diff --git a/linear-algebra/exercise/4-linear-equations-system/linear-equations-system.pdf b/linear-algebra/exercise/4-linear-equations-system/linear-equations-system.pdf new file mode 100644 index 0000000..08caaa7 Binary files /dev/null and b/linear-algebra/exercise/4-linear-equations-system/linear-equations-system.pdf differ diff --git a/linear-algebra/exercise/4-linear-equations-system/linear-equations-system.tex b/linear-algebra/exercise/4-linear-equations-system/linear-equations-system.tex new file mode 100644 index 0000000..de3793c --- /dev/null +++ b/linear-algebra/exercise/4-linear-equations-system/linear-equations-system.tex @@ -0,0 +1,68 @@ +\documentclass[UTF8, 12pt]{ctexart} +% UTF8编码,ctexart现实中文 +\usepackage{color} +% 使用颜色 +\usepackage{geometry} +\setcounter{tocdepth}{4} +\setcounter{secnumdepth}{4} +% 设置四级目录与标题 +\geometry{papersize={21cm,29.7cm}} +% 默认大小为A4 +\geometry{left=3.18cm,right=3.18cm,top=2.54cm,bottom=2.54cm} +% 默认页边距为1英尺与1.25英尺 +\usepackage{indentfirst} +\setlength{\parindent}{2.45em} +% 首行缩进2个中文字符 +\usepackage{setspace} +\renewcommand{\baselinestretch}{1.5} +% 1.5倍行距 +\usepackage{amssymb} +% 因为所以 +\usepackage{amsmath} +% 数学公式 +\usepackage[colorlinks,linkcolor=black,urlcolor=blue]{hyperref} +% 超链接 +\author{Didnelpsun} +\title{线性方程组} +\date{} +\begin{document} +\maketitle +\pagestyle{empty} +\thispagestyle{empty} +\tableofcontents +\thispagestyle{empty} +\newpage +\pagestyle{plain} +\setcounter{page}{1} +\section{基础解系} + +\section{反求参数} + +基本上都是给出方程组有无穷多解: + +\begin{itemize} + \item 齐次方程组:系数矩阵是降秩的;行列式值为0。 + \item 非齐次方程组:系数矩阵与增广矩阵秩相同且降秩。 +\end{itemize} + +\textbf{例题:}已知齐次线性方程组$\left\{\begin{array}{l} + ax_1-3x_2+3x_3=0 \\ + x_1+(a+2)x_2+3x_3=0 \\ + 2x_1+x_2-x_3=0 +\end{array}\right.$有无穷多解,求参数$a$。 + +解:使用矩阵比较麻烦,三阶的系数矩阵可以使用行列式。 + +$\vert A\vert=\left\vert\begin{array}{ccc} + a & -3 & 3 \\ + 1 & a+2 & 3 \\ + 2 & 1 & -1 \\ +\end{array}\right\vert=\left\vert\begin{array}{ccc} + a & 0 & 3 \\ + 1 & a+5 & 3 \\ + 2 & 0 & -1 \\ +\end{array}\right\vert=(a+5)(a+6)=0$。 + +解得$a=-5$或$a=-6$。 + +\end{document} \ No newline at end of file diff --git a/linear-algebra/exercise/5-similar/similar.pdf b/linear-algebra/exercise/5-similar/similar.pdf index cc6320d..829458f 100644 Binary files a/linear-algebra/exercise/5-similar/similar.pdf and b/linear-algebra/exercise/5-similar/similar.pdf differ diff --git a/linear-algebra/exercise/5-similar/similar.tex b/linear-algebra/exercise/5-similar/similar.tex index 8f803d9..76d1a4d 100644 --- a/linear-algebra/exercise/5-similar/similar.tex +++ b/linear-algebra/exercise/5-similar/similar.tex @@ -37,7 +37,9 @@ 特征值往往与前面的内容进行混合考察。 -\section{特征值与迹} +\section{特征值与特征向量} + +\subsection{迹} \textbf{例题:}已知$A$是3阶方阵,特征值为1,2,3,求$\vert A\vert$的元素$a_{11},a_{22},a_{33}$的代数余子式$A_{11},A_{22},A_{33}$的和$\sum\limits_{i=1}^3A_{ii}$。 @@ -49,7 +51,55 @@ $=\sum\limits_{i=1}^3\dfrac{\vert A\vert}{\lambda_i}=\sum\limits_{i=1}^3\dfrac{\lambda_1\lambda_2\lambda_3}{\lambda_i}=\lambda_2\lambda_3+\lambda_1\lambda_3+\lambda_1\lambda_2=2+3+6=11$。 -\section{相似对角化} +\subsection{逆矩阵} + +通过相关式子将逆矩阵转换为原矩阵。