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1.1.1 KEZ[X[8])

AR B SL X ], AUE T R B TAERr, —Raahi
BeeR %, FTCAEE T oy B R B R B R BRI M5

TR f(x) RAMMIREFIELA, FATERIXNDIR, &EFHFE— 2
IZRIEF, NI A REFIMT H 8 X A .

T+ IQan

. ORBHGELE XA

fift: FEEBIREIE AN —RE, EWRERZEEA n (n — oo 8
n — +00). FTLATEZMBR T8 o H/ESRRL ¢ 2.
TSR BRI f(2), T o ZBENBUES W EIRER, HRI82
r WEUETEHE . BT DR 8 =B
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x+x2e™ 0
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Y >00, e fEn— OOQEHL?'SI 00, LF%B%‘LX/I\%%’?E‘J%Q Frih B
AL e, ) = i TEEC o) < BRSO,
MR T f(x) KT« FRIE:
x, <0
f@)=40, =0
22, >0
o
X Jim f@) = lim 2= lim flz) = lim 2% = 7(0) =0.

f(x) £ R Li%E4L,

1.1.2 BENELEXERESH

G SE 0 BR A, RS HO LT T E S X TR 5 R 5
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3sin(z — 1)

6, <0 , r <1
ﬁu&iﬁ_: f(x): 6(1:03_1 ’ g(aj): r—1 s
x>0 e’ + 1, r>1

r — arcsinz’

# f(x)+g(x) /£ R Bi#ES:, WK a,b.
ff: CH f(z) + g(x) 7E R RIS, (HRAREHIN f(2) 5 g(x) MELENE.
BTG FF it i
W fla) P MAREERS, SR f(o) B8, MR,

P |
lIlm —— =6
z—0+ T — arcsin x
. e’ _ 1 . azr®
o lim —mm—m—m = lim ———
z—0T £ —arcsinx  z—0+t £ — arcsinx
.3 3 2
asin®t t 3t
At = arcsine == lim — =a lim — =a lim
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— _6a — 60
ca=—1K f(zx) /£ R L4k,
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S b=1n2 B g(x) f/£ R FiEZE.

sa=-1b=m2 K f(z)+g(x) £ R FIEZ., 1 a# -1 8 f(z)+ g(x)
fE o =0 WAELL, b# W21 f(z)+ g(x) f£ © =1 FAZESL.

1.2 (8]l
1.2.1 SKiEHf S

SR IAJ W o 75 B 5B M R B RE A

. 1 \ e \ 5
BISE: ¥ f(v) = lim — 0, SRECIINT S5 47 K.

fift TETE@iﬁﬁﬁfg,—}%%g%g%ﬁéﬁ%@Eﬁ*?%@%ﬁﬂ‘]ﬁﬁ’ T BRI A&
F IR T R
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1+

oo =
ng{olo 1+ 20 1,
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FTUAr BN o = 1.
Y= —10, f(—=1)=f(=17) = f(=1) =0, FrLAEsbAbESE,
Mar=1H, fUY)=0# f(17) =2, FrLAEMLACTERE, ABRERIAIET A5 .

1.2.2 EHEELKESH

BRI E AN AL, TR TS, N AR T IFRU
B IR ES B
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ab {1

e AP o = .z = b, Fft T AT SRR O T 951 5,
T T SR R 2 LIRS, (LR 5 B8 B R0

EL 48 NI A &« = 181 & = e, FFRL ab ABRTREE A, (8
R FURHER .

ALRFHWE v =e, ATEEWA =1, K

T

e* —e
4 :1b: H‘, - o
MNa=1, e N, f(z) CENCED
x x __ =1 _
M — 1K, lim ¢ ¢ = 1 lime °._° lime 1:

51 (r—1)(r—e) l—eadlaz—1 T1l—easl -1
e .. x-—1 e
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T _ 1 r x—l_l
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-1 -1 1
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cox = e AT AT AL
Ha=eb=10, f(z)=

e’ —1
(x—e)(z—1)"
MAERIT T e” — 1 IRA—EE, AX7#Em 1 8 e R B
NERA ) — DA FERDIRA—DEEL 75— D AERNA Y T I 55N, Fr
U lim f(z) = lim f(z) = oo,

sa=1,b=¢e,
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XA R X 1], @@ﬁﬁﬁm@@ﬁﬁ%ﬂﬁ%/\ﬂﬁﬁﬁ: w flx) = Vo
#[0,a] EAF, f(z) = —\/_ AL 0 —ME . mRSFREA R, WEH
B DX ) P 300 ) 48 06 SR A S, P DA eR BB SR

