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1 映射与函数

1.1 邻域

1.1.1 一维

邻域定义：以点 x0 为中心的任何开区间为点 x0 的邻域，记为 U(x0)。

δ 邻域定义：设 δ 为一正数，则称开区间 (x0 − δ, x0 + δ) 为点 x0 的 δ 邻域，

记作 U(x0, δ)。x0 称为邻域的中心，δ 为邻域的半径。

去心 δ 邻域就是去除 x0 的 δ 邻域，记为 Ů(x0, δ)，左 δ 邻域就是左侧的去

心 δ 邻域，记为 U+(x0, δ)，右 δ 邻域就是右侧的去心 δ 邻域，记为 U−(x0, δ)。

1.1.2 二维

邻域定义：设点 P0(x0, y0) 为 xOy 平面上的一点，δ 为某一个正数，与点

P0(x0, y0)的距离小于 δ的点 P (x, y)的全体，称为点 P0的 δ邻域，记为 U(P0, δ)。

同理可以得到去心 δ 邻域的定义。

δ 邻域的几何意义：以 P0(x0, y0) 为中心，以 δ > 0 为半径的圆内部所有的

点。

函数的邻域就是一个区间，所以比如函数在某点的某邻域内有定义，就是说

明函数在这个点的附近有定义，这个附近的距离没有必要说明。

1.2 函数的概念

1.2.1 函数

• 函数即 y = f(x), x ∈ D，x 为自变量，y 为因变量，D 为定义域。

• 一个 x 对应一个 y，一个 y 可能对应多个 x。

1.2.2 反函数

y = f(x)，定义域为 D，值域为 R，若对于每一个 y ∈ R，必然存在 x ∈ D

使 y = f(x) 成立，则可以定义一个新函数 x = ψ(y)，这个函数就是 y = f(x) 的

反函数，一般记作 x = f−1(y)，其定义域为 R，值域为 D，对于反函数，原来的

函数称为直接函数。

1. 严格单调函数必然有反函数，即函数导数恒正或恒负必然有反函数。
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2. x = f−1(y) 与 y = f(x) 在同一坐标系中完全重合。

3. y = f−1(x) 与 y = f(x) 关于 y = x 对称。

4. f [f−1(x)]（f [ψ(x)]）或 f−1[f(x)] = x（ψ[f(x)]）变为 x，称为湮灭。

可以验算一下性质四。

已知 y = ex 和 y = lnx 是一对反函数，y = ln ex = f−1(f(x)) = x。

反函数的求法：

1. 求值域。

2. 求解。（用 y 表示 x）

3. 互换 xy。

例题：若函数 y = f(x) 的反函数为 y = f−1(x)，则求 y = f(2x− 1) + 1 的

反函数的解析式。

解：整理 y = f(2x− 1) + 1，得到 f(2x− 1) = y − 1，所以求反函数就是交

换 xy。

这里将 2x− 1 当作 x，y − 1 当作 y，所以得到反函数 2x− 1 = f−1(y − 1)。

所以得到 x =
f−1(y − 1) + 1

2
。

所以交换表示方法其反函数就是 y =
f−1(x− 1) + 1

2
。

例题：已知 f(x) =
1

1− x2
（x < −1），求 f−1(−1

3
)。

解：由于是反函数，所以 x 对应 y，y 对应 x。

求 f−1(−1

3
) 的值，对应反函数的 x = −1

3
，y = f−1(−1

3
) 的值。

即求原函数的 y = −1

3
，x = f(−1

3
) 的值。

所以
1

1− x2
= −1

3
求 x 的值。

即 1− x2 = −3，x = ±2，又 x < −1，则 x = −2。

例题：已知 f(x) =
1− 2x

1 + x
，函数 g(x) 的图像与函数 y = f−1(x+ 1) 的图像

关于 y = x 对称，求 g(5)。

解：由于函数 g(x) 的图像与函数 y = f−1(x + 1) 的图像关于 y = x 对称，

所以 g(x) 与 f−1(x+ 1) 也是反函数。

所以要求 g(x)，就要求 f−1(x+ 1)。

∵ y = f−1(x+ 1)，∴ x+ 1 = f(y)，x = f(y)− 1，即 y = f(x)− 1。
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∴ g(x) = y = f(x)− 1，g(5) = f(5)− 1 = −5

2
。

例题：已知 f(x) =
1

2
(x2 +

√
x+ 1)（x ⩾ 0）的反函数为 f−1(x)，求不等式

f−1(x+ 1) > 3 的解集。

解：当 x ⩾ 0 时，f(x) 明显是一个单调递增函数，所以根据反函数性质，其

反函数在这个区间上增减性不变也是递增的。

f(0) =
1

2
，即 f−1(x) 在定义域 [

1

2
,+∞) 上也是递增函数。

又 f−1(x+ 1) > 3，对其求反函数：f(f−1(x+ 1)) > f(3)，即 x+ 1 > f(3)，

且 x+ 1 ⩾ 1

2
，得出 x >

9

2
。

例题：求函数 y = f(x) = ln(x+
√
x2 + 1) 的反函数 f−1(x) 的表达式及其定

义域。

解：首先研究 f(x) 本身，因为 ln(x) 的定义域必然要求大于 0，而任意实数

x 都有下面不等式成立：

x+
√
x2 + 1 > x+ |x| ⩾ 0，所以 x ∈ R。

而研究其奇偶性：

f(−x) = ln(−x+
√
x2 + 1) = ln( 1√

x2 + 1 + x
) = − ln(x+

√
x2 + 1) = −f(x)

所以该函数为奇函数。

对其求单调性，即通过链式法则求导：
dy
dx =

1

x+
√
x2 + 1

· (1 + 2x

2
√
x2 + 1

) =
1√

x2 + 1
> 0。

所以该函数严格单调增。

然后求 y 的反函数：

∵ y = ln(x+
√
x2 + 1)，对于对数函数就要把它变为指数函数：

ey = eln(x+
√
x2+1) = x+

√
x2 + 1

∵ −y = − ln(x+
√
x2 + 1)

= ln( 1

x+
√
x2 + 1

)

= ln(
√
x2 + 1− x)

e−y =
√
x2 + 1− x

∴ ey − e−y = 2x

x =
ey − e−y

2

解出了用 x表示 y 的函数表达 x = f−1(y)，即反函数，则 f−1(x) =
ex − e−x

2
这种曲线为一种常见曲线：
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• ex − e−x

2
：双曲正弦。

• ex + e−x

2
：双曲余弦。（为一种悬链线）

• ln(x+
√
x2 + 1)：反双曲正弦。

• ln(x+
√
x2 − 1)：反双曲余弦。

1.2.3 复合函数

设 y = f(u)的定义域为 D1，函数 u = g(x)在 D 上有定义且 g(D) ∈ D，则

由 y = f [g(x)], x ∈ D 确定的函数称为由函数 u = g(x) 和函数 y = f(u) 构成的

复合函数，定义域为 D，u 为中间变量。

例题：设 f(x) = x2，f [ψ(x)] = −x2 + 2x + 3，且 ψ(x) ⩾ 0，求 ψ(x) 以及

定义域与值域。

解：广义化：∵ f(x) = x2，∴ f [ψ(x)] = ψ2(x) = −x2 + 2x+ 3

又 ∵ ψ(x) ⩾ 0，∴
√
ψ2(x) =

√
−x2 + 2x+ 3 = ψ(x) ⩾ 0

∴ x ∈ [−1, 3]

