diff --git a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf index bffc60a..ef7a1ae 100644 Binary files a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf and b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.pdf differ diff --git a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex index ec5654a..171ccf1 100644 --- a/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex +++ b/advanced-math/exercise/6-differential-calculus-of-multivariate-functions/differential-calculus-of-multivariate-functions.tex @@ -54,7 +54,7 @@ 首先求一次偏导:$\dfrac{\partial z}{\partial x}=ye^{xy}+\dfrac{\partial f(u,v)}{\partial u}\dfrac{\partial u}{\partial x}+\dfrac{\partial f(u,v)}{\partial v}\dfrac{\partial v}{\partial x}=ye^{xy}+f_1'+f_2'y$。 -接着对$y$求偏导:$\dfrac{\partial^2z}{\partial x\partial y}=e^{xy}+xye^{xy}+\dfrac{\partial f_1'}{\partial y}+\dfrac{\partial f_2'y}{\partial y}$。 +接着对$y$求偏导:$\dfrac{\partial^2z}{\partial x\partial y}=e^{xy}+xye^{xy}+\dfrac{\partial f_1'}{\partial y}+\dfrac{\partial f_2'y}{\partial y}$ $=e^{xy}+xye^{xy}+\dfrac{\partial f_1'}{\partial y}+\dfrac{\partial f_2'}{\partial y}y+f_2'\dfrac{\partial y}{\partial y}=e^{xy}+xye^{xy}+\dfrac{\partial f_1'}{\partial u}\dfrac{\partial u}{\partial y}+\dfrac{\partial f_1'}{\partial v}\dfrac{\partial v}{\partial y}+\dfrac{\partial f_2'}{\partial u}\dfrac{\partial u}{\partial y}y+\dfrac{\partial f_2'}{\partial v}\dfrac{\partial v}{\partial y}y+f_2'=e^{xy}+xye^{xy}+f_{11}''+f_{12}''x+f_{21}''y+f_{22}''xy+f_2'$。\medskip diff --git a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf index a278c6d..7505460 100644 Binary files a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf and b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf differ diff --git a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex index ebdf6aa..68c711d 100644 --- a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex +++ b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex @@ -707,13 +707,13 @@ $S=2\pi\int_\alpha^\beta\vert y(t)\vert\sqrt{[x'(t)]^2+[y'(t)]^2}\,\textrm{d}t$ 对于一条曲线$y=f(x)$以及$x=a$,$x=b$($a