XF TR IX (8], 3 R HCH SR R ek B A REAE 78 7 AR, W f (2) = o £E
R FTES, HE () =1H5; f(r) =sinz? /£ R A, 1 f/(z) = 22 cos 22
£ R BTG5

2 H{EFEIE

A 5 B — BT T U AN 2
— B SR B XA B PR (R UE R MEE R M e e B
(BRER . fikg I H PEE P Mo EE R, BRI P EEHED.

2.1 MHMEEE
EH T 3¢ € [a,b], BEREN f(a) + f(b) BB,

1. R RS m < f(2) < M
2. FIFIA R,

BISE: f(2). glx) 1€ [a,b] b3S, H()>0Jﬁ%%:ﬁﬁ$ﬁ%@:ﬁ

T*'ﬁée[ab 8 [0 fx)g(x)d = £(€) [ g(x)
 MABRTHR, REAMHR, W SH, LRSI KM

", b

ﬁ%%%ﬂﬁ%ﬁ~wzﬂo—ff()m:,iE*Aﬁ

X f(x)s g(x) 1 [a,b] FEEE, R AE TR m < f(z) <

E?Bﬂg@ﬁ%ﬁ%uﬁgﬁf@y&ﬁ&ﬁ,ﬁﬁ@@g(ﬂWT AR
LA, MBI (o) WEWE f(r) FIERE.

MRS, B [ g(x)dz > 0, Mﬁnzﬂ) ﬂ)()gMy@ﬁ

XA m [P g(a dx<ff z)de < M [? g(x)

Wi m < fig) = 2 LB
fab g(a:) dx




2.2

1.

2.

TREE
EHT 3¢ €la,b], H fla)s f(b) EH1,
% & =ua, BT f(zx) =0,

DHBREL F(z) = f(x), BB SHCE mEH, Hip e NHE.

- HGANR, 2 F(x) = f(x), X f(z) RO C =0, F(z) = [ f(z)dz, I

I A I 2 RE B, A A ARHIE

(AR EARESERD HARHLE, S F(x) = flx), MIRFSEE F(x), #

F(x) ERIZRE I —Br, RIS B H AR I

2.2.1 EEZFSEIHE

53

IR : SRR f(x) 75 [0,1) %S, H £(0) =0, f(1) =1, iEH 3¢ € (0,1)
f&) =1-¢&.

fif: PGB F(2) = f(o) + 2 — 1.

FO)=f(0)+0-1=—-1<0, F(1)=f(1)+1—-1=1> 0.

R E SUER 3¢ € (0,1) 47 F(€) = 0.

Bl 3¢ € (0,1) 13 f(§) =1—¢&

2.2.2 TREE

BIRR: & f(x)s g(2) 1E [a,b] L3ESE, IEH 3¢ € (a,b), 1§13 g(¢ f& )dw —

&) J; () da
. BT ASSE, PrUAME R R e E
ﬁf‘ﬁ/v\f 5 z) [¥ f z) [7g(t)dt = 0.
4 F(x (![f t)ydt — f fg t)dt, FuFREHEE ST,
F(a f t)dt, F(b )ff t)dt. FrEEIIEFINT
&Aﬁv J’f &+f ) [ g

FrLLA E’EHF f f(t dtfb (t)dt
F(a) =0, F(b)ZO’ WD KR, FTUMPTE ¢ 18 F/(¢) =0, HHE.

2.3 T/REHE

SRREIF A f(a) = f(b).



