diff --git a/advanced-math/exercise/1-limit/limit.tex b/advanced-math/exercise/1-limit/limit.tex index b9911a4..c5ed382 100644 --- a/advanced-math/exercise/1-limit/limit.tex +++ b/advanced-math/exercise/1-limit/limit.tex @@ -643,7 +643,7 @@ $\therefore\lim\limits_{n\to\infty}x_n=\dfrac{1+\sqrt{5}}{2}$。 \subsection{变限积分极限} -已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}x$,$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$。 +已知更改区间限制的积分$s(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}g(t)\rm{d}\textit{x}$,$s'(x)=g[\varphi_2(x)]\cdot\varphi_2'(x)-g[\varphi_1(x)]\cdot\varphi_1'(x)$。 \end{document} diff --git a/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex b/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex index 73a1b44..ac3dd62 100644 --- a/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex +++ b/advanced-math/exercise/3-derivative-and-differentiate/derivative-and-differentiate.tex @@ -251,10 +251,36 @@ $\quad\quad\quad+x^2(x+1)^2(x+2)^2\cdots 2(x+n)$ 所以求$f''(0)$时,只有对一阶导数的第一项的第一个$x$求导所得到的导数项不为0,其他都是0,所以最后$f''(0)=2(x+1)^2(x+2)^2\cdots(x+n)^2=2(n!)^2$。 +\subsection{反函数高阶导数} + +已知一阶导数的时候,反函数的导数为原函数导数的倒数($g'(x)=\dfrac{1}{f'(x)}$)。 + +因为原函数的一阶导数是$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$,而反函数就是对原函数的$xy$对调,所以其反函数的一阶导数为$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}$。 + +\textbf{例题:}已知$y=x+e^x$,求其反函数的二阶导数。 + +$y=x+e^x$的反函数的一阶导数为$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}=\dfrac{1}{1+e^x}$。 + +所以二阶导数为$\dfrac{\rm{d}^2\textit{x}}{\rm{d}\textit{y}^2}=\dfrac{\rm{d}\left(\dfrac{1}{1+\textit{e}^{\textit{x}}}\right)}{\rm{d}\textit{y}}=\dfrac{\dfrac{\rm{d}\left(\dfrac{1}{1+\textit{e}^{\textit{x}}}\right)}{\rm{d}\textit{x}}}{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}}=-\dfrac{e^x}{(1+e^x)^3}$。 + \section{微分} \section{隐函数与参数方程} +隐函数与参数方程求导基本上只用记住:\medskip + +$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}$。 + +\textbf{例题:}已知$y=y(x)$由参数方程$\left\{\begin{array}{lcl} + x=\dfrac{1}{2}\ln(1+t^2) \\ + y=\arctan t +\end{array} +\right.$确定,求其一阶导数与二阶导数。 + +$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}=\dfrac{\dfrac{1}{2}\cdot\dfrac{2t}{1+t^2}}{\dfrac{1}{1+t^2}}=\dfrac{1}{t}$。 + +$\dfrac{\rm{d}^2y}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{t}}}{\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}}=\dfrac{-\dfrac{1}{t^2}}{\dfrac{t}{1+t^2}}=-\dfrac{1+t^2}{t^3}$。 + \section{导数应用} \subsection{单调性与凹凸性} @@ -265,11 +291,11 @@ $\quad\quad\quad+x^2(x+1)^2(x+2)^2\cdots 2(x+n)$ \subsection{曲率} -曲率公式:$k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$。 +曲率公式:$k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$。 \subsubsection{一般计算} -\textbf{例题:}求$y=\sin xx$在$x=\dfrac{\pi}{4}$对应的曲率 +\textbf{例题:}求$y=\sin x$在$x=\dfrac{\pi}{4}$对应的曲率 $y'=\cos x$,$y'(\dfrac{\pi}{4})=\dfrac{\sqrt{2}}{2}$。 