diff --git a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf index b5a925a..554712c 100644 Binary files a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf and b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf differ diff --git a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex index 31f6424..2b6cd38 100644 --- a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex +++ b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex @@ -391,20 +391,6 @@ $\int_a^bf(x)\,\textrm{d}x=F(b)-F(a)=F'(\xi)(b-a)=f(\xi)(b-a)$($a<\xi0$。 + \textbf{例题:}设随机变量$X_1,X_2,\cdots,X_n$独立同分布,且方差$\sigma^2>0$,$Y_1=\sum\limits_{i=2}^nX_i$和$Y_2=\sum\limits_{j=1}^{n-1}X_j$,求$Y_1$和$Y_n$的协方差$Cov(Y_1,Y_n)$。 解:$\because Y_1=\sum\limits_{i=2}^nX_i$,$Y_2=\sum\limits_{j=1}^{n-1}X_j$,$DX_i=\sigma^2$。 diff --git a/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.pdf b/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.pdf index 9a9db6d..90dc040 100644 Binary files a/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.pdf and b/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.pdf differ diff --git a/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.tex b/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.tex index 894641b..c23419d 100644 --- a/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.tex +++ b/probability-theory-and-mathematical-statistics/knowledge/2-random-variables-and-distribution/random-variables-and-distribution.tex @@ -263,7 +263,7 @@ $P\{X=x_i\}=P\{X\leqslant x_i\}-P\{Xs+t|X>s\}=P\{X>t\}$。 +无记忆性\textcolor{aqua}{\textbf{定理:}}若$X\sim E(\lambda)$,则$P\{X>s+t|X>s\}=P\{X>t\}=e^{-\lambda t}$。 即在指数分布下事情发生的概率与前面所经过的时间无关,如果$T$是某一元件的寿命,已知元件使用了$t$小时,它总共使用至少$s+t$小时的条件概率,与从开始使用时算起它使用至少$s$小时的概率相等。 @@ -503,12 +503,16 @@ $p_{\cdot j}=P\{Y=y_i\}=\sum\limits_{i=1}^\infty P\{X=x_i,Y=y_j\}=\sum\limits_{i \textcolor{violet}{\textbf{定义:}}设$(X,Y)\sim f(x,y)$,则$X$的边缘分布函数为$P\{X\leqslant x\}=F_X(x)=F(-\infty,x)=\int_{-\infty}^x\left[\int_{-\infty}^{+\infty}f(u,v)\,\textrm{d}v\right]\textrm{d}u$,所以$X$为连续型随机变量,其概率密度$f_X(x)=\int_{-\infty}^{+\infty}f(x,y)\,\textrm{d}y$,称$f_X(x)$为$(X,Y)$关于$X$的\textbf{边缘概率密度}。同理$Y$也为连续型随机变量,关于$Y$的边缘分布函数为$P\{Y\leqslant y\}=F_Y(y)=\int_{-\infty}^y[\int_{-\infty}^{+\infty}f(x,y)\,\textrm{d}x]\textrm{d}y$,其概率密度为$f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)\,\textrm{d}x$。 +联合概率密度决定边缘概率密度,所以相同联合概率密度的拥有同样边缘概率密度。 + \subsection{条件概率密度} \textcolor{violet}{\textbf{定义:}}设$(X,Y)\sim f(x,y)$,边缘概率密度$f_X(x)>0$,则称$f_{Y|X}(y|x)=\dfrac{f(x,y)}{f_X(x)}$为$Y$在$X=x$条件下的\textbf{条件概率密度}。同理$X$在$Y=y$条件下的条件概率密度为$f_{X|Y}(x|y)=\dfrac{f(x,y)}{f_Y(y)}$。 若$f_X(x)>0$,$f_Y(y)>0$,则有概率密度乘法公式$f(x,y)=f_X(x)f_{Y|X}(y|x)=f_Y(y)f_{X|Y}(x|y)$。 +如果$XY$独立,则$f(x,y)=f(x)f(y)$,此时条件概率密度就等于边缘概率密度。 + \textcolor{violet}{\textbf{定义:}}$Y$在$X=x$条件下的\textbf{条件分布函数}为$F_{Y|X}(y|x)=\int_{-\infty}^yf_{Y|X}(y|x)\,\textrm{d}y=\displaystyle{\int_{-\infty}^y\dfrac{f(x,y)}{f_X(x)}\textrm{d}y}$,同理$X$在$Y=y$条件下的条件分布函数为$F_{X|Y}(x|y)=$\\$\int_{-\infty}^xf_{X|Y}(x|y)\,\textrm{d}x=\displaystyle{\int_{-\infty}^x\dfrac{f(x,y)}{f_Y(y)}}\textrm{d}x$。 \subsection{二维均匀分布} @@ -531,7 +535,7 @@ $p_{\cdot j}=P\{Y=y_i\}=\sum\limits_{i=1}^\infty P\{X=x_i,Y=y_j\}=\sum\limits_{i \begin{itemize} \item $X\sim N(\mu_1,\sigma_1^2)$,$Y\sim N(\mu_2,\sigma_2^2)$,$\rho$为$X$与$Y$的相关系数,即$\rho=\dfrac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}=\dfrac{Cov(X,Y)}{\sigma_1\sigma_2}$。 \item $X,Y$的条件分布都是正态分布。 - \item $aX+bY$($a\neq0$或$b\neq0$)服从正态分布。 + \item $aX\pm bY$($a\neq0$或$b\neq0$)服从正态分布$N(a\mu_1\pm b\mu_2,a^2\sigma_1^2+b^2\sigma_2^2)$。 \item $XY$相互独立的充要条件是$XY$不相关,即$\rho=0$。 \end{itemize}