2.3.1 FHEERHK
o TRIEAAY. EHEAULEH.
o ARAL (O +9(O)f() =0, WA G(z) = [g(x)dr, F(z)=e@f(z).

EE AR FAR (wv) = v'v + wo' RIS FRA &5 B R L
w f@)f' (), AE Fla) = f2(2), [f'(@)]+ f@)f" (), 1F F(z)=f)f(2),

f'(@) + fa)¢'(x), & F(x) = f(z)er™)s

flRR: % f(x) 7E [a,b] L3ESE, 1E (a,b) AT, f(a) =0, f(b)=a, ab [F
5, UEBH 3¢ € (a,b) T F(6) = 5( 3

fift: Xf f’(m)+éf(:v) =0, Bl g(z) = é :f%dlenx, T B R AR

K F(z) =e*f(x) = af(z)o

X fla) = b, f(b) = a» F(a) = af(a) = ab, F(b) = bf(b) = ab, FrLA
F(a) = F(b). WIEB/REM 3¢ € (a,b) 13 F/(€) =0, BI f(6) +£f(6) =

M oab [FY5, Frbhlab#0, £€#0, M f/(x) = ];@)

BURE: Bk H f(2x)s g(2) 7F [a, 0] EZFAT S, H ¢"(x) #0, f(a) = f(b) =
g(a) = g(b) =0, UEM:
1) 7E (a,b) W g(x) # 0.
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S R W 7 WA O
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fit «

(1) 9 1 faj $ufs SR

i Je € (a,b), 17 g(c) = 0o WFPII X RS FH 2 R e 3

31 € (a,¢) 13 ¢'(&1) = 0, 3& € (a,c) 1T ¢'(&2) = 0o

HUERS REM 3¢ € (&,6) € (a,b) 1 ¢"(€) =0, SEETE, NIE
WAL

(2) MRFZXHT, & =2, BIER f(a)g"(z) — f(x)g(z) = 0 BT,

TaXREXS f(2) M f/(x) HHrT, riarin E—Fr e X7

T, kabe—Br T
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SHIEEA F(x) = g'(2)f () - g(x) f'(2)-

F(a) = g/(a)f(a) — g(a)f'(a) = 0, F(b) = g'(b)£(b) — g(b) f'(b) = 0, FFLIR
VB R 3 € (a,b), B F(E) = 0.

AR - e ] 22 A5

2.3.2 BHXEAX
2.3.2.1 SHEAEE
By f(g) =
L f=U(x) #£ o = € KW 2o e B
2. fOV A o =& THAMMXE LS /REl B,
3. MHZEHARXRIT (EAASE).,

%*-&fﬂ?ﬂoa (0$LT$ H £0)+ f(1) + f(2) =
f(3) =1, UEMIAFAE € € (0,3), ﬁﬁf()
fift: ﬁ%~Aaﬁf@) , RS RE B B R 5 BRI B i g 0 A
Jie HTFXERGER, BRI EERD /REH. FrLlbZike] f(a) = £(b).
BT H R 45 R e SR Im A 45 ﬁf() fRIETE, AT ATCVEAE SRR
AT RIEM . £(3) = 1 2ME— T e s Ui, FredELE (0,3) HRE]—
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O f(z) 18 [0,3] LaE%E, (0,3) Ln]S, M—EFEmRNE M, &/IME m,
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o m < WO EIDEIE g gy,

M, T Eﬁf%ﬁcemﬂ{® (e = AT

UL fe) = f(3) =1, WARB/REH, €c(c3) b, HiF.

BIER: f(x) 76 [0,2] Li&ESE, 1F (0,2) A AlS, f(0) = f(1), f(2) =
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Fit LR 2R 2 3¢ € (¢,2) 953 /(&) = 0.
XOf(0) = f(1), .3 €(0,1), FUREH f'(22) = 0.
S &) = f(&), BUREH 3E € (61,&) B £7(5) = 0.

2.3.2.2 S¥HHE
B R, REGERH av by f(a)s f(O)s FE) F/(E)s -~ FO(E) Mo
& & ab W EET

o BIREEIHPEEE: B f(b) - fla) 3L W

. FIT R, A %

A ST ab AT BT
1. A3 A B R 2

2. MHZ /R EH,

2.3.3 FRFR
2.3.3.1 EHIERF

i AR e AT I SRR SR X TR Y 0 BIWAT,

Gl : WE 2 f(2) =23 — 3x +a 7E [0,1] EARREANANE M.

