diff --git a/linear-algebra/exercise/3-vector/vector.pdf b/linear-algebra/exercise/3-vector/vector.pdf index a82661e..dd432d1 100644 Binary files a/linear-algebra/exercise/3-vector/vector.pdf and b/linear-algebra/exercise/3-vector/vector.pdf differ diff --git a/linear-algebra/exercise/3-vector/vector.tex b/linear-algebra/exercise/3-vector/vector.tex index ff9afcb..f9e42ff 100644 --- a/linear-algebra/exercise/3-vector/vector.tex +++ b/linear-algebra/exercise/3-vector/vector.tex @@ -111,12 +111,18 @@ $\because A^{k-1}\alpha\neq0$,$\therefore\lambda_2=0$,消去$\lambda_2$:$\ \subsubsection{线性相关性} -当谈到多个向量是否线性相关时可以将向量组组成矩阵,判断其秩。 +当谈到多个向量是否线性相关时可以将向量组组成矩阵,判断其秩。满秩就是线性无关,降秩就是线性相关。 \subsubsection{线性表出} 当谈到一个向量是否能被其他向量线性表出时,要将这些向量全部组成一起,判断能否被其他向量表出的向量放在最右边,然后判断增广矩阵的秩。 +\begin{enumerate} + \item 若$r(\alpha_1,\alpha_2,\cdots)\neq r(\alpha_1,\alpha_2,\cdots,\beta)$,则$\beta$无法被$\alpha$线性表出。 + \item 若$r(\alpha_1,\alpha_2,\cdots)=r(\alpha_1,\alpha_2,\cdots,\beta)