diff --git a/advanced-math/knowledge/0-perpare/perpare.tex b/advanced-math/knowledge/0-perpare/perpare.tex index 5b7c8f0..15c90e7 100644 --- a/advanced-math/knowledge/0-perpare/perpare.tex +++ b/advanced-math/knowledge/0-perpare/perpare.tex @@ -354,9 +354,9 @@ $$ 反切函数有如下特征: \begin{enumerate} - \item 特殊函数值:$\arctan 0=0$,$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$,$\arctan 1=\dfrac{\pi}{4}$,$\arctan\sqrt{3}=\dfrac{\pi}{3}$,$\rm{arccot}0=\dfrac{\pi}{2}$,$\rm{arccot}\sqrt{3}=\dfrac{\pi}{6}$,$\rm{arccot}1=\dfrac{\pi}{4}$,$\rm{arccot}\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$。 + \item 特殊函数值:$\arctan 0=0$,$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$,$\arctan 1=\dfrac{\pi}{4}$,$\arctan\sqrt{3}=\dfrac{\pi}{3}$,$\rm{arccot}\,0=\dfrac{\pi}{2}$,$\rm{arccot}\,\sqrt{3}=\dfrac{\pi}{6}$,$\rm{arccot}\,1=\dfrac{\pi}{4}$,$\rm{arccot}\,\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$。 \item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:[-\dfrac{\pi}{2},+\dfrac{\pi}{2}]$,$\rm{arccot}\,\textit{x}:[0,\pi]$。 - \item 单调性:$y=\arctan x$单调增,$y=\rm{arccot}x$单调减。 + \item 单调性:$y=\arctan x$单调增,$y=\rm{arccot}\,\textit{x}$单调减。 \item 奇偶性:$y=\arctan x$为奇函数。 \item 有界性:$\vert\arctan x\vert\leqslant\dfrac{\pi}{2}$,$0\leqslant\rm{arccot}\,\textit{x}\leqslant\pi$。 \item 性质:$\arctan x+\rm{arccot}\,\textit{x}=\dfrac{\pi}{2}(-\infty0 \\ 0, & & x=0 \\ @@ -423,7 +423,7 @@ $ \draw[-latex](0,-1.5) -- (0,1.5) node[above]{$y$}; \draw[black, thick, domain=0:2] plot (\x,1); \draw[black, thick, domain=-2:0] plot (\x,-1); - \filldraw[black] (-1.5,1) node{$\rm{sgn}x$}; + \filldraw[black] (-1.5,1) node{$\rm{sgn}\,\textit{x}$}; \filldraw[black] circle (2pt) (0,0) node[below]{$O$}; \filldraw[white, draw=black, line width=1pt] (0,1) circle (2pt); \filldraw[black] (0,1) node[left]{$1$}; @@ -993,9 +993,9 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet 以后的华里士公式(点火公式)会使用到,如下面的题目: -\textbf{例题5:}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\rm{d}x$与$\int_0^{\frac{\pi}{2}}\cos^9x\rm{d}x$。 +\textbf{例题5:}计算$\int_0^{\frac{\pi}{2}}\sin^{10}x\rm{d}\textit{x}$与$\int_0^{\frac{\pi}{2}}\cos^9x\rm{d}\textit{x}$。\medskip -原式1为偶数次幂,所以$=\dfrac{9}{10}\cdot\dfrac{7}{8}\cdot\dfrac{5}{6}\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{\pi}{2}\cdot\dfrac{9!!}{10!!}$ +原式1为偶数次幂,所以$=\dfrac{9}{10}\cdot\dfrac{7}{8}\cdot\dfrac{5}{6}\cdot\dfrac{3}{4}\cdot\dfrac{1}{2}\cdot\dfrac{\pi}{2}=\dfrac{\pi}{2}\cdot\dfrac{9!!}{10!!}$。\medskip 原式2为奇数次幂,所以$=\dfrac{8}{9}\cdot\dfrac{6}{7}\cdot\dfrac{4}{5}\cdot\dfrac{2}{3}=\dfrac{8!!}{9!!}$ @@ -1010,7 +1010,7 @@ $a^\alpha\cdot a^\beta=a^{\alpha+\beta},\dfrac{a^\alpha}{a^\beta}=a^{\alpha-\bet \begin{enumerate} \item $\vert a\pm b\vert\leqslant\vert a\vert+\vert b\vert$。 \item 推广公式一到离散区间:$\vert a_1\pm a_2\pm a_3\pm\cdots\pm a_n\vert\leqslant\vert a_1\vert+\vert a_2\vert+\cdots+\vert a_n\vert$。 - \item 推广公式一到连续区间且$f(x)$在$[a,b](a0$。\medskip +$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{1}{x+\sqrt{x^2+1}}\cdot (1+\dfrac{2x}{2\sqrt{x^2+1}})=\dfrac{1}{\sqrt{x^2+1}}>0$。\medskip 所以该函数严格单调增。 @@ -217,8 +217,8 @@ $y=f(x)\,x\in D$,如果$\forall x_1,x_2\in D$且$x_10 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]>0 & \Rightarrow & f(x)\nearrow \\ - \dfrac{\rm{d}y}{\rm{d}x}<0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]<0 & \Rightarrow & f(x)\searrow + \dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}>0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]>0 & \Rightarrow & f(x)\nearrow \\ + \dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}<0 & \Rightarrow & (x_1-x_2)[f(x_1)-f(x_2)]<0 & \Rightarrow & f(x)\searrow \end{matrix} $ @@ -245,7 +245,7 @@ $f(x+T)=f(x)$,其中T为周期。 \medskip \item 若$f(x)$为周期函数,则$f'(x)$也为周期函数且周期不变。 \item 连续的奇函数的一切原函数都是偶函数。 \item 连续的偶函数的原函数中仅有一个原函数是奇函数。 - \item 若连续函数$f(x)$以T为周期且$\int_{0}^{T}f(x)\rm{d}x=0$,则$f(x)$的一切原函数也以T为周期。 + \item 若连续函数$f(x)$以T为周期且$\int_{0}^{T}f(x)\rm{d}\textit{x}=0$,则$f(x)$的一切原函数也以T为周期。 \item 若$f(x)$在有限区间$(a,b)$中可导且$f'(x)$有界,则$f(x)$在$(a,b)$有界。(某一函数在固定区间内变化率是有界的,则变化范围是有界的) \end{enumerate} diff --git a/advanced-math/knowledge/2-derivatives-and-differential/derivatives-and-differential.tex b/advanced-math/knowledge/2-derivatives-and-differential/derivatives-and-differential.tex index 8b2e306..880ed39 100644 --- a/advanced-math/knowledge/2-derivatives-and-differential/derivatives-and-differential.tex +++ b/advanced-math/knowledge/2-derivatives-and-differential/derivatives-and-differential.tex @@ -193,7 +193,9 @@ $=u'(x)v(x)+v'(x)u(x)$ \subsection{反函数导数} -\textcolor{aqua}{\textbf{定理:}}$y=f(x)$可导,且$f'(x)\neq 0$,则存在反函数$x=\varphi(y)$,且$\dfrac{\rm{d}x}{\rm{d}y}=\dfrac{1}{\dfrac{\rm{d}y}{\rm{d}x}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$。\medskip +\textcolor{aqua}{\textbf{定理:}}$y=f(x)$可导,且$f'(x)\neq 0$, + +则存在反函数$x=\varphi(y)$,且$\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{y}}=\dfrac{1}{\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}}$,即$\varphi'(x)=\dfrac{1}{f'(x)}$。\medskip $y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有反函数。 @@ -201,13 +203,13 @@ $y=f(x)$可导,且$f'(x)\neq 0$就是指严格单调,而严格单调必有 首先反三角函数就是三角函数的反函数。 -求$y=\arcsin x$,即$x=\sin y$。 +求$y=\arcsin x$,即$x=\sin y$。\medskip -$\therefore\dfrac{\rm{d}\arcsin x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\sin y}{\rm{d}y}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$。\medskip +$\therefore\dfrac{\rm{d}\arcsin\textit{x}}{\rm{d}\textit{x}}=\dfrac{1}{\dfrac{\rm{d}\sin\textit{y}}{\rm{d}\textit{y}}}=\dfrac{1}{\cos y}=\dfrac{1}{\sqrt{1-\sin^2y}}=\dfrac{1}{\sqrt{1-x^2}}$。