WEA: i f(x) =2° =3z +a 15 [0, 1] BWANES 21 A 2o, HA 27 < 290

KRN f(x) =23 — 3z +a 1E [0,1] WiELE, bl f(x) = 23 — 3x +a 1E [0,1]
IR

2 R A 3¢ € (21, 12) C (0,1), {13 f/(€) =0, HE f'(z) =322 -3
7 (0,1) EANEE 0, Frbh & AMEfE, NMZ W f(z) =2® — 3z +a #£ 0,1] k
AFTREA I F R

2.3.3.2 E&HATF

LR TFR_R—NESH, B H—EieH i — 1M TFLARSE, AT
R A TR R P A, SRR U o IR .
BUSR: B ap+ D v 0 — 0, AL TR flx) =ap+ax+-- +a,z"
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75 (0,1) PR AR,
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a ) AY
%+§+“' +1—0W%kﬂ)z@ﬁf—4%%o
2 n+1
W F(x) :a0x+a1%—|—~-+ann+1, F'(x) =ay+arx+---+a,z" = f(z)o
X F(0) = 0,F(1) = ag + % +ot nﬁl =0, NBREH—EHELE—

¢ € (0,1), 13 F'(&) = f(&) =0
M f(z) = ao + arx + -+ + azz™ 7& (0,1) FEDHF—NE L

2.4 PARRAHPEEE

IEHAE R EERNIE KT f(o), BHIMEM f(a) — f(b), A f(x) 5t
RWATH HAR R H, AR AFEXAFLE fla) — f(b) ZFT, HUHERAIE
e, HHIEZ f(b) =0,

R o M b AT LR EW AT LR AR, & MM o A1 b, FTEL f(€) ANHEL
ANBERE A oK

 f(x) = fla) = F/() —a) = f(z) = fa) + F(E)(x —a) » [} f(z)dz =
ff( Ydx + f/(€ fx—a Yda.

2.4.1 KFEHR

1 TS5 18 B4 H AR P 34k X

BIRR: ¥ f(x) EHXE [0,¢ Fi#EsE, HSH f/(x) EIFXE (0,¢) WIELE
HAER, 2 £0) =0, EH fla+b) < fla)+ f(b), 0<a<b<a+b<co

fifts ANAEAE PR i R S B 26 A BT A F i B 1 PP B e 2L

KON ELE B R EH av by a+b, f(0) =0, FrRAXTIXJUA X AT
Bk B H A {E e

HEB AT AR E R G REIER, BT AT E0 H ik .

fla) = f(0) = f'(&)(a—0), fla+b)— f(b)=f(&)a+b—1b)

M fa) = f'(&)ar fla+b) = f(b) = f(&)a-

N f(x) BB, BTEL £1(&) > (&)

fla) = fla+b) = f(b), FTLL fla+0) < fla)+ f(b)-



2.4.2 KIFERH

XA H B U A N o, R — 2w H— 2 BT, ZHE,
S SRR RO R, VR R R e B P 1 40 R R B T — R

BIRR: ¥ f(x) 76 [0,1) LS HT S, IEMEE— S e (0,1), #5 f(1) =
3Ef(E) + &1 (e)-

WEB: B 3E2F(€) + &3 f(e), FHEHERECH 22 f(z), & F(x) = 23f(x), W
HAE (0,1) A &,

BIfg A A% B H P2 3, F(1) — F(0) = F'(€), € € (0,1). B f(1) =
3Ef(E) + €71 (e)-

2.4.3 XTEREUFE
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FEAFEIIXTE, HiE L—AN X AR S 2 b, TR 8 H e e B A2 & R
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O HEAT RS BIH . f(S) — f(0) = f/(&)(€ —0), Rl =

1 1-¢
- = f 2 - ’ E — o
F) = f(&) = f(¢ i(l 5)5 ”f/(l&)g 1— f(§) 1
E e — , =, =] /T , A= .
e T e = T T R ©) =5 RRAET 2, A

2.4.5 ERIEEE

—_

PR — A ASEL, R BsA 25, Wik Zz=0 QA M
f(x)), Wasr] AEEHIEZE, T f(r) —BEFEE ST, o B8 2, b
AR R H AANSE R E — N

— Mt 0 8 1. ATRAEsEA 1.

X FRXMAGERTH L E—RA B BIR I H a2

BRE: 42> 10, UEW e > exo

UER: 8 H PR 2 AR B R U O A B, Bl A

R O — R, T RAEE e MRk R %

RIGIRFE—DWEBAE N o A, ARk —A 1 EN b fE: f(2) — f(1) =
fE)x —1).

MM e —e=ef(x—1), € (L,x), il e"—e>e(z—1), B e” > ex, 13
ko

2.4.6 BirAEH

{58 PR M B L oR S B f (o) 76 T BHESLHAS, W T F f) =
C & f(z) =0,

BIER: {FEAH arctan e® + arctane™* =

|l\3|>?