同一个向量的逆矩阵的特征值是原矩阵的特征值的倒数。 + +\textbf{例题:}已知$\overrightarrow{\alpha}=(a,1,1)^T$是矩阵$A=\left[\begin{array}{ccc} + -1 & 2 & 2 \\ + 2 & a & -2 \\ + 2 & -2 & -1 +\end{array}\right]$的逆矩阵的特征向量,则求$\overrightarrow{\alpha}$在矩阵$A$中对应的特征值。 + +解:由于$\overrightarrow{\alpha}$是$A^{-1}$的特征向量,所以令此时的特征值为$\lambda_0$,则定义$\lambda_0\overrightarrow{\alpha}=A^{-1}\overrightarrow{\alpha}$,$\lambda_0A\overrightarrow{\alpha}=\overrightarrow{\alpha}$。 + +即$\lambda_0\left[\begin{array}{ccc} + -1 & 2 & 2 \\ + 2 & a & -2 \\ + 2 & -2 & -1 +\end{array}\right]\left[\begin{array}{c} + a \\ + 1 \\ + 1 \\ +\end{array}\right]=\left[\begin{array}{c} + a \\ + 1 \\ + 1 \\ +\end{array}\right]$,即$\lambda_0\left[\begin{array}{ccc} + -a & 2 & 2 \\ + 2a & a & -2 \\ + 2a & -2 & -1 +\end{array}\right]=\left[\begin{array}{c} + a \\ + 1 \\ + 1 \\ +\end{array}\right]$。\medskip + +即根据矩阵代表的是方程组,得到$\lambda_0(4-a)=a$,$\lambda_0(3a-2)=1$,$\lambda_0(2a-3)=1$。 + +又$\lambda_0\neq0$,$3a-2=2a-3$,$a=-1$,则$\lambda_0=-\dfrac{1}{5}$。 + +所以矩阵$A$对应的特征值为$-5$。 + +\subsection{抽象型} + +题目只会给对应的式子,来求对应的特征向量或特征值。需要记住特征值的关系式然后与给出的式子上靠拢,不会很复杂。 + +\textbf{例题:}已知$A$为三阶矩阵,且矩阵$A$各行元素之和均为5,则求$A$必然存在的特征向量。 + +解:由于是抽象型,所以没有实际的数据,就不能求出固定的特征值,$\lambda\xi=A\xi$。 + +\section{相似理论} \section{判断相似对角化} diff --git a/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.pdf b/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.pdf index bbf71e8..10fa0f1 100644 Binary files a/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.pdf and b/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.pdf differ diff --git a/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.tex b/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.tex index 323cec5..f357985 100644 --- a/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.tex +++ b/linear-algebra/knowledge/4-linear-equations-system/linear-equations-system.tex @@ -270,7 +270,7 @@ $(a_1,a_2,\cdots,a_n)\left(\begin{array}{c} \begin{enumerate} \item 将系数矩阵$A$作为\textbf{初等行变换}后化为阶梯形矩阵或最简阶梯形矩阵$B$,因为初等行变换将方程组化为同解方程组,所以$Ax=0$与$Bx=0$同解,只需解$Bx=0$,设$r(A)=r$。其中$A$为$m$行$n$列,$m$为约束方程组个数,$n$为变量个数。 - \item 在$B$中按列找到一个秩为$r$的子矩阵,即在每排阶梯都选出一列组合成子矩阵,则剩余列位置的未知数就是自由变量。 + \item 在$B$中按列找到一个秩为$r$的子矩阵,即在每排阶梯都选出一列组合成子矩阵,则剩余列位置的未知数就是自由变量。(极大线性无关组) \item 按基础解析定义求出$\xi_1,\xi_2,\cdots,\xi_{n-r}$,并写出通解。 \end{enumerate} diff --git a/linear-algebra/knowledge/5-similar/similar.pdf b/linear-algebra/knowledge/5-similar/similar.pdf index 6ad4ceb..9a9996e 100644 Binary files a/linear-algebra/knowledge/5-similar/similar.pdf and b/linear-algebra/knowledge/5-similar/similar.pdf differ diff --git a/linear-algebra/knowledge/5-similar/similar.tex b/linear-algebra/knowledge/5-similar/similar.tex index 7ee4028..84087f7 100644 --- a/linear-algebra/knowledge/5-similar/similar.tex +++ b/linear-algebra/knowledge/5-similar/similar.tex @@ -96,7 +96,7 @@ $\because\lambda\xi-A\xi=0$,$\therefore(\lambda E-A)\xi=0$,又$\xi\neq0$,$ $\vert\lambda E-A\vert=0$也称为特征方程或是特征多项式,解出的$\lambda_i$就是特征值。 -将$\lambda_i$代回原方程,所有非零的解就是$\xi$。 +将$\lambda_i$代回原方程,根据极大线性无关组解出通解就是$\xi$。 \subsubsection{具体型}