diff --git a/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex b/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex new file mode 100644 index 0000000..353a1a7 --- /dev/null +++ b/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex @@ -0,0 +1,87 @@ +\documentclass[UTF8, 12pt]{ctexart} +% UTF8编码,ctexart现实中文 +\usepackage{color} +% 使用颜色 +\usepackage{geometry} +\setcounter{tocdepth}{4} +\setcounter{secnumdepth}{4} +% 设置四级目录与标题 +\geometry{papersize={21cm,29.7cm}} +% 默认大小为A4 +\geometry{left=3.18cm,right=3.18cm,top=2.54cm,bottom=2.54cm} +% 默认页边距为1英尺与1.25英尺 +\usepackage{indentfirst} +\setlength{\parindent}{2.45em} +% 首行缩进2个中文字符 +\usepackage{setspace} +\renewcommand{\baselinestretch}{1.5} +% 1.5倍行距 +\usepackage{amssymb} +% 因为所以 +\usepackage{amsmath} +% 数学公式 +\author{Didnelpsun} +\title{导数与微分} +\date{} +\begin{document} +\maketitle +\pagestyle{empty} +\thispagestyle{empty} +\tableofcontents +\thispagestyle{empty} +\newpage +\pagestyle{plain} +\setcounter{page}{1} +\section{一阶导数} + +\subsection{导数存在性} + +导数存在即可导。 + +\subsection{导数连续性} + +\subsection{已知导数求极限} + +\section{高阶导数} + +\subsection{导数存在性} + +\section{微分} + +\section{隐函数与参数方程} + +\section{导数应用} + +\subsection{单调性与凹凸性} + +\subsection{极值与最值} + +\subsection{函数图像} + +\subsection{曲率} + +曲率公式:$k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$。 + +\subsubsection{一般计算} + +\textbf{例题:}求$y=\sin xx$在$x=\dfrac{\pi}{4}$对应的曲率 + +$y'=\cos x$,$y'(\dfrac{\pi}{4})=\dfrac{\sqrt{2}}{2}$。 + +$y''=-\sin x$,$y''(\dfrac{\pi}{4})=-\dfrac{\sqrt{2}}{2}$。 + +$\therefore k=\dfrac{\dfrac{\sqrt{2}}{2}}{\dfrac{3}{2}\cdot\sqrt{\dfrac{3}{2}}}=\dfrac{2\sqrt{3}}{9}$。 + +所以$y=\sin x$在$x=\dfrac{\pi}{4}$的点$(\dfrac{\pi}{4},\dfrac{\sqrt{2}}{2})$的曲率为$\dfrac{2\sqrt{3}}{9}$。 + +\subsubsection{最值} + +\textbf{例题:}求$y=x^2-4x+11$曲率最大值所在的点。 + +简单得$y'=2x-4$,$y''=2$。 + +曲率为$\dfrac{2}{[1+(2x-4)^2]^{\frac{3}{2}}}$。 + +当$2x-4=0$时即在$(2,7)$时曲率最大为2。 + +\end{document} diff --git a/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex b/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex index 621374a..dc0686c 100644 --- a/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex +++ b/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex @@ -31,6 +31,10 @@ % 圆圈序号 \usepackage{mathtools} % 有字的长箭头 +\usepackage{yhmath} +% 弧线标识 +\usetikzlibrary{decorations.pathreplacing} +% tikz的大括号 \author{Didnelpsun} \title{微分中值定理与导数的应用} \date{} @@ -453,4 +457,159 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取 \item 若$\lim\limits_{x\to\infty}\dfrac{f(x)}{x}=a,b=\lim\limits_{x\to\infty}(f(x)-ax)$,那么$y=ax+b$就是斜渐近线。 \end{itemize} +\section{弧微分与曲率} + +\subsection{弧微分} + +\begin{minipage}{0.5\linewidth} + \begin{tikzpicture}[scale=3] + \draw[-latex](-0.1,0) -- (1.25,0) node[below]{$x$}; + \draw[-latex](0,-0.1) -- (0,1.25) node[above]{$y$}; + \filldraw[black] (0,0) node[below]{$O$}; + \draw[black, thick,domain=0.4:1.1] plot (\x, \x*\x); + \filldraw[black] (0.5,1) node {$y=f(x)$}; + \draw[densely dashed](0.5,0.25) -- (0.5, 0) node[below]{$x$}; + \draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\Delta x$}; + \draw[densely dashed](0.5,0.25) -- (1,0.25); + \filldraw[black](0.5,0.35) node{$y$}; + \filldraw[black](0.95,1.1) node{$y_0$}; + \filldraw[black](0.75,0.35) node{$\Delta x$}; + \filldraw[black](1.1,0.6) node{$\Delta y$}; + \end{tikzpicture} +\end{minipage} +\hfill +\begin{minipage}{0.4\linewidth} + $\vert\wideparen{yy_0}\vert=S(x)$ + + $\Delta y=f(x+\Delta x)-f(x)$ + + $(\Delta s)^2\approx(\Delta x)^2+(\Delta y)^2$ +\end{minipage}\medskip + +当偏移量无穷小时,$y=f(x)$所构成的线段就是一条直线,所以: + +\begin{minipage}{0.5\linewidth} + \begin{tikzpicture}[scale=3] + \draw[-latex](-0.1,0) -- (1.25,0) node[below]{$x$}; + \draw[-latex](0,-0.1) -- (0,1.25) node[above]{$y$}; + \filldraw[black] (0,0) node[below]{$O$}; + \draw[black, thick,domain=0.4:1.1] plot (\x, \x); + \filldraw[black] (0.5,1) node {$y=f(x)$}; + \draw[densely dashed](0.5,0.5) -- (0.5, 0) node[below]{$x$}; + \draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\rm{d} x$}; + \draw[densely dashed](0.5,0.5) -- (1,0.5); + \filldraw[black](0.5,0.6) node{$y$}; + \filldraw[black](0.95,1.1) node{$y_0$}; + \filldraw[black](0.75,0.35) node{$\rm{d} x$}; + \filldraw[black](1.1,0.6) node{$\rm{d} y$}; + \end{tikzpicture} +\end{minipage} +\hfill +\begin{minipage}{0.4\linewidth} + $\rm{d} y=f(x+\rm{d} x)-f(x)$ + + $(\rm{d} s)^2=(\rm{d} x)^2+(\rm{d} y)^2$ + + $\rm{d}s=\sqrt{(\rm{d}x)^2+(\rm{d}y)^2}$(弧微分) +\end{minipage} + +对于弧微分: + +\begin{itemize} + \item 若直角坐标系下$y=f(x)$,$\rm{d}s=\sqrt{1+\left(\dfrac{\rm{d}y}{\rm{d}x}\right)^2}\rm{d}x$$=\sqrt{1+f'^2(x)}\rm{d}x$,即$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$。 + \item 若参数方程下:$x=\phi(t),y=\psi(t)$,$\rm{d}s=\sqrt{\left(\dfrac{\rm{d}x}{\rm{d}t}\right)^2+\left(\dfrac{\rm{d}y}{\rm{d}t}\right)^2}\rm{d}t$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$,即$\rm{d}s=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$。 +\end{itemize} + +\subsection{曲率与曲率半径} + +曲率\textcolor{violet}{\textbf{定义:}}表明曲线在某一点的弯曲程度的数值,针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。曲率越大,表示曲线的弯曲程度越大。 + +曲率的倒数就是曲率半径。\medskip + +\begin{minipage}{0.5\linewidth} + 两点切线改变角相同时,弯曲程度与两点之间的弧长度成反比。 + + 两点之间的弧长度相同时,弯曲程度与两点切线改变角成正比。 +\end{minipage} +\hfill +\begin{minipage}{0.2\linewidth} + \begin{tikzpicture}[scale=0.6] + \draw[black, thick,domain=-2:2] plot (\x, {\x*\x}); + \filldraw[black] (-1,1) circle (2pt) node[left]{$M_1$}; + \filldraw[black] (1,1) circle (2pt) node[right]{$N_1$}; + \draw[black](2,3) -- (0,-1); + \draw[black](-2,3) -- (0,-1); + \end{tikzpicture} +\end{minipage} +\hfill +\begin{minipage}{0.2\linewidth} + \begin{tikzpicture}[scale=0.6] + \draw[black, thick,domain=-1.5:1.5] plot (\x, {2*\x*\x}); + \filldraw[black] (-1/2,1/2) circle (2pt) node[left]{$M_2$}; + \filldraw[black] (1/2,1/2) circle (2pt) node[right]{$N_2$}; + \draw[black](2,3.5) -- (0,-1/2); + \draw[black](-2,3.5) -- (0,-1/2); + \end{tikzpicture} +\end{minipage} + +\begin{minipage}{0.3\linewidth} + \begin{tikzpicture}[scale=3] + \draw[-latex](-0.1,0) -- (1.25,0) node[below]{$x$}; + \draw[-latex](0,-0.1) -- (0,1.25) node[above]{$y$}; + \filldraw[black] (0,0) node[below]{$O$}; + \draw[black, thick,domain=-0.1:1.1] plot (\x, \x*\x); + \draw[densely dashed](0.5,0.25) -- (0.5, 0) node[below]{$x$}; + \draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\Delta x$}; + \filldraw[black](0.5,0.35) node{$y$}; + \filldraw[black](0.95,1.1) node{$y_0$}; + \filldraw[black] (1/2,1/4) circle (0.5pt); + \filldraw[black] (1,1) circle (0.5pt); + \draw[black](1,3/4) -- (1/4,0); + \draw[black](0.6,0.2) -- (9/8,5/4); + \draw[line width=0.1] (0.85,0.7) arc (50:0:0.1); + \filldraw[black](1,0.8) node{$\Delta\alpha$}; + \filldraw[black](0.5,0.8) node{$\vert\wideparen{yy_0}\vert=\Delta s$}; + \end{tikzpicture} +\end{minipage} +\hfill +\begin{minipage}{0.6\linewidth} + $y-y_0$平均曲率:$\hat{k}=\dfrac{\vert\Delta\alpha\vert}{\vert\Delta s\vert}$。\medskip + + $y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert$($\alpha$为$y$处切线与$x$轴所成角)。 +\end{minipage}\medskip + +需要对曲率公式进行化简,得到$s$与$\alpha$关于$x$的表示。根据弧微分的定义:$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$。 + +而对于$\alpha$:$\tan\alpha=y'=f'(x)$。 + +两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\rm{d}\alpha}{\rm{d}x}=y''=f''(x)$。 + +又$\because\sec^2\alpha=1+\tan^2\alpha=1+y'^2$。 + +$\therefore\dfrac{\rm{d}\alpha}{\rm{d}x}=\dfrac{y''}{1+y'^2}\Rightarrow\rm{d}\alpha=\dfrac{y''}{1+y'^2}\rm{d}x$。 + +$\therefore k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$。 + + +\begin{minipage}{0.5\linewidth} + $\bigcirc O$为函数$L$在点$X$处的曲率圆,该圆与$L$在$X$处相切,切线为$T$。 + + 该点的曲率半径为$R$,其中$R=\dfrac{1}{K}$。 +\end{minipage} +\hfill +\begin{minipage}{0.4\linewidth} + \begin{tikzpicture}[scale=2] + \draw (-1,0) -- (1,0); + \node (X) at (0,0)[below]{X}; + \node (O) at (0,0.5)[above]{O}; + \draw[densely dashed] (X) -- (O); + \filldraw[black] (0.75,0.25) node{$L$}; + \draw[decorate,decoration={brace,mirror,raise=2pt}] (X) -- (O); + \filldraw[black] (0.2,0.25) node{$R$}; + \filldraw[black] (-0.75,0) node{$T$}; + \draw[black, thick,domain=-1:1] plot (\x, \x*\x); + \draw[black] (0,0.5) circle (0.5); + \end{tikzpicture} +\end{minipage} + \end{document}