∴ dψ(x)
dx = (−x2 + 2x+ 3)′ = −2x+ 2 = 0

∴ x = 1，驻点为 1

又 ∵ (−x2 + 2x+ 3)′′ = −2 < 0

∴ 驻点为 1 时为最大值点，最大值为 ψ(1) = 2

又 ∵ ψ(−1) = ψ(3) = 0，∴ 最小值为 0

∴ ψ(x) ∈ [0, 2]

注意：
√
−x2 + 2x+ 3 为什么最值与 −x2 + 2x+ 3 一致？

例题：设 f(x) =


ln
√
x, x ⩾ 1

2x− 1, x < 1

，求 f [f(x)]

首先广义化：f [f(x)] =


ln
√
f(x), f(x) ⩾ 1

2f(x)− 1, x < 1

分段点为 1，然后对 f(x) 画图：
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x

y

x = 1

(1, 1) (e2, 1)

1 e2O

所以将定义域分为三段：[−∞, 1], [1, e2], [e2,+∞]，然后根据不同定义域对应

的不同函数再代回 f [f(x)]：

f [f(x)] =



ln
√

ln
√
x, x ⩾ e2

lnx− 2, 1 ⩾ x < e2

4x− 3, x < 1

1.3 函数的特性

1.3.1 有界性

定义：函数 f(x) 的定义域 D，数集 I ∈ D，如果存在某正数 M，对于任一

x ∈ I，有 |f(x)| ⩽M，则 f(x) 在 I 上有界，否则无界。

函数指明定义域区间才能讨论函数是否有界。

如果 f(x) ⩾M 有下界，f(x) ⩽M 则有上界。

1.3.2 单调性

定义：y = f(x)，x ∈ D，如果 ∀x1, x2 ∈ D 且 x1 < x2，有 f(x1) < f(x2)，

则函数在 D 上单调递增。反之则单调递减。

dy
dx > 0 ⇒ (x1 − x2)[f(x1)− f(x2)] > 0 ⇒ f(x) ↗

dy
dx < 0 ⇒ (x1 − x2)[f(x1)− f(x2)] < 0 ⇒ f(x) ↘

1.3.3 奇偶性

1. 奇函数：关于原点对称，f(−x) = −f(x)。

2. 偶函数：关于 y 轴对称，f(−x) = f(x)。

5



3. 对于定义在 [−l, l] 上的任意函数 f(x)，F1(x) = f(x)− f(−x) 必为奇函数，

F2(x) = f(x) + f(−x) 必为偶函数。可以参考上面所说的双曲正弦与双曲

余弦函数。

4. 若奇函数在 0 处有定义，那么 f(0) = 0。

5. 若偶函数在 0 处存在导数，那么 f ′(0) = 0，即 x = 0，曲线必然水平，即

导数为 0。

6. 若函数 y = f(x) 的函数关于直线 x = T 对称的充分必要条件是 f(x) =

f(2T − x)/f(x+ T ) = f(x− T )。（令 T − x = t 进行换元计算得到）

无论 f(x)是什么函数，F (x) = f(x)+ f(−x)都是偶函数，G(x) = x(f(x)+

f(−x)) 都是奇函数。

1.3.4 周期性

f(x+ T ) = f(x)，其中 T 为周期。

1.3.5 重要结论

1. 若 f(x) 为可导的偶函数，则 f ′(x) 为奇函数。

2. 若 f(x) 为可导的奇函数，则 f ′(x) 为偶函数。

3. 若 f(x) 为周期函数，则 f ′(x) 也为周期函数且周期不变。

4. 连续的奇函数的一切原函数都是偶函数。

5. 连续的偶函数的原函数中仅有一个原函数是奇函数。

6. 若连续函数 f(x) 以 T 为周期且
∫ T

0
f(x)dx = 0，则 f(x) 的一切原函数也

以 T 为周期。

7. 若 f(x)在有限区间 (a, b)中可导且 f ′(x)有界，则 f(x)在 (a, b)有界。（某

一函数在固定区间内变化率是有界的，则变化范围是有界的）

注意：0 和 1 处的函数定义应该注意。

如当 a 为 0 时：f(b)− f(a) = f ′(ξ)(b− a) = f(b) = bf ′(ξ)

如 f(x) > xf(1) 变形为
f(x)

x
> f(1)，辅助函数 F (x) =

f(x)

x
所以加减法警惕 0，乘除法警惕 1。
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2 数列的极限

