --git a/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex b/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex index 7ffb96e..101a382 100644 --- a/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex +++ b/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex @@ -62,7 +62,7 @@ $f(x)=\left\{\begin{array}{lcl} 可导必连续,连续不一定可导。 -导数的定义:$\lim\limits_{x\to x_0}\dfrac{f(x)-f(x_0)}{x-x_0}$。 +导数的定义:$\lim\limits_{x\to x_0}\dfrac{f(x)-f(x_0)}{x-x_0}$或$\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}$。 导数的存在性:若$\lim\limits_{x\to x_0}f'(x)$存在,则$f'(x_0)=\lim\limits_{x\to x_0}f'(x)$。\medskip @@ -128,7 +128,7 @@ $\therefore f'(0)=\lim\limits_{x\to 0}f'(x)$。计算过程类似。 x^2, & & x\leqslant 0 \\ x^\alpha\sin\dfrac{1}{x}, & & x>0 \end{array} -\right.$,若$f'(x)$连续,则$\alpha$应该满足? +\right.$,若$f'(x)$连续,则$\alpha$应该满足? 若导数连续,则两侧导数相等。 @@ -146,6 +146,22 @@ $\therefore\alpha-2>0$,从而$\alpha>2$。 \subsection{已知导数求极限} +题目会给出对应的导数以及相关条件,并要求求一个极限,这个极限式子并不是个随机的式子,而一个是与导数定义相关的极限式子,所需要的就是将极限式子转换为导数定义的相关式子。 + +\textbf{例题:}设$f(x)$是以3为周期的可导函数,且是偶函数,$f'(-2)=-1$,求$\lim\limits_{h\to 0}\dfrac{h}{f(5-2\sin h)-f(5)}$。\medskip + +根据导数与函数的基本性质,原函数为偶函数,则其导函数为奇函数,所以$f'(5)=f'(2)=-f'(-2)=1$。 + +然后需要转换目标的极限式子,因为目标式子倒过来的式子类似于导数定义的$f'(x)=\lim\limits_{\Delta x\to 0}\dfrac{f(x+\Delta x)-f(x)}{\Delta x}$结构。所以我们可以先求其倒数式子:\medskip + +$=\lim\limits_{h\to 0}\dfrac{f(5-2\sin h)-f(5)}{h}$ + +$=\lim\limits_{h\to 0}\dfrac{f(5-2\sin h)-f(5)}{-2\sin h}\cdot\dfrac{-2\sin h}{h}$ + +$=-2f'(5)=-2\times 1=-2$ + +$\therefore\lim\limits_{h\to 0}\dfrac{h}{f(5-2\sin h)-f(5)}=-\dfrac{1}{2}$。 + \section{高阶导数} \subsection{导数存在性}