NN

fih: & F(r) = arctane® + arctane™®

er —e 7
F'(x) = oo + g =0,

RAERAE I H P EEE, Fr)=C.
M F(0) = arctan 1 4 arctan 1 — g =0, C =0, 3}k,

2.5 WP EEE

I o f0) = fla) _ F1€)
WRREPA TR, W F%)

BlRR: % 0<a<b BRE f(z)TE [a,b) &S, TE (a,b) WATS, EAF
b
E € (a,b) 5 f(0) = fla) = Ef/(O)In -
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WERH 6 B B R T DA
bl F'(z) = .

et IO = 1@ _F© FO) =) _ 1)
£(8) = f(a) = £7/(€) In” = . :

a Inb—Ina

=Inb—1Ina, PFTARTBLA F(z) =Inz,

Q|

AR5 AR 74 i 5 BRASIE .

2.6 Z#MPEEE
Lo TS R EFFE 0 — 1B, 8 n T BA R

2. REGH e Hr bl En R, WTRUERIEITEE .

IEB 3¢ € (a,b) 13 F(E, F™(€) >0 (n > 2) M HAE B H R 228

AW

L A8 f(x) fE4ER B & Z R LRI
2. AMRER M, MIUEES SRS ERN— SR,

3. 4 PR AR AU B R RS L, UK 20l T

BIRE: f(x) 1E [a,b] LB, f(a) = f'(b) = 0, UEW] 3¢ € (a,b), 15
|

p |f(b) — f(a )
|f"(€)] = 4(b——a)2°

We H1F ab P —FES LA TS AR — B RTF
£@) = fla) + DN @ oy o) = o) + L5 o,
B9 555 S A T LR ab B, LR o :“;ﬁ
H(*57) =@+ Eo—ar £ (450) s+ Ho -7 @

& RT ab AR, BRI T
st )~ fa) = O (e - (), WA |£(0) - F(a)] =

O priey) - e < Nﬂ@m+uwgn

m&—mwﬁbgb(b Nﬂ(ﬂ > 1£(b) — f(a)], FHE.
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o ANEREFn, X oa, b EHAPRTEEHE, ZAPUHHPEEH, 2
A AL B H AR E PR — R P A E B
o TR A A o 1E (a,¢)v ¢, b XAy ) A8 I P R A% B 1 o B

B AR B H PR E PR P T EDE B X T ¢ OEUE, B
I ZaH, ZAHERGR ¢ CRIRIEEIER S RHED co GEAR EAZFER]

B A REFED, HRAME.

2.7.1 PXRAIHEEAH

BIRR: f(z) 1€ [a,b] FIESE, (a,0) WATT, H f(a) = f(b) =1, IEWIFFAE
&1 € (a,b) MG (1 () + ['(n)] = 1.
fit: BB & Mg IT: e'[f(n) + f(n)] = e MRAEHA% B H HEE B
f,(f) _ f<b> _ f(a’)
b—a
3

T4 e

el — et

b—a *
XL e f(n)+f' ()] = [ f (@), o [ f(n) + /()] =

b
=&, FrRASERUROL, RS

t(E), t(x)= [edr =e") ;. ef =

e"f(b) —e*f(a)
b—a

e’ —e”

b—a

2.7.2 —RAMEAH—XATE

1515 - f(:t)b?f [a,b] Li&ESE, (a,b) WATT, H f/(z) # 0, IEBIAFEAE €1 € (a,b)

VA=) f,(g) _6 — et _
@E%f,(n) = a4 e ",

fie: EOORE &R Tt f1(€) =

ot
b—a f'(n)
it (e mppsmr, = {00 gy - fla),

—a f'(n) e’ — et
A, (HE.