极限就是一个无限逼近某个值的过程。如
n

n+ 1
这个分式在 n 无限增大的

时候会无限逼近 1，这个 1 叫做极限值，所以写成 lim
n→∞

n

n+ 1
= 1。

所以从另一个方面更精确的指出一个数 N > 0，使得数列下标大于 N 的项

与极限值之间的距离始终保持在 (0, ξ) 之间，即
1

n+ 1
< ξ，即 n >

1

ξ
− 1，所以

任意正数都能得到从 N >
1

ξ
− 1 项开始之后都有

∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ < ξ。

2.1 定义

通过定义可以证明极限。

2.1.1 数列极限定义

定义：设 {xn} 为一数列，若存在常数 a，对于不论任意小的 ξ > 0，总存在

正整数 N，使 n > N 时，|xn − a| < ξ 恒成立，则常数 a 为数列 {xn} 的极限，

或 {xn} 收敛于 a，记为： lim
x→∞

xn = a 或 xn → a(n→ ∞)。

常用语言（ξ − N 语言）： lim
x→∞

xn = a ⇔ ∀ξ > 0, ∃N ∈ N+，当 n > N 时，

恒有 |xn − a| < ξ。

如果不存在该数 a，则称数列 xn 发散。

即无论给出多么小的 ξ，总可以找到一项从该项之后函数值与极限值之间的

差小于 ξ，即更接近这个极限值而不是其他任何值，所以该数列趋向于极限值。

2.1.2 极限证明

令 xn 为通项，a 为极限值，ξ 为任意正数。

1. 写出 |xn − a| < ξ。

2. 反解出项数 n < g(ξ)。

3. 取 N = [g(ξ)] + 1，所以令 n > N 就可以证明。

例题：用定义证明 lim
x→∞

[
1 +

(−1)n

n

]
= 1

证明：¬计算距离：

∣∣∣∣1 + (−1)n

n
− 1

∣∣∣∣ = ∣∣∣∣(−1)n

n

∣∣∣∣ < ξ。

­解得到：
1

n
< ξ，反解为 n >

1

ξ
。
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®取整：N =

[
1

ξ

]
+ 1。

∴ ∀ξ > 0，当 n > N 时，就有 n >
1

ξ
，使得

∣∣∣∣1 + (−1)n

n
− 1

∣∣∣∣ = ∣∣∣∣(−1)n

n

∣∣∣∣ < ξ。

∴ 证明完毕。
例题：用定义证明 lim

n→∞
qn = 0（q 为常数且 |q| < 1）。

证明：¬|qn − 0| < ξ。

­|qn| < ξ，取对数进行反解 n ln |q| < ln ξ，又因为 |q| < 1，所以 ln |q| < 0，

所以得到 n >
ln ξ
ln |q|。（若 ξ > 1 则 n 就是负数，这样条件必然成立）

®取 N =

[
ln ξ
ln |q|

]
+ 1。

∴ 当 n > N 时，必然 n >
ln ξ
ln |q|，有 |qn − 0| < ξ。

故 lim
n→∞

qn = 0。

2.1.3 数列绝对值

定理：若 lim
x→∞

an = A，则 lim
x→∞

|an| = |A|。

证明：∵ lim
n→∞

an = A⇔ ∀ξ > 0, ∃N > 0,当n > N，恒有 |an − A| < ξ。

又由重要不等式 ||a| − |b|| ⩽ |a− b|，所以 ||an| − |A|| ⩽ ξ。

所以恒成立，证明完毕。

从这个题推出： lim
n→∞

an = 0 ⇔ lim
n→∞

|an| = 0。所以如果我们以后需要证明某

一数列极限为 0，可以证明数列绝对值极限 0，而数列绝对值绝对时大于等于 0

的，所以由夹逼准则，其中小的一头已经固定为 0 了，所以只用找另一个偏大的

数列夹逼所证明数列就可以了。

2.1.4 子数列

定义：从数列 an : a1, a2, · · · , an, · · · 中选取无穷多项并按原来顺序组成的新

数列就称为原数列的子列，记为 {ank
} : an1 , an2 , · · · , ank

, · · ·。

若 nk 分别取奇数和偶数，则得到奇数项数列与偶数项数列。

定理：若数列 {an} 收敛，则其任何子列 {ank
} 也收敛，且极限值相同。

所以对于其变式我们用到更多：

1. 若一个数列 {an} 能找到一个发散的子列，那该数列发散。

2. 若一个数列 {an} 能找到两个极限值不同的收敛子列，那么这个数列发散。
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3. 若一个数列 {an}，则其奇数子列与偶数子列都收敛于同一个值。

例如对于数列 {(−1)n}，能找到其奇数子列收敛于-1，偶数子列收敛于 1，所

以收敛值不同，原数列发散。

2.2 性质

2.2.1 唯一性

定义：若数列 {xn} 收敛于 a，则 a 是唯一的。

证明：设 lim
n→∞

an = A 且 lim
n→∞

an = B 且 A ̸= B。

不如设 A > B。任意取 ξ =
A− B

2
> 0。

∵ lim
n→∞

an = A

∴ ∃N1 > 0，当 n > N1 时，|an − A| < A− B

2
。

得到
A+B

2
< an <

3A− B

2
并设为式子一。

又 ∵ lim
n→∞

an = B

∴ ∃N2 > 0，当 n > N2 时，|an − B| < A− B

2
。

得到
3A− B

2
< an <

A+B

2
并设为式子二。

取 N = max{N1, N2}，当 n > N 时，式子一二同时成立，而 A ̸= B，则这

两个式子不可能同时成立，矛盾。

同理 A < B 时也矛盾，所以 A ̸= B 矛盾。

2.2.2 有界性

定义：若数列 {xn} 极限存在，则数列有界。

即 lim
n→∞

an = A，则存在 M > 0，使得 |an| ⩽M。

证明：由极限定义，取 ξ = 1。

∵ lim
n→∞

an = A

∴ ∃N > 0，当 n > N 时，|an − A| < 1。

∵重要不等式 ||an| − |A|| ⩽ |an − A|

∴ n > N 时，||an| − |A|| < 1 ⇒ |an| < 1 + |A|

取 M = max{|a1|, |a2|, · · · , |aN |, 1 + |A|}

∀n，有 |an| ⩽M

所以数列极限存在则数列有界。
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但是数列有界不一定极限存在，如 1 + (−1)n。

