diff --git a/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.pdf b/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.pdf index 0866b2a..2f06f1d 100644 Binary files a/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.pdf and b/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.pdf differ diff --git a/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.tex b/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.tex index 9de089c..d7fd111 100644 --- a/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.tex +++ b/advanced-math/exercise/4-integal-of-functions-of-single-variable/integal-of-functions-of-single-variable.tex @@ -1054,7 +1054,7 @@ $\therefore I_n=n!$。 \item 若只存在$\rho=1$,使得$\lim\limits_{x\to+\infty}xf(x)=c>0$或为$-\infty$,则积分发散。 \end{itemize} -\subsubsection*{无界函数} +\subsubsection{无界函数} 对于瑕积分$\int_a^bf(x)\,\textrm{d}x$,其中$a$为瑕点,$f(x)$在$[a,b]$上连续非负,对于常数$\rho$: diff --git a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf index 554712c..fdce19b 100644 Binary files a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf and b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.pdf differ diff --git a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex index 2b6cd38..d3ab450 100644 --- a/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex +++ b/advanced-math/knowledge/4-indefinite-integral-and-definite-integral/indefinite-integral-and-definite-integral.tex @@ -773,6 +773,10 @@ $\overline{x}=\dfrac{\int_\alpha^\beta x(t)\sqrt{x'^2(t)+y'^2(t)}\textrm{d}t}{\i $\overline{y}=\dfrac{\int_\alpha^\beta y(t)\sqrt{x'^2(t)+y'^2(t)}\textrm{d}t}{\int_\alpha^\beta\sqrt{x'^2(t)+y'^2(t)}\textrm{d}t}$。 +设质量分布不均的光滑物体曲线$\overset{\frown}{AB}$,区间为$[\alpha,\beta]$,线密度为$\rho(x)$。 + +$\overline{x}=\dfrac{\int_\alpha^\beta x\rho(x)\,\textrm{d}x}{\int_\alpha^\beta\rho(x)\,\textrm{d}x}$。 + \paragraph{平面} \leavevmode \medskip 设曲边梯形平面区域$D=\{(x,y)|0\leqslant y\leqslant f(x),a\leqslant x\leqslant b\}$,$f(x)$在$[a,b]$上连续,则平面$D$的形心坐标计算公式为:\medskip