3 FHNMH

3.1 BigH

B : K y = 2 + | sin 22| AR X[
filt: RIS BRE E EOA R.
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x + sin 2z, nmw <
My= 2 (n=0,+1,42,--- )0

r — sin 2z, nmw -+

2 (n=0,41,42,--- ),

1+ 2cos 2z, nm < émr—i—ﬁ
1 —2cos 2z, nmw -+

M Y > 57T
Ly =0, FrlASEI5 SOA

53| X [A] : [mr,mr + %] s [mr + %,

5)
{:p:nw—l—%,(n—l—l)w} (n=0,%1,%2,--- ),

%xeﬁmm+g}y>m,%u BRI X () i g

%xe?m+§mw+ﬂ,y<o,mu R CTE X )L 26 R
[ T

%x€7m+2@—nw+%},y>&}ﬁu S X 1) - 26

+7T:| +7T B +57r
nmw 1k nmw 2,.23—77,7T 5

Hure x:nﬂ—l—% (n—l—l)ﬂl, y <0, FrCAEE X ) B e

km km
92

T kmw

Mﬁ@ﬁﬁ[ T b

(k=0,41,42,---),

g]wﬁﬁ%m,ﬁ[%q- g}ﬁiﬁﬁ¢

3.2 MME

ZHSECN 0 Abmha .

. ezl v = ax® + ba? + cx +d P2, 018 2 = -2 il Z&AK
FUIZE, (1,-10) P, HA (—2,44) fElIZE L.

fih: o = 3axz® +2bx +c, 3y’ = 6ax + 2b.

BN = —2 Kt &AKFUIL, Bl yf|— o =12a — 4b+c = 0,

(1,—10) AP, KRN: ¢']pe1 =6a+20=0, ylpmr =a+b+c+d=—10.

N (—2,44) FEHIZ B, L ylee—o = —8a +4b — 2c + d = 44.

fRASIIAN T FE: a=1, b= -3, ¢=—24, d =16,

3.3 MES®mE

RWEFESLIE o 5EWILIETS, QR ¢ FENRTEERE, ¢ <0 WH
WRAE, v > 0 MIEUR/ME .
X T A 5 5% R AR A IX 8] i S F 2 o
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3.4 Atk

3.5 s

3.5.1 BHMZMEEH
MBS f(x) BREL BT f () ATE S AL
o [(zo) =0, HALPLIESRSRKAESE.

o f"(xo) £ mo ATCE X, (HALAWILIES KA K.

3.5.2 EBHERH

FORIFERB P A GRS, SERS R (—S) PELA IS,
R 5C 0 5 BRI A

QR s A VA S, BIRARAE A, MR IR IX B2 8
3.5.3 BHIRERH

FERVE 2 o BB I T s AR AR A Y R

3.6 5
3.6.1 EARMR

o & flx) NaWnbr2mzl, M f(z)=0ZZFH n M.
o # fla) FEEK (2 —a)" W fla) = f(a) == f""D(a) = 0.

o 4 f(x) AATREEE KL R AR 1.

3.6.2 HFEM
3.6.2.1 THTEHE
o # f(x) 1E [a,b] EXESZE, H f(a)f(b) <0, W f(x) =0 7E (a,b) NEFH
— MR

o # f(x) 17E (a,b) FiEZ:, H lim+f(x):a, liril flx)=8, a-B<0, N

Tr—a T—0"

f(z) =0 7% (a,b) NEDLH MR,
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o # f(x) 1E (a,b) Li%EZE, H lim, f(z) = 400/ —00, 151?— f(z) = —o0/ 400,
M f(z) =0 1E (a,b) NEDEH M.

IR — A F s

3.6.2.2 TREHE

WEREIMERRE] f(z) = 0, WHRBI—D F(x), 15 F'(z) = f(z) = 0. B4R
B fx) MR ERE
Hr F(x) R B REB =A% &8, Al P miAHSE .

3.6.3 BHERHBIH

/

AL R EZ A TTE— i E B AR

3.6.3.1 EIiAMH

o f(x) 7F (a,b) WEIR C(f(z) FAAEHAEZET 00, W f(z) =0 1E (a,b) W
EEZH MR,

TR A — A R

4 TR A A — AN SR I 75 20K % fUE B B — [ H .

3.6.3.2 B/REHE

PURE BB B TR, FHRZEDHZ DR

BlRR: f(x) = I(x - 1)(3: - 2) e (= n/)\, WK f'(x) = 0 AT EL

CESICEIE (e—n) \
b gle) = (o — Do 2o 1), FELR Fe) =0 SR g'(a)