2.2.3 保号性

较重要。也称为脱帽法。

定义：若数列 {xn} 存在极限 lim
n→∞

an = a ̸= 0，则存在正整数 N，当 n > N

时 an 都与 a 同号。

简单来说，就是极限大于 0，后面一部分数列大于 0，极限小于 0，后面一

部分数列小于 0。

推论，戴帽法：若数列 {an} 从某项开始 an ⩾ b，且 lim
n→∞

an = a，则 a ⩾ b。

这里一定要带等号。

证明：设 A > 0，取 ξ =
A

2
> 0。

∵ lim
n→∞

an = A

∴ ∃N > 0，当 n > N 时，|an − A| < A

2
⇒ an >

A

2
> 0

同理得证极限值小于 0 的情况。

2.3 海涅定理（归结原则）

定理：设 f(x) 在 Ů(x0, δ) 内有定义，则 lim
x→x0

f(x) = A 存在 ⇔ 对任何

Ů(x0, δ) 内以 x0 为极限的数列 {xn}(xn ̸= x0)，极限 lim
n→∞

f(xn) = A 存在。

海涅定理用来连接数列极限与函数极限。在极限存在下他们可以相互转换。

例题：求 lim
n→∞

(
n tan 1

n

)n2

（n ∈ N+）。

解：首先将式子由数列极限变为函数极限，并取 x =
1

n
：lim

x→0

(
tanx
x

) 1
x2

。

又 uv = ev lnu，对式子取指数 ∴= e
lim
x→0

1
x2

ln tan x
x

又在 x→ 0下使用等价无穷小 ln(1+x) ∼ x，∴ ln(1+g(x)) ∼ g(x), g(x) → 0。

而在 x → 0 时，根据等价无穷小 tanx ∼ x，所以
tanx
x
趋于 1，不满足趋

于 0 的条件。

所以正好将 ln tanx
x
变形 ln

(
1 +

tanx
x

− 1

)
。

∴ ln
(
1 +

tanx
x

− 1

)
∼ tanx

x
− 1，

tanx
x

− 1 → 0。

又根据泰勒展开 tanx− x = x+
x3

3
+ o(x3)− x− 0 · x3 = x3

3
。

∴ e
lim
x→0

1
x2

ln tan x
x = e

lim
x→0

1
x2

tan x−x
x = e

lim
x→0

1
x2

·x
2

3 = e
1
3
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根据海涅定理：取 x =
1

n
, n→ ∞， lim

n→∞

(
n tan 1

n

)n2

= e
1
3。

3 函数的极限

3.1 函数极限定义

3.1.1 极限定义

定义：设函数 f(x) 在点 x0 的某一个去心邻域有定义，若存在常数 A，对

于任意给定的 ξ > 0，总存在正数 δ，使得当 0 < |x − x0| < δ 式，对应的函数

值 f(x) 都满足不等式 |f(x)−A| < ξ，则 A 就是函数 f(x) 当 x→ x0 时的极限，

记作 lim
x→x0

f(x) = A 或 f(x) → A(x→ x0)。

写成 ξ − δ 语言： lim
x→x0

f(x) = A⇔ ∀ξ > 0, ∃δ > 0,当0 < |x− x0| < δ 时，有

|f(x)− A| < ξ。

而对于趋向无穷时，写成 ξ − X 语言： lim
x→∞

f(x) = A ⇔ ∀ξ > 0, ∃X >

0,当|x| > X 时，有 |f(x)− A| < ξ。

注意：这里的趋向分为六种：x→ x0、x→ x+0、x→ x−0、x→ ∞、x→ ∞+、

x→ ∞−。

3.1.2 单侧极限

当 x→ x−0 存在的极限称为左极限，当 x→ x+0 存在的极限称为右极限。

3.1.3 函数极限存在条件

函数存在的充要条件是：

1. lim
x→x0

f(x) ⇔ lim
x→x−

0

f(x) = lim
x→x+

0

f(x) = A。

2. 函数脱帽法： lim
x→x0

f(x) ⇔ f(x) = A+ α(x), lim
x→x0

α(x) = 0，后面的 α(x) 就

是函数与极限值的误差。
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3.1.4 极限情况总结

过程 n→ ∞ x→ ∞ x→ +∞ x→ −∞

时刻 N

从此时刻以后 n > N |x| > N x > N x < −N

f(x) |f(x)− A| < ξ

过程 x→ x0 x→ x+0 x→ x−0

时刻 δ

从此时刻以后 0 < |x− x0| < δ 0 < x− x0 < δ −δ < x− x0 < 0

f(x) |f(x)− A| < ξ

3.2 性质

与数列极限性质类似，且任何 x 的趋向三个性质都是成立的。

3.2.1 唯一性

定义：若极限存在，则极限唯一。

3.2.2 局部有界性

定义：若极限存在且为 A，则存在正常数 M 和 δ，使得当 0 < |x− x0| < δ

时，有 |f(x)| ⩽M。

1. 极限存在是函数局部有界性的充分不必要条件。

2. f(x) 在 [a, b] 上连续，则 f(x) 在 [a, b] 上有界。

3. 有限个有界函数与有界函数的和、差、积仍是有界函数。

4. 若 f ′(x) 在有限区间 (a, b) 内有界，则 f(x) 在该区间内有界。
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对于结论二，可以利用极限存在必然连续的概念，对 f(x) 在区间两端求极

限从而证明有界。这里两端的极限不要求是一样的，因为两端不一样的极限表明

该趋向点的极限值不存在，但是仍然有界。

证明结论四：

利用中值定理：f(b)− f(a) = f ′(ξ)(b− a)。

令 x ∈ (a, b), x0 ∈ (a, b)。其中这两个值不知道大小，只知道范围。

代入中值定理：f(x)− f(x0) = f ′(ξ)(x− x0)

|f(x)| = |f(x0) + f ′(ξ)(x− x0)|

⩽ |f(x0)|+ |f ′(ξ)||x− x0| （重要绝对值不等式）

⩽ |f(x0)|+K · (b− a)

⩽M

例题：函数 f(x) =
|x| sin(x− 2)

x(x− 1)(x− 2)2
在哪个区间内有界 ()。

A.(−1, 0) B.(0, 1) C.(1, 2) D.(2, 3)

解：看选项，0，1，2 出现次数较多，所以从 B 选项开始检查是否有界：

lim
x→0−

|x| sin(x− 2)

x(x− 1)(x− 2)2
= (−1) · − sin 2

(−1) · 4
= −sin 2

4

所以趋于 0− 的一段有界。

同理 lim
x→0+

|x| sin(x− 2)

x(x− 1)(x− 2)2
=

sin 2
4
。

所以趋于 0+ 的一段有界。

lim
x→1−

|x| sin(x− 2)

x(x− 1)(x− 2)2
中 (x− 1) 为 0 且在分母位置，所以极限为 ∞，该区

间无界。

所以 (0, 1) 无界，B 排除。

同理 lim
x→1+

|x| sin(x− 2)

x(x− 1)(x− 2)2
也无穷大而无界。

所以 (1, 2) 无界，C 排除。

lim
x→2+

|x| sin(x− 2)

x(x− 1)(x− 2)2
中不管前面的项，而看到后面的

sin(x− 2)

(x− 2)2
。

因为 lim
x→0

sinx
x

= 1，所以对于 lim
x→2

sin(x− 2)

(x− 2)
= 1，所以下面还有一个 x− 2，

所以还是为 ∞。

所以 (2, 3) 无界，D 排除。

验证-1 处是否有界：
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lim
x→−1

|x| sin(x− 2)

