From a2b52243d89a21acb35c3c50dad793aa8113e162 Mon Sep 17 00:00:00 2001 From: Didnelpsun <48906416+Didnelpsun@users.noreply.github.com> Date: Sun, 24 Jan 2021 23:02:30 +0800 Subject: [PATCH] =?UTF-8?q?=E6=9B=B4=E6=96=B0?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- advanced-math/1-perpare/perpare.tex | 8 +-- .../function-and-limit.synctex(busy) | 0 ...ariable-function-differential-calculus.tex | 55 +++++++++++++++++-- 3 files changed, 53 insertions(+), 10 deletions(-) create mode 100644 advanced-math/3-function-and-limit/function-and-limit.synctex(busy) diff --git a/advanced-math/1-perpare/perpare.tex b/advanced-math/1-perpare/perpare.tex index a3fc712..900073a 100644 --- a/advanced-math/1-perpare/perpare.tex +++ b/advanced-math/1-perpare/perpare.tex @@ -531,7 +531,7 @@ $$ \begin{tikzpicture}[scale=0.9] \draw[-latex](-3,0) -- (3,0) node[below]{$x$}; \draw[-latex](0,-0.5) -- (0,4) node[above]{$y$}; - \draw[black, thick, domain=-3:3] plot (\x,{pi/2-rad(atan(\x))}) node[right]{$\rm{arccot}(x)$}; + \draw[black, thick, domain=-3:3] plot (\x,{pi/2-rad(atan(\x))}) node[right]{$\rm{arccot}(\textit{x})$}; \filldraw[black] (0,0) node[below]{$O$}; \draw[black, densely dashed](-3,pi) -- (3,pi); \filldraw[black] (-0.5,pi/2-0.5) node{$\dfrac{\pi}{2}$}; @@ -541,11 +541,11 @@ $$ \begin{enumerate} \item 特殊函数值:$\arctan 0=0$,$\arctan\dfrac{\pi}{6}=\dfrac{\sqrt{3}}{3}=$,$\arctan 1=\dfrac{\pi}{4}$,$\arctan\sqrt{3}=\dfrac{\pi}{3}$,$\rm{arccot}0=\dfrac{\pi}{2}$,$\rm{arccot}\sqrt{3}=\dfrac{\pi}{6}$,$\rm{arccot}1=\dfrac{\pi}{4}$,$\rm{arccot}\dfrac{\sqrt{3}}{3}=\dfrac{\pi}{3}$。 - \item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:[-\dfrac{\pi}{2},+\dfrac{\pi}{2}]$,$\rm{arccot}x:[0,\pi]$。 + \item 定义域:$(-\infty, +\infty)$,值域:$\arctan x:[-\dfrac{\pi}{2},+\dfrac{\pi}{2}]$,$\rm{arccot}\,\textit{x}:[0,\pi]$。 \item 单调性:$y=\arctan x$单调增,$y=\rm{arccot}x$单调减。 \item 奇偶性:$y=\arctan x$为奇函数。 - \item 有界性:$\vert\arctan x\vert\leqslant\dfrac{\pi}{2}$,$0\leqslant\rm{arccot}x\leqslant\pi$。 - \item 性质:$\arctan x+\rm{arccot}x=\dfrac{\pi}{2}(-\infty