diff --git a/advanced-math/1-exercises/function-and-limit.tex b/advanced-math/1-exercises/function-and-limit.tex index 23381ed..54a339a 100644 --- a/advanced-math/1-exercises/function-and-limit.tex +++ b/advanced-math/1-exercises/function-and-limit.tex @@ -31,12 +31,15 @@ \newpage \pagestyle{plain} \setcounter{page}{1} -\section{等价无穷小替换} -求$I=\lim_{x\to 0}\dfrac{(e^{x^2}-1)(\sqrt{1+x}-\sqrt{1-x})}{[\ln(1-x)+\ln(1+x)]\sin\dfrac{x}{x+1}}$。 +\section{求极限值} + +\subsection{等价无穷小替换} 当看到复杂的式子,且当$x\to 0$时,使用等价无穷小进行替换。 +求$\lim_{x\to 0}\dfrac{(e^{x^2}-1)(\sqrt{1+x}-\sqrt{1-x})}{[\ln(1-x)+\ln(1+x)]\sin\dfrac{x}{x+1}}$。 + 在明显的部分由等价无穷小的式子得到:$e^{x^2}-1\sim x^2$,$\sin\dfrac{x}{x+1}=\dfrac{x}{x+1}$。 并注意在积或商的时候不能把对应的部分替换为0,如分母部分的$[\ln(1-x)+\ln(1+x)]$就无法使用$\ln(1+x)\sim x$替换为$-x+x$,这样底就是0了,无法求得最后的极限。 @@ -49,6 +52,10 @@ 将所有替换的无穷小代入原式:$=\lim_{x\to 0}\dfrac{x^2\cdot x}{-x^2\cdot\dfrac{x}{1+x}}=\lim_{x\to 0}-(1+x)=-1$。 +\subsection{幂指类型} +当出现$f(x)^{g(x)}$的类似幂函数与指数函数类型的式子,需要使用$u^v=e^{v\ln u}$。 + +求$\lim_{x\to\infty}$ \end{document} diff --git a/advanced-math/3-function-and-limit/function-and-limit.synctex(busy) b/advanced-math/3-function-and-limit/function-and-limit.synctex(busy) deleted file mode 100644 index e69de29..0000000 diff --git a/advanced-math/3-function-and-limit/function-and-limit.tex b/advanced-math/3-function-and-limit/function-and-limit.tex index 765958e..71ce7b0 100644 --- a/advanced-math/3-function-and-limit/function-and-limit.tex +++ b/advanced-math/3-function-and-limit/function-and-limit.tex @@ -3,6 +3,7 @@ % 使用颜色 \definecolor{orange}{RGB}{255,127,0} \definecolor{violet}{RGB}{192,0,255} +\definecolor{aqua}{RGB}{0,255,255} \usepackage{geometry} \setcounter{tocdepth}{5} \setcounter{secnumdepth}{5}