x(x− 1)(x− 2)2
= −sin 3

18
。

所以该处有界，所以选 A。

3.2.3 局部保号性

定义：若极限存在，则存在常数 δ > 0，使得当 0 < |x− x0| < δ 时，f(x) 与

A 同号。

简单来说，函数值在 x→ x0 时函数值与极限值同号。

证明：首先根据极限存在定义：∀ξ > 0, ∃δ > 0, 0 < |x − x0| < δ 时，恒有

|f(x)− A| < ξ。

⇒ −ξ < f(x)− A < ξ。

⇒ A− ξ < f(x) < A+ ξ。

任意取 ξ =
A

2
> 0 ⇒ f(x) > A− A

2
=
A

2
> 0。

证明完毕。

关于 ξ 的取值问题，为什么不能取到令结果为负的值，因为请注意这个取值

得到的区间并不是 f(x)的范围，而是对 f(x)所在区间的陈述，其是无尽逼近 A

的，所以取多大的区间都无所谓。

推论：若函数值在 x→ x0 时都非负或非正，极限值为 A，那么 A 与此时函

数值同号。不能去除等号。

关于三个性质要注意自变量取值的双向性，所以需要留意下面几个函数：

1. lim
x→∞

ex 不存在，因为 lim
x→+∞

ex = +∞， lim
x→−∞

ex = 0。

2. lim
x→0

sinx
|x|
不存在，因为 lim

x→0+

sinx
|x|

= 1， lim
x→0−

sinx
|x|

= −1。

3. lim
x→∞

arctanx 不存在，因为 lim
x→+∞

arctanx =
π

2
， lim

x→−∞
arctanx = −π

2
。

4. lim
x→0

[x] 不存在，因为 lim
x→0+

[x] = 0， lim
x→0−

[x] = −1

4 极限运算法则

1. 有限个无穷小的和是无穷小。

2. 有界函数与无穷小的乘积是无穷小。

3. 有限个无穷小的乘积是无穷小。
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4.1 数列极限

若 lim
n→∞

xn = a， lim
n→∞

yn = b 则：

1. lim
n→∞

xn ± yn = a± b。

2. lim
n→∞

(xnyn) = lim
n→∞

xn lim
n→∞

yn = ab。

3. lim
n→∞

xn
yn

=
lim
n→∞

xn

lim
n→∞

yn
=
a

b
(b ̸= 0)。

例题：若 lim
n→∞

(an + bn) = 1 且 lim
n→∞

(an − bn) = 3，计算 lim
n→∞

an 与 lim
n→∞

bn。

解：首先是不能通过运算法则第一条将两个条件直接加减的，因为不能保证

两个极限是否都存在。

所以必须先令 un = an + bn，vn = an − bn，所以 lim
n→∞

un = 1， lim
n→∞

vn = 3。

因为这两个极限都存在，所以可以进行运算。

相加得到 lim
n→∞

(un + vn) = 2 lim
n→∞

an = 4。

所以得到 lim
n→∞

an = 2。同理 lim
n→∞

(un − vn) 得到 lim
n→∞

bn = −1。

4.2 函数极限

若 lim f(x) = A，lim g(x) = B（即两个极限都存在），则

1. lim[k · f(x)± l · g(x)] = k lim f(x)± l · g(x) = kA± lB，其中 kl 为常数。

2. lim[f(x) · g(x)] = lim f(x) · lim g(x) = A · B

3. lim[f(x)]n = [lim f(x)]n，其中 n 为正整数。

4. lim f(x)

g(x)
=

lim f(x)

lim g(x)
=
A

B
(B ̸= 0)。

5. lim
x→∞

anx
n + an−1x

n−1 + · · ·+ a1x+ a0
bmxm + · · ·+ bm−1xm−1 + · · ·+ b1x+ b0

=



an
bm
, n = m

0, n < m

∞, n > m

6. 若 f(x) ⩾ g(x)，则 A ⩾ B。

7. 若 y = f [g(x)] 由 y = f(u) 与 u = g(x) 复合而成，且 lim
x→x0

g(x) = u0 且

lim
u→u0

f(u) = a，当 x ∈ Ů(x0, δ0) 时，g(x) ≠ u0，则 lim
x→x0

f [g(x)] = a。
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对于结论 7 必须注意g(x) ̸= u0。

假设 f(u) =
u2 − 1

u− 1
，所以这个 f(x) 在 x = 1 处应无定义。但是这并不影响

lim
u→1

f(u) = 2。

假设 g(x) =


1 + x, x < 0

1, x > 0

。

则 lim
x→0

g(x) = 1，所以 lim
x→0

f [g(x)] = 2?。

答案是不，因为当 x > 0 时，u = g(x) = 1，而 1 在 g(x) 中是无定义的，所

以复合函数当 x > 0 时无定义，从而在 0 处极限不存在。

4.3 存在与不存在运算关系

1. 存在与不存在的和差一定为不存在。

2. 不存在与不存在的和差不一定存在，如 sin 1

x
+ sin 1

x
与 sin 1

x
+

(
− sin 1

x

)
。

3. 存在与不存在的乘积不一定存在，如 x sin 1

x
与 1 · sin 1

x
。

4. 不存在与不存在的乘积不一定存在，如 1

x
· 1
x
与 (−1)n · (−1)n。

5 极限存在准则与两个重要极限

5.1 夹逼准则

5.1.1 数列的夹逼准则

1. yn ⩽ xn ⩽ zn(n = 1, 2, 3, · · · )。

2. lim
n→∞

yn = a, lim
n→∞

zn = a。

3. 则 lim
n→∞

xn = a。

证明：由于 lim
n→∞

yn = a, lim
n→∞

zn = a。

则 ∀ξ > 0，∃N，当 n > N 时，|yn < ξ，|zn < ξ。

∴ a− ξ < yn < a+ ξ，a− ξ < zn < a+ ξ。

∴ a− ξ < yn ⩽ xn ⩽ zn < a+ ξ。

∴ |xn − a| < ξ。
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例题：求极限 lim
n→∞

(
n

n2 + 1
+

n

n2 + 2
+ · · ·+ n

n2 + n

)
。

解：使用夹逼准则：
n2

n2 + n
<

∑n
i=1

n

n2 + i
<

n2

n2 + 1
。

又 lim
n→∞

n2

n2 + 1
= lim

n→∞

n2/n2

n2/n2 + 1/n2
= lim

n→∞

1

1 +
1

n2

= 1。

且 lim
n→∞

n2

n2 + n
= lim

n→∞

1

1 +
1

n

= 1。

由夹逼准则，原式的极限为 1。

数列的夹逼准则下不等式的证明往往要使用到放缩法，对于分式的放缩主

要在于分母的放缩，不变分子，分母变小原式变大，分母变大原式变小。然后分

子分母除以最高项得到逼向 0 的极限。

5.1.2 函数的夹逼准则

1. x ∈ Ů(x0, δ) 时 g(x) ⩽ f(x) ⩽ h(x)。

2. lim g(x) = A 且 limh(x) = A。

3. 则 lim f(x) = A。

注意：两函数差值极限为 0不代表两函数极限相同，也不能保证中间的 f(x)

的极限存在。

例题：求 lim
x

→ +∞(2 + sinx) 1
x。

解：∵ sinx ∈ [−1, 1]，∴ 1 ⩽ 2 + sinx ⩽ 3。

∴ 1
1
x ⩽ (2 + sinx)

1
x ⩽ 3

1
x。

而当 x→ +∞时两边的极限都为 1，则由夹逼定理 lim
x

→ +∞(2+ sinx) 1
x =

1。

5.2 单调有界准则

也称为魏尔施特拉斯准则，该部分对于数列而言最重要。

5.2.1 数列单调有界准则

定义：单调有界数列必有极限，即若 {xn} 单调增加（减少）且有上界（下

界），则极限存在。

该部分需要证明两个地方：
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1. 数列单调：xn+1 − xn 与 0 的关系，或 xn+1