Xoglx)=00 z=1,2---,n, FrRKKRXS (1,2)s (2,3) ---+ (n—1,n) fif
MZIREHE, HipiL g(x) EL, 7T HMNmEEIE g(x) =0, AN XIEA
WIRAFAE— R E TR ¢/(€) =0, BITlZ f/(x) = 0 IR

m—3E n—1NXIE, FEEDSE n -1 MR,

M g(x) N n REHA, ¢'(x) N n—1RZHE, FTAEZA 0 -1 MR,

JITEL f'(x) =0 RA n—1 MR,
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3.6.3.3 B/R[FEIE

TUREER MR EZE 2D,

o BUREERB RIS . HXEA 1,

« B fO(2)=0EZH kML W f(z) =0 ZLH k+n M.
o W) £0, M flx)=0FEZLH n M. (k=0

B f(z) =0 EOHEHAME, W f(x) ESHE ML, —BGEW f(2) EZ
ok AER, BESR f(2) Mk K.

T 2R R N el 2 2 2 DA SE, BT UARRA TR AN £ ()
W ZE D2 AR,

fBIRRE: UEBATHE 2° — 2% = 1 A HAUA 3 M.

e & flo) =2 -2 -1, M f(z) =1n22% — 2z, f"(z) = (In2)%2" — 2,
() = (In2)32% £ 0.

FrbL f7(x) = 0 &% 0 MR, FreRIEE RIFIE f(o) = 0 22 =R,

XOMEE [(0) =0, f(1) =0 F"EPIAEAR.

f)=—1, f(5) =6, FTLA (4,5) WFEIE—AIEMR, AT —3E5 =M,

3.6.3.4 ZLEREBEFRGIE

KREF ORI EDH DL B 22 4 a2” + - + a9 + agn =0
EBOH LR

XA FI Wi WAL AT EAN DR Sk — s i 2 5 A BACH W8 5l

BURE: #7 3a®> —5b < 0, WGTHE 2° + 2az® 4 3bx + 4¢ = 0().

ATESER BAME—SR CH=ANAFRLR DEREANARTR

fitt: & f(x) =25+ 2a2® + 3bx + de, FZLARPAT IR HERDH — MR

f'(x) = bz* + 6ax? + 3b, & t =22, 5t* +6at +3b=0.

A =36a%> —4-5-3b=36a>— 60b=12(3a* — 5b) < 0,

o f (@) BSEAR, BTRL ¢ = 2? fRASHOR, BTRL £ () # 0.

f(x)=02% 0 MR FTURIED RIFENE f(o) =0 22— MR, XdH . Lim
ZH—PR, FTARE MR, % B.
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3.6.4 BERBNH
3.6.4.1 EHELEHLES

BHOE—MIER T LI H, ROk SRS HOR BN T, HTLLAT LAZETH
H R AREESE, %0 T RGNS RIS
U FEAE SO B R T RS S RE SRR, W e = ka, (o) ARG e"—ka
ﬁm@%g—m
Wﬁ:&ﬁﬁk>0,@ﬁﬂ@:hm—g+kﬁmﬁaﬂW%§ﬁ¢ﬁﬁ

\)1?

A3 B2 C.1 D.0

fift - f’()z%—é AHI 0, M2 =e.
€(0,e), f'(x)>0, f(z) /5 x€(e,+00) fl(x) <0, f(z) N\
X fle) =k >0, lm f(a ): lim (mx—fwc) — —o0, FTUAZEILE—A

R, zgrfoof(x) = lim (1nx — = + k) —oc0, FrBA—LH AR

T—>+00

3.6.4.2 EHHSHES

SRS AR REHTIEE, NKRFFESHEANENXT S, HENHEHE TS
KB

IR : KITHE karctanz — x = 0 BFIANFESEARAN S, Hd B NS

fith: & f(x) = karctanx —z - f(—x) = —f(x), FTLL f(x) B—DHEREL
FrCAR] LLR B & — U B L. @ = 0 A& BRI — MR

fz) = k _1:uo

1+ 22 1+ 22
Hik—1<O0Bl k<10 f(x) <0, FTEL f(x) BB, A RE— R,
Hhk—1>0k>1, & fllx)=0, Bl k—-1—-22=0, 2 =Vk— 1,
r € (0,vVk—1), f'(x) >0, f(x) /o x € (VE—1,40), f'(z) <0, f(x) \¢o

lim (karctanz — x) = —oo, FTBAE 0 HIEM—EFE DT, FHEAE

T—+00

AR BB FRAEAE — DN F R T3 =R,
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