\medskip 求$y=\arctan x$,就$x=\tan y$。\medskip -$\therefore\dfrac{\rm{d}\arctan x}{\rm{d}x}=\dfrac{1}{\dfrac{\rm{d}\tan y}{\rm{d}y}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$。\medskip +$\therefore\dfrac{\rm{d}\arctan\textit{x}}{\rm{d}\textit{x}}=\dfrac{1}{\dfrac{\rm{d}\tan\textit{y}}{\rm{d}\textit{y}}}=\dfrac{1}{\sec^2y}=\dfrac{1}{1+\tan^2y}=\dfrac{1}{1+x^2}$。\medskip 二阶反函数导数\textcolor{aqua}{\textbf{定理:}}: @@ -215,21 +217,21 @@ $f''(x)$ $=y''_{xx}$\medskip -$=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}$\medskip +$=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}$\medskip -$=\dfrac{\rm{d}^2y}{\rm{d}x^2}$\medskip +$=\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}$\medskip -$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\rm{d}x}$\medskip +$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(\textit{y})}\right)}{\rm{d}\textit{x}}$\medskip -$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(y)}\right)}{\rm{d}y}\cdot\dfrac{\rm{d}y}{\rm{d}x}$\medskip +$=\dfrac{\rm{d}\left(\dfrac{1}{\varphi'(\textit{y})}\right)}{\rm{d}\textit{y}}\cdot\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$\medskip $=-\dfrac{x_{yy}''}{(x_y')^2}\cdot\dfrac{1}{x_y'}$\medskip $=-\dfrac{x_{yy}''}{(x_y')^3}$\medskip -其中$\rm{d}x\cdot\rm{d}x=(\rm{d}x)^2=\rm{d}x^2$称为微分的幂,而$\rm{d}(x^2)$叫幂的微分。 +其中$\rm{d}\textit{x}\cdot\rm{d}\textit{x}=(\rm{d}\textit{x})^2=\rm{d}\textit{x}^2$称为微分的幂,而$\rm{d}(x^2)$叫幂的微分。 -\textbf{例题:}设$y=f(x)$的反函数是$x=\varphi(y)$,且$f(x)=\int_1^{2x}e^{t^2}\rm{d}t+1$,求$\varphi''(1)$。 +\textbf{例题:}设$y=f(x)$的反函数是$x=\varphi(y)$,且$f(x)=\int_1^{2x}e^{t^2}\rm{d}\textit{t}+1$,求$\varphi''(1)$。 $\because y=f(x)$,$\therefore x=\varphi(y)$,$x_{yy}''=\varphi''(y)=-\dfrac{y_{xx}''}{(y_x')^3}=-\dfrac{f''(x)}{[f'(x)]^3}$。\medskip @@ -241,7 +243,7 @@ $\because y=f(x)$,$\therefore x=\varphi(y)$,$x_{yy}''=\varphi''(y)=-\dfrac{y $u=g(x)$在$x$可导,$y=f(u)$在$u=g(x)$处可导,则$\{f[g(x)]\}'=f'[g(x)]g'(x)$。 -\textbf{例题:}设$f(x)=\Pi_{n=1}^{100}\left(\tan\dfrac{\pi x^a}{4}-n\right)$,则$f'(1)$为? +\textbf{例题:}设$f(x)=\prod\limits_{n=1}^{100}\left(\tan\dfrac{\pi x^a}{4}-n\right)$,则$f'(1)$为? 原式=$\left(\tan\dfrac{\pi x}{4}-1\right)\left(\tan\dfrac{\pi x^2}{4}-2\right)\cdots\left(\tan\dfrac{\pi x^100}{4}-100\right)$。 @@ -492,9 +494,9 @@ $ \medskip -一阶导数:$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{\rm{d}y/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{\psi'(t)}{\varphi'(t)}=u(t)$。 +一阶导数:$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{\rm{d}\textit{y}/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{\psi'(t)}{\varphi'(t)}=u(t)$。 -二阶导数:$\dfrac{\rm{d}^2y}{\rm{d}x^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{\rm{d}u/\rm{d}t}{\rm{d}x/\rm{d}t}=\dfrac{u'_t}{x'_t}$ +二阶导数:$\dfrac{\rm{d}^2y}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{\rm{d}u/\rm{d}\textit{t}}{\rm{d}\textit{x}/\rm{d}\textit{t}}=\dfrac{u'_t}{x'_t}$ \textbf{例题:}设$y=y(x)$由方程$\left\{ \begin{array}{l} @@ -502,13 +504,13 @@ $ y=t\sin t+\cos t \end{array} \right. -$($t$为参数)确定,求$\dfrac{\rm{d}^2y}{\rm{d}x^2}\vert_{t=\frac{\pi}{4}}$。 +$($t$为参数)确定,求$\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}\vert_{t=\frac{\pi}{4}}$。 -求参数方程的二阶导数首先就要求出其一阶导数: +求参数方程的二阶导数首先就要求出其一阶导数:\medskip -$\dfrac{\rm{d}y}{\rm{d}x}=\dfrac{y_t'}{x_t'}=\dfrac{t\cos t}{\cos t}=t$。\medskip +$\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}=\dfrac{y_t'}{x_t'}=\dfrac{t\cos t}{\cos t}=t$。\medskip -$\therefore\dfrac{\rm{d}^2y}{\rm{d}x^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}y}{\rm{d}x}\right)}{\rm{d}x}=\dfrac{t_t'}{(\sin t)_t'}=\dfrac{1}{\cos t}$\medskip +$\therefore\dfrac{\rm{d}^2\textit{y}}{\rm{d}\textit{x}^2}=\dfrac{\rm{d}\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)}{\rm{d}\textit{x}}=\dfrac{t_t'}{(\sin t)_t'}=\dfrac{1}{\cos t}$\medskip $\therefore \sqrt{2}$。 @@ -526,9 +528,9 @@ $\therefore \sqrt{2}$。 当$\Delta x\to 0$时,将这个变化定义为$2x\cdot\Delta x+o(\Delta x)$,前项为线性主部,后面为误差。这个就是$S$的微分。 -增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\rm{d}y$,叫做$y$的微分。 +增量$\Delta y=f(x_0+\Delta)-f(x_0)=A\Delta x+o(\Delta x)$,这个$A\Delta x$定义为$\rm{d}\textit{y}$,叫做$y$的微分。 -$\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{d}x$ +$\therefore \rm{d}\textit{y}\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{d}\textit{x}$ 由此,可导必可微,可微必可导。 @@ -541,7 +543,7 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{ \draw[black, densely dashed](1.5,1.125) -- (0,1.125) node[left]{$y_0$}; \draw[black, densely dashed](3,3) -- (3,0) node[below]{$x_0+\Delta x$}; \draw[black, densely dashed](3,3) -- (0,3) node[left]{$y_0+\Delta x$}; - \draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\rm{d}yx+b$}; + \draw[black, densely dashed](3,1.875) -- (0,0.375) node[left]{$\rm{d}\textit{y}\cdot\textit{x}+\textit{b}$}; \draw[<->, black](1.5,1.125) -- (3,1.125); \draw[<->, black](4,1.125) -- (4,3); \draw[<->, black](3.25,1.125) -- (3.25,1.875); @@ -551,7 +553,7 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{ \draw[black](3,1.875) -- (3.75,1.875); \filldraw[black] (2.25,0.75) node{$\Delta x$}; \filldraw[black] (4.3,2) node{$\Delta y$}; - \filldraw[black] (3.5,1.5) node{\scriptsize{$\rm{d}y$}}; + \filldraw[black] (3.5,1.5) node{\scriptsize{$\rm{d}\textit{y}$}}; \filldraw[black] (3.5,2.5) node{\scriptsize{$o(\Delta x)$}}; \end{tikzpicture} @@ -564,28 +566,28 @@ $\therefore \rm{d}y\vert_{x=x_0}=A\Delta x=y'(x_0)\cdot\Delta x=y'(x_0)\cdot\rm{ 若函数可导: \begin{enumerate} - \item 和差的微分:$\rm{d}[u(x)\pm v(x)]=\rm{d}u(x)\pm\rm{d}v(x)$。 - \item 积的微分:$\rm{d}[u(x)v(x)]$$=u(x)\rm{d}v(x)+v(x)\rm{d}u(x)$。 - \item 商的微分:$\rm{d}\left[\dfrac{u(x)}{v(x)}\right]=\dfrac{v(x)\rm{d}u(x)-u(x)\rm{d}v(x)}{[v(x)]^2}$,$v(x)\neq 0$。 - \item 复合函数的微分:链式求导法则$\dfrac{\rm{d}u}{\rm{d}x}=\dfrac{\rm{d}u}{\rm{d}y}\cdot\dfrac{\rm{d}y}{\rm{d}x}$。 + \item 和差的微分:$\rm{d}[\textit{u}(\textit{x})\pm\textit{v}(\textit{x})]=\rm{d}\textit{u}(\textit{x})\pm\rm{d}\textit{v}(\textit{x})$。 + \item 积的微分:$\rm{d}[\textit{u}(\textit{x})\textit{v}(\textit{x})]$$=\textit{u}(\textit{x})\rm{d}\textit{v}(\textit{x})+\textit{v}(\textit{x})\rm{d}\textit{u}(\textit{x})$。 + \item 商的微分:$\rm{d}\left[\dfrac{\textit{u}(\textit{x})}{\textit{v}(\textit{x})}\right]=\dfrac{\textit{v}(\textit{x})\rm{d}\textit{u}(\textit{x})-\textit{u}(\textit{x})\rm{d}\textit{v}(\textit{x})}{[\textit{v}(\textit{x})]^2}$,$\textit{v}(\textit{x})\neq 0$。 + \item 复合函数的微分:链式求导法则$\dfrac{\rm{d}\textit{u}}{\rm{d}\textit{x}}=\dfrac{\rm{d}\textit{u}}{\rm{d}\textit{y}}\cdot\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}$。 \end{enumerate} \subsubsection{微分形式不变性} -设$y=f(u)$可微,$u=g(x)$可微,则$y=f(g(x))$可微,且$\rm{d}y=y'_x\rm{d}x=y'_u\rm{d}u$。即对哪个变量求导都是一样的,即$\rm{d}\{f[g(x)]\}=f'[g(x)]g'(x)\rm{d}x$。 +设$y=f(u)$可微,$u=g(x)$可微,则$y=f(g(x))$可微,且$\rm{d}\textit{y}=\textit{y}'_{\textit{x}}\rm{d}\textit{x}=\textit{y}'_{\textit{u}}\rm{d}\textit{u}$。即对哪个变量求导都是一样的,即$\rm{d}\{\textit{f}\,[\textit{g}(\textit{x})]\}=\textit{f}\,'[\textit{g}(\textit{x})]\textit{g}'(\textit{x})\rm{d}\textit{x}$。 -一阶微分形式不变性指:$\rm{d}f(\varsigma)=f'(\varsigma)\rm{d}\varsigma$,无论$\varsigma$是什么(类似导数的链式求导法则)。 +一阶微分形式不变性指:$\rm{d}\textit{f}\,(\varsigma)=\textit{f}\,'(\varsigma)\rm{d}\varsigma$,无论$\varsigma$是什么(类似导数的链式求导法则)。 -\textbf{例题:}设$y=e^{\sin(\ln x)}$,求$\rm{d}y$。 +\textbf{例题:}设$y=e^{\sin(\ln x)}$,求$\rm{d}\textit{y}$。 $\because y=e^{\sin(\ln x)} \therefore$ $ \begin{aligned} - \rm{d}y &=\rm{d}e^{\sin(\ln x)} \\ - & =e^{\sin(\ln x)}\cdot\rm{d}(\sin(\ln x)) \\ - & =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\rm{d}\ln x \\ - & =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\rm{d}x + \rm{d}\textit{y} &=\rm{d}e^{\sin(\ln\textit{x})} \\ + & =e^{\sin(\ln x)}\cdot\rm{d}(\sin(\ln\textit{x})) \\ + & =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\rm{d}\ln\textit{x} \\ + & =e^{\sin(\ln x)}\cdot\cos(\ln x)\cdot\dfrac{1}{x}\rm{d}\textit{x} \end{aligned} $ @@ -624,15 +626,15 @@ $ \subsection{双曲与反双曲函数} \begin{itemize} - \item 双曲正弦:$\rm{sinh}\,\textit{x}=\rm{sh}\,\textit{x}=\dfrac{e^x-e^{-x}}{2}$。 - \item 双曲余弦:$\rm{cosh}\,\textit{x}=\rm{ch}\,\textit{x}=\dfrac{e^x+e^{-x}}{2}$。 - \item 双曲正切:$\rm{tanh}\,\textit{x}=\rm{th}\,\textit{x}=\dfrac{\rm{sinh}\,\textit{x}}{\rm{cosh}\,\textit{x}}=\dfrac{e^x-e^{-x}}{e^x+e^{-x}}$。 - \item 双曲余切:$\rm{coth}\,\textit{x}=\dfrac{\rm{cosh}\,\textit{x}}{\rm{sinh}\,\textit{x}}=\dfrac{e^x+e^{-x}}{e^x-e^{-x}}$。 - \item 双曲正割:$\rm{sech}\,\textit{x}=\dfrac{1}{\rm{cosh}\,\textit{x}}=\dfrac{2}{e^x+e^{-x}}$。 - \item 双曲余割:$\rm{csch}\,\textit{x}=\dfrac{1}{\rm{sinh}\,\textit{x}}=\dfrac{2}{e^x-e^{-x}}$。 - \item 反双曲正弦:$\rm{arcsinh}\,\textit{x}=\ln\left(x+\sqrt{x^2+1}\right)$。 - \item 反双曲余弦:$\rm{arccosh}\,\textit{x}=\ln\left(x+\sqrt{x^2-1}\right)$。 - \item 反双曲正切:$\rm{arctanh}\,\textit{x}=\dfrac{1}{2}\ln\left(\dfrac{1+x}{1-x}\right)$。 + \item 双曲正弦:$\rm{sinh}\,\textit{x}=\rm{sh}\,\textit{x}=\dfrac{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}{2}$。 + \item 双曲余弦:$\rm{cosh}\,\textit{x}=\rm{ch}\,\textit{x}=\dfrac{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}{2}$。 + \item 双曲正切:$\rm{tanh}\,\textit{x}=\rm{th}\,\textit{x}=\dfrac{\rm{sinh}\,\textit{x}}{\rm{cosh}\,\textit{x}}=\dfrac{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}$。 + \item 双曲余切:$\rm{coth}\,\textit{x}=\dfrac{\rm{cosh}\,\textit{x}}{\rm{sinh}\,\textit{x}}=\dfrac{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}$。 + \item 双曲正割:$\rm{sech}\,\textit{x}=\dfrac{1}{\rm{cosh}\,\textit{x}}=\dfrac{2}{\textit{e}^{\textit{x}}+\textit{e}^{\textit{-x}}}$。 + \item 双曲余割:$\rm{csch}\,\textit{x}=\dfrac{1}{\rm{sinh}\,\textit{x}}=\dfrac{2}{\textit{e}^{\textit{x}}-\textit{e}^{\textit{-x}}}$。 + \item 反双曲正弦:$\rm{arcsinh}\,\textit{x}=\ln\left(\textit{x}+\sqrt{\textit{x}^2+1}\right)$。 + \item 反双曲余弦:$\rm{arccosh}\,\textit{x}=\ln\left(\textit{x}+\sqrt{\textit{x}^2-1}\right)$。 + \item 反双曲正切:$\rm{arctanh}\,\textit{x}=\dfrac{1}{2}\ln\left(\dfrac{1+\textit{x}}{1-\textit{x}}\right)$。 \end{itemize} \begin{center} diff --git a/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex b/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex index 7865e16..e4bd7d0 100644 --- a/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex +++ b/advanced-math/knowledge/3-differential-mean-value-theorem-and-applications-of-derivatives/differential-mean-value-theorem-and-applications-of-derivatives.tex @@ -496,28 +496,28 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取 \draw[black, thick,domain=0.4:1.1] plot (\x, \x); \filldraw[black] (0.5,1) node {$y=f(x)$}; \draw[densely dashed](0.5,0.5) -- (0.5, 0) node[below]{$x$}; - \draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\rm{d} x$}; + \draw[densely dashed](1,1) -- (1, 0) node[below]{$x+\rm{d}\textit{x}$}; \draw[densely dashed](0.5,0.5) -- (1,0.5); \filldraw[black](0.5,0.6) node{$y$}; \filldraw[black](0.95,1.1) node{$y_0$}; - \filldraw[black](0.75,0.35) node{$\rm{d} x$}; - \filldraw[black](1.1,0.6) node{$\rm{d} y$}; + \filldraw[black](0.75,0.35) node{$\rm{d}\textit{x}$}; + \filldraw[black](1.1,0.6) node{$\rm{d}\textit{y}$}; \end{tikzpicture} \end{minipage} \hfill \begin{minipage}{0.4\linewidth} - $\rm{d} y=f(x+\rm{d} x)-f(x)$ + $\rm{d}\textit{y}=\textit{f}\,(\textit{x}+\rm{d}\textit{x})-\textit{f}\,(\textit{x})$ - $(\rm{d} s)^2=(\rm{d} x)^2+(\rm{d} y)^2$ + $(\rm{d}\textit{s})^2=(\rm{d}\textit{x})^2+(\rm{d}\textit{y})^2$ - $\rm{d}s=\sqrt{(\rm{d}x)^2+(\rm{d}y)^2}$(弧微分) + $\rm{d}\textit{s}=\sqrt{(\rm{d}\textit{x})^2+(\rm{d}\textit{y})^2}$(弧微分) \end{minipage} 对于弧微分: \begin{itemize} - \item 若直角坐标系下$y=f(x)$,$\rm{d}s=\sqrt{1+\left(\dfrac{\rm{d}y}{\rm{d}x}\right)^2}\rm{d}x$$=\sqrt{1+f'^2(x)}\rm{d}x$,即$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$。 - \item 若参数方程下:$x=\phi(t),y=\psi(t)$,$\rm{d}s=\sqrt{\left(\dfrac{\rm{d}x}{\rm{d}t}\right)^2+\left(\dfrac{\rm{d}y}{\rm{d}t}\right)^2}\rm{d}t$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$,即$\rm{d}s=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}t$。 + \item 若直角坐标系下$y=f(x)$,$\rm{d}\textit{s}=\sqrt{1+\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{x}}\right)^2}\rm{d}\textit{x}$$=\sqrt{1+f'^2(x)}\rm{d}\textit{x}$,即$\rm{d}\textit{s}=$$\sqrt{1+f'^2(x)}\rm{d}\textit{x}$。 + \item 若参数方程下:$x=\phi(t),y=\psi(t)$,$\rm{d}\textit{s}=\sqrt{\left(\dfrac{\rm{d}\textit{x}}{\rm{d}\textit{t}}\right)^2+\left(\dfrac{\rm{d}\textit{y}}{\rm{d}\textit{t}}\right)^2}\rm{d}\textit{t}$\medskip\\$=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}\textit{t}$,即$\rm{d}\textit{s}=\sqrt{\psi'^2(t)+\phi'^2(t)}\rm{d}\textit{t}$。 \end{itemize} \subsection{曲率} @@ -575,20 +575,20 @@ $\forall x\in U(x_0,\delta)$恒有$f(x)\leqslant f(x_0)$,则$f(x)$在$x_0$取 \begin{minipage}{0.6\linewidth} $y-y_0$平均曲率:$\hat{k}=\dfrac{\vert\Delta\alpha\vert}{\vert\Delta s\vert}$。\medskip - $y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert$($\alpha$为$y$处切线与$x$轴所成角)。 + $y$曲率:$k=\lim\limits_{\Delta x\to 0}\left\lvert\dfrac{\Delta\alpha}{\Delta s}\right\rvert=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert$($\alpha$为$y$处切线与$x$轴所成角)。 \end{minipage}\medskip -需要对曲率公式进行化简,得到$s$与$\alpha$关于$x$的表示。根据弧微分的定义:$\rm{d}s=$$\sqrt{1+f'^2(x)}\rm{d}x$。 +需要对曲率公式进行化简,得到$s$与$\alpha$关于$x$的表示。根据弧微分的定义:$\rm{d}\textit{s}=$$\sqrt{1+f'^2(x)}\rm{d}\textit{x}$。 而对于$\alpha$:$\tan\alpha=y'=f'(x)$。 -两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\rm{d}\alpha}{\rm{d}x}=y''=f''(x)$。 +两边对$x$求导:$\sec^2\alpha\cdot\dfrac{\rm{d}\alpha}{\rm{d}\textit{x}}=y''=f''(x)$。 又$\because\sec^2\alpha=1+\tan^2\alpha=1+y'^2$。 -$\therefore\dfrac{\rm{d}\alpha}{\rm{d}x}=\dfrac{y''}{1+y'^2}\Rightarrow\rm{d}\alpha=\dfrac{y''}{1+y'^2}\rm{d}x$。 +$\therefore\dfrac{\rm{d}\alpha}{\rm{d}\textit{x}}=\dfrac{y''}{1+y'^2}\Rightarrow\rm{d}\alpha=\dfrac{\textit{y}''}{1+\textit{y}\,'^2}\rm{d}\textit{x}$。 -$\therefore k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}s}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$。 +$\therefore k=\left\lvert\dfrac{\rm{d}\alpha}{\rm{d}\textit{s}}\right\rvert=\dfrac{\vert y''\vert}{(1+y'^2)^{\frac{3}{2}}}$。 \subsection{曲率半径}