xn
与 1 的关系。

2. 有界：|xn| ⩽M 是否存在。

见到递推式（迭代式）an+1 = f(an)，一般都要用单调有界准则。单调性通

过减或除进行计算，有界性通过不等式来计算。

例题：已知 a1 = a > 0，证明 an+1 =
1

2

(
an +

2

an

)
的极限存在并求出。

解：∵ a1 = a > 0，且递推式中没有负数与减的操作，所以 an > 0。

由重要不等式
a+ b

2
⩾

√
ab，所以 an+1 =

1

2

(
an +

2

an

)
⩾

√
an ·

2

an
) =

√
2

∴ 数列 {an} 有下界
√
2。

又 an+1 − an =
2− a2n
2an

，且由上面证明已知 a2n ⩾
√
2，所以该式子小于等于

0。

∴ an+1 ⩽ an，得到数列单调减少。

由单调有界准则， lim
n→∞

an 存在并记为 A。

将 A 代入递推式并两边求极限：A =
1

2
(A+

2

A
)，得到 A = ±

√
2。

又因为保号性，数列下界为
√
2，所以 A =

√
2。

例题：求证 xn+1 = sinxn 极限存在，0 < x1 < π。

解：由三角函数中的不等式 sinx < x。

¬当 n = 1，∵ 0 < x1 < π，∴ 0 < sinx1 < 1，∴ 0 < x2 = sinx1 < x < π。

­假设 0 < xn = sinxn−1 < π。

®∴ 0 < xn+1 = sinxn < xn < π。

¯故 {xn} ↘ 且有下界 0。

∴ lim
n→∞

xn 存在，并记为 A。

对两边取极限：A = sinA，所以 A = 0。

∴ lim
n→∞

xn = 0。

例题：证明 an =
1

12
+

1

22
+ · · ·+ 1

n2
存在极限。

证明：因为是递推式，所以一般使用单调有界准则。

¬an+1 =
1

12
+

1

22
+ · · ·+ 1

n2
+

1

(n+ 1)2
。

⇒ an+1 − an =
1

(n+ 2)2
> 0 ⇒ {an} ↗

18



­an =
1

1 · 1
+

1

2 · 2
+ · · ·+ 1

n · n
裂项相消

<1 +
1

1 · 2
+ · · ·+ 1

(n− 1) · (n)

=1 + (1− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n− 1
− 1

n
)

=2− 1

n

<2 （上界）

单调增且有上界，所以必然有极限。

5.2.2 柯西极限存在准则

由函数的单调有界准则可以看出这个准则只能规范左邻域部分，而很多时

候收敛的数列都不一定为单调的可以是波动逼近的。所以单调有界准则是充分

条件而非必要条件，而柯西极限存在准则则（柯西审敛原理）是数列收敛性的充

要准则。

定义：数列 {xn} 收敛的充要条件是：对于任意给定的正数 ξ，都存在正整

数 N，使得当 m > N，n > N 时有 |xn − xm| < ξ。

其几何意义是数列收敛的充要条件是对于任意给定的正数 ξ 在数轴上都可

以找到一个点后的任意两个项的值小于 ξ。

5.2.3 函数单调有界准则

对于函数而言也有单调有界准则，但是很少用到。因为其准则与数列的不一

致。

定义：设函数 f(x) 在 x0 的某个左邻域内单调且有界，则 f(x) 在 x0 处的

左极限 f(x−0 ) 必然存在。

5.3 lim
x→0

sinx
x

= 1

证明：

当 x→ 0 时 x ∈ [0,
π

2
]。

设 ∠AOB 的弧度为 x，圆 O的半径为 1，则 OD = sinx。

则 S△AOB =
sinx
2
。根据扇形面积公式：S扇形AOB =

x

2
。

又 ∵ CA = tanx，则 S△AOC =
tanx
2
。 O

A

B

D

C
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根据图，在 x ∈ [0,
π

2
]，sinx < x < tanx。

∴ 1 <
x

sinx <
1

cosx ⇒ cosx < sinx
x

< 1。

∴ 0 < 1− sinx
x

< 1− cosx = 2 sin2 x

2
⩽ 2

(x
2

)2

。

根据夹逼定理，lim
x→0

2
(x
2

)2

= 0 ⇒ lim
x→0

1− sinx
x

= 0。

∴ lim
x→0

sinx
x

= 1。

从而 lim
∆→0

sin∆
∆

= 1(∆ ̸= 0)。

5.4 lim
x→∞

(
1 +

1

x

)x

= e

书上通过数列进行单调有界定理证明极限存在性。

证明： lim
x→∞

(
1 +

1

x

)x

= lim
x→∞

eln(1+ 1
x
)x = lim

x→∞
ex ln(1+ 1

x
) = e

lim
x→∞

x ln(1+ 1
x
)
=

e
lim

x→∞
ln(1+ 1

x )

1
x

= e
lim

x→∞

(
1

1+ 1
x

)
·(− 1

x2
)

− 1
x2 = e

lim
x→∞

1
1+x = e

从而 lim
∆→∞

(
1 +

1

∆

)∆

= e 与 lim
∆→0

(1 + ∆)
1
∆ = e(∆ ≠ 0)。

6 无穷大与无穷小

6.1 无穷

6.1.1 无穷定义

无穷小定义：当 x → x0(∞) 时，函数 f(x) 极限为 0，就称 f(x) 为当 x →

x0(∞) 时的无穷小，记为： lim
x→x0(∞)

f(x) = 0。

以 0 为极限的数列称为 n→ ∞ 时的无穷小。

无穷小是变量，不能与很小的数相等。

零可以作为无穷小的唯一的数。

定理：lim f(x) = A⇔ f(x) = A+ o(x)，其中 lim o(x) = 0。

无穷大定义：当 x → x0(∞) 时，函数 |f(x)| 无限增大，就称 f(x) 为当

x→ x0(∞) 时的无穷大，记为： lim
x→x0(∞)

f(x) = ∞。

若 lim
x→x0

f(x) = ∞ 则 x = x0 为 y = f(x) 的垂直渐进线。

若 lim
x→∞

f(x) = a 则 y = a 为 y = f(x) 的水平渐进线。
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定理：若同一极限过程中，f(x) 为无穷大，则
1

f(x)
为无穷小，反之若 f(x)

为无穷小且不为 0，则 1

f(x)
为无穷大。

6.1.2 无穷小的比较

设在自变量同一变化过程中，limα(x) = 0，lim β(x) = 0，且 β(x) ̸= 0，则：

1. 若 lim α(x)

β(x)
= 0，则 α(x) 是比 β(x) 高阶的无穷小，记为 α(x) = o(β(x))。

2. 若 lim α(x)

β(x)
= ∞，则 α(x) 是比 β(x) 低阶的无穷小。

3. 若 lim α(x)

β(x)
= c ̸= 0，则 α(x) 与 β(x) 是同阶无穷小。

4. 若 lim α(x)

β(x)
= 1，则 α(x) 与 β(x) 是等价无穷小，记为 α(x) ∼ β(x)。

5. 若 lim α(x)

[β(x)]k
= c ̸= 0，则 α(x) 是 β(x) 的 k 阶无穷小。

定理：α(x) ∼ β(x) 的充要条件是 α(x) = β(x) + o(β(x))。

注意：并不是任意无穷小都可以比阶。如 lim
x→0

x sin 1

x
x2

就因为得到函数振荡

而无法得到极限。

例题：证明当 x→ 0 时， n
√
1 + x− 1 ∼ 1

n
x。

证明：证明 n
√
1 + x− 1 ∼ 1

n
x 就是证明 lim

x→0

n
√
1 + x− 1

x
∼ 1

n
。

令 n
√
1 + x− 1 = t，则 1 + x = (1 + t)n，则 x = (1 + t)n − 1。

利用二项式展开：= lim
t→0

t

nt+
n(n− 1)

2
t2 + · · ·

=
1

n
。

6.1.3 无穷小运算

设 m，n 为正整数：

1. o(xm)± o(xn) = o(xl), l = minm,n（加减法低阶吸收高阶）。

2. o(xm) · o(xn) = o(xm+n), xm · o(xn) = o(xm+n)（乘法累加）。

3. o(xm) = o(k ·xm) = k ·o(xm)，k ̸= 0且为常数（非零常数相乘不影响阶数）。
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6.2 洛必达法则

洛必达法则用于计算无穷的比值的极限，如
0

0
型和

∞
∞
型，如果趋向不同

则不能使用。

定理：当 x → a 或 x → ∞ 时，函数 f(x) 以及 F (x) 都趋于零，f ′(x)、

F ′(x) 在点 a 的某去心邻域内（或当 |x| > X，X 为充分大的正数）存在，且

F ′(x) ̸= 0，lim
x→a

f ′(x)

F ′(x)
或 lim

x→∞

f ′(x)

F ′(x)
存在或无穷大时，则 lim

x→a

f(x)

F (x)
= lim

x→a

f ′(x)

F ′(x)

或 lim
x→∞

f(x)

F (x)
= lim

x→∞

f ′(x)

F ′(x)
。

定理：当 x → a 或 x → ∞ 时，函数 f(x) 以及 F (x) 都趋于无穷，f ′(x)、

F ′(x) 在点 a 的某去心邻域内（或当 |x| > X，X 为充分大的正数）存在，且

F ′(x) ̸= 0，lim
x→a

f ′(x)

F ′(x)
或 lim

x→∞

f ′(x)

F ′(x)
存在或无穷大时，则 lim

x→a

f(x)

F (x)
= lim

x→a

f ′(x)

F ′(x)

或 lim
x→∞

f(x)

F (x)
= lim

x→∞

f ′(x)

F ′(x)
。

同理如果导数存在也可以不断求导：lim
x→a

f(x)

F (x)
= lim

x→a

f(x)′

F (x)′
= lim

x→a

f(x)′′

F (x)′′
。

注意：洛必达法则求不出值也不能说其左边的值不存在。如 lim
x→0

x2 sin 1

x
x

=

lim
x→0

sin 1

x
= 0，通过洛必达就求不出值。

6.3 泰勒公式

与洛必达法则不同，适用于
A

B
上下同阶型和 A−B幂次最低型。如 x− sinx

x3

和 cosx− e−
x2

2 。

是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的

条件，泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近

似表达这个函数，即用多项式拟合不规则曲线。

6.3.1 麦克劳林公式

1. ex =
n∑

i=0

1

i!
xi，= 1 +

1

1!
x+

1

2!
x2 +

1

3!
x3 + o(x3)。

2. ln(1 + x) =
n∑

i=1

(−1)i+11

i
xi，= x− 1

2
x2 +

1

3
x3 + o(x3)。

3. sinx =
2i−1∑
i=1

(−1)2i−1 1

(2i− 1)!
x2i−1，= x− 1

3!
x3 +

1

5!
x5 + o(x5)。

4. cosx =
2i∑
i=1

(−1)2i−1 1

(2i− 2)!
x2i−2，= x− 1

2!
x2 +

1

4!
x4 + o(x4)。

22



5. arcsinx =
2i−1∑
i=1

(2i− 3)!!

(2i− 2)!!

x2i−1

2i− 1
，= x +

1

2

x3

3
+

1× 3

2× 4

x5

5
+

1× 3

2× 4× 6

x7

7
+

o(x7)。（假定 −1! = 0!）

6. 1

1− x
=

n∑
i=0

xi，= 1 + x+ x2 + x3 + o(x3)。

7. (1 + x)a = 1 +
n∑

i=1

∏i
j=1(a− j + 1)

i!
xi，= 1 +

a

1!
x+

a(a− 1)

2!
x2

+
a(a− 1)(a− 2)

3!
x3 + o(x3)。

6.3.2 常用等价无穷小

定理：若 α ∼ α1，β ∼ β1，则 lim α

β
= lim α1

β
= lim α

β1
= lim α1

β1
。

所以可以使用等价无穷小替换对应式子，这些等价无穷小都是使用泰勒展

开得到的。等价无穷小只是泰勒公式在某个固定阶数上（通常为一阶）的特例。

通过麦克劳林公式可以得到当 x→ 0 时的相应等价无穷小：

1. x ∼ sinx ∼ tanx ∼ arcsinx ∼ arctanx ∼ ln(1 + x) ∼ ln(x +
√
1 + x2) ∼

ex − 1。

2. ax − 1 ∼ x ln a。

3. (1 + x)a − 1 ∼ ax。

4. loga(1 + x) ∼ x

ln a。

5. 1− cosx ∼ 1

2
x2。

6. x− ln(1 + x) ∼ 1

2
x2。

7. x− sinx ∼ 1

6
x3。

8. arcsinx− x ∼ 1

6
x3。

9. tanx− x ∼ 1

3
x3。

10. x− arctanx ∼ 1

3
x3。

11. tanx− sinx ∼ 1

2
x3
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6.3.3 等价无穷小适用性

如果是乘除关系可以随便换，但是加减关系需要一定条件：

• 若 α ∼ α1，β ∼ β1，且 lim α1

β1
= A ̸= 1，则 α− β ∼ α1 − β1。

• 若 α ∼ α1，β ∼ β1，且 lim α1

β1
= A ̸= −1，则 α + β ∼ α1 + β1。

即这两个和不能为 0。

7 函数连续性与间断点

函数的连续与间断是逐点的概念。

7.1 连续定义

定义：若函数 f(x) 在点 x0 的某一邻域内有定义，且有 lim
x→x0

f(x) = f(x0)

或 lim
∆x→0

∆y = 0，则称函数 f(x) 在点 x0 处连续。

极限值等于函数值，则该点连续。

在区间上每一点都连续的函数，就是该区间上的连续函数，或该函数在该区

间上连续。

7.2 间断定义

讨论间断只看两类点：分段函数分段点，无定义点。

定义：若函数 f(x)在点 x0的某一去心邻域内有定义，且有 lim
x→x0

f(x) ̸= f(x0)，

则称函数 f(x) 在点 x0 处间断。

极限值不等于函数值，则该点间断。
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7.3 间断点分类

7.3.1 可去间断点（可补间断点）

定义：若 lim
x→x0

f(x) = A ̸= f(x0)（甚至可以没有

定义）。

x

y

O

B

A

x0

f(x0) = B

lim
x→x0

= A

7.3.2 跳跃间断点

定义：若 lim
x→x−

0

f(x) 与 lim
x→x+

0

f(x) 都存在，但是

lim
x→x−

0

f(x) ̸= lim
x→x+

0

f(x)。

x

y

O

B

A

x0

f(x0) = B

lim
x→x0

= A

可去间断点与跳跃间断点的左右极限都存在的间断点都称为第一类间断点。

7.3.3 无穷间断点

定义：若 lim
x→x0

f(x) = ∞，或至少一个方向为无

穷大（定义分歧）。如 y =
1

x
在 x = 0 处为无穷

间断点。
x

y

O

7.3.4 振荡间断点

定义：若 lim
x→x0

f(x) 为振荡不存在。如 lim
x→0

sin 1

x
的 x = 0 就是振荡间断点。 x

y

O

无穷间断点与振荡间断点的左右极限都不存在的点都是第二类间断点。

注意：两侧邻域都有定义才能讨论间断点问题。
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例题：若 f(x) =


2x+ a, x ⩽ 0

ex(sinx+ cosx), x > 0

在 (−∞,+∞) 内连续，求

a。

解：因为连续，所以 f(0) = lim
x→0+

f(x) = lim
x→0−

f(x)。

∴ a = 1。

例题：若函数 f(x) =
ln |x|
|x− 1|

sinx，则 x 的间断点类型是？

解：由式子的分式部分可知有两个无定义的间断点：x = 0，x = 1。

lim
x→1

f(x) = lim
x→1

x− 1

|x− 1|
sinx =


x→ 1+ → sin 1

x→ 1− → − sin 1
。

所以 x = 1 跳跃间断点。

lim
x→0

f(x) = lim
x→0

ln |x| · sinx = lim
x→0

x ln |x| = 0。

而 x = 0 未定义，所以其为可去间断点。

7.4 函数连续性

7.4.1 连续函数四则运算的连续性

若两个函数在某点连续，则这两个函数的和差积商在该点都连续。但是如果

两个在某点不连续的函数，其和差积商在某点的连续性都是不一定的，所以反过

来，如果一个函数的和差积商是在某点连续的，不能说明这个组成的多个函数在

该点是连续的。

7.4.2 反函数的连续性

若函数在定义域是严格单调的函数，则其反函数在其原值域上也是连续的

且单调性不变。

7.4.3 复合函数的连续性

若 y = f(g(x)) 由 y = f(u) 与 u = g(x) 复合而成，若 g(x) 在 x0 处连续，

f(u) 在 u0 处连续，且 u0 = g(x0)，则 f(g(x)) 在 x0 处连续。

7.4.4 初等函数的连续性

基本初等函数在定义域上是连续的。
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初等函数在定义区间上是连续的。

定义区间是定义域的子集。

8 闭区间上连续函数的性质

设 f(x) 在区间 [a, b] 上连续，则：

8.1 有界性与最大最小值定理

最大最小值定理：：f(x) 在 [a, b] 上必有最大值和最小值。

有界性定理：f(x) 在 [a, b] 上必有界。

如果是开区间连续则不能保证有界性，因为可能开区间两边的端点为函数

的间断点（如
1

x
在 x = 0 处）。

8.2 零点与介值定理

零点定理：若 f(a)f(b) < 0，则 ∃ ξ ∈ [a, b] 使得 f(ξ) = 0。

介值定理：若 f(a) ̸= f(b)，µ 为介于 f(a) 与 f(b) 之间的任何值，那么至少

存在 ξ ∈ [a, b] 使得 f(ξ) = µ。

例题：证明方程 x = a sinx + b(a > 0, b > 0) 中至少有一个正根，并且不超

过 a+ b。

证明：令 f(x) = x − a sinx − b，其中 f(0) = −b < 0，f(a + b) = a + b =

a sin(a+ b)− b = a[1− sin(a+ b)] ⩾ 0。

若 sin(a+ b) = 1，则根为 a，结论成立。

若 sin(a + b) < 1，∵ f(a + b) · f(0) < 0 根据零点定理 ∃ ξ ∈ [0, a + b] 使得

f(ξ) = 0，从而得证。

8.3 * 一致连续性

定义：设函数 f(x)在区间 I 上有定义，若对于任意给定的正数 ξ，总存在正数

δ，使得对于区间 I 上的任意两点 x1x2，当 |x1−x2| < δ时，有 |f(x1)−f(x2)| < ξ，

则函数 f(x) 在区间 I 上一致连续。

对于连续性的定义：设函数 f(x) 在区间 I 上有定义，若对于任意给定的正

数 ξ，总存在正数 δ，使得对于区间 I 上的任意一点 x，当 |x − x0| < δ 时，有
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|f(x)− f(x0)| < ξ，则称函数 f(x) 在区间 I 上连续。

对比连续性与一致连续性，可以知道定义上就只有一个差别，连续性只有一

个动点 x(x0 会相对于 x 而变化)，而一致连续性有两个动点 x1x2。但是就是这

种小变化会带来很大不同的定义结果。

可以利用几何图形来分析，对于图像上的任意一点，连续性与一致连续性都

是在一个过程中固定一个 ξ，来求对应的 δ。所导致的就是函数差值是固定的。

根据连续定义，函数上任意取一个 x，再在 x 的左边或右边取一个 x0，使

得 |f(x) − f(x0)| < ξ，现在需要求一个 δ，使得 δ，使得 |x − x0| < δ，所以我

们可以根据这个条件，作一个竖直距离为 ξ，水平距离为 δ 的长方形，长方形内

部的所有点的 x 坐标代表的 δ 都满足条件，其中一个正对角点坐标为 (x, f(x))，

另一个则为 (x0, f(x0))。ξ 是固定的，要根据不同的 x 找到不同的 δ，即不同的

x+ δ = x0。

假定函数为 y =
1

x
，ξ = 1，任意取一点 x，求出对应的 δ，将会得到下面第

一张图。其中虚线里的所有点都是满足要求的点。而随着 x上移，长方形水平长

度会无限接近于 0，而向下，长方形水平长度会无限接近于 +∞。

x

y

O

x

x0

x

y

O

1

ξ

所以长方形的两对角点变动轨迹如图二所示，当 x 无限接近 +∞ 时，x0 无

限接近
1

ξ
，因为 lim

x→+∞

1
1

x
+ ξ

=
1

ξ
。

所以连续性下总能找到一个 δ 使得虚线长方形存在，从而函数
1

x
是具有连

续性的。

而对于连续一致性，则规定了两个变量 x1x2，其实对比连续性类似，但是这

时候虚线长方形的两个角都是被约束的，而不是连续性的时候 x0 是不受约束的，

对应到图形上，就是要找到一个长方形，使得无论 x1x2 在哪里都在长方形中。

而对于函数
1

x
，由图像二可知虚线长方形的面积是从 0一直变大到 +∞，所
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以不存在一个固定的长方形（面积为常数）。从而该函数不具有一致连续性。

所以综上只有变化率变化不大的函数才在整个定义域上具有一致连续性。如

一次线性函数，sinx，cosx，而对数函数，指数函数都不具有一致连续性。

定理：若函数在闭区间上连续，则一定在该区间上一致连续。

定理：若函数在某区间上一致连续，则一定在该区间上连续。
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