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1 函数连续性

1.1 连续

连续则极限值等于函数值。

1.1.1 求连续区间

若要考察一个函数的连续区间，必须要了解函数的所有部分，一般会给出分

段函数，所以要了解分段函数的每段函数的性质。

对于函数 f(x) 是个极限表达形式，我们要简化这个极限，最好得到一个 x

的表达式，从而才能判断其连续区间。

例题：f(x) = lim
n→∞

x+ x2enx

1 + enx
，求函数连续区间。

解：注意到函数的形式为一个极限值，其极限趋向的变量为 n（n → ∞ 指

n → +∞）。所以在该极限式子中将 x 当作类似 t 的常数。

需要先求出极限形式的 f(x)，而 x 变量的取值会影响到极限，且求的就是

x 的取值范围。所以将其分为三段：

当 x < 0 时，nx → −∞，∴ enx → 0，x2 在这个极限式子为一个常数，

∴ x2enx → 0，f(x) = lim
n→∞

x+ x2enx

1 + enx
=

x+ 0

1 + 0
= x。

当 x = 0 时，f(x) = lim
n→∞

x+ x2enx

1 + enx
=

0

2
= 0。

当 x > 0 时，enx 在 n → ∞ 时为 ∞，上下都有这个无穷大的因子，所以上

下都除以 enx，f(x) = lim
n→∞

x+ x2enx

1 + enx
= f(x) = lim

n→∞

xe−nx + x2

1 + e−nx
=

0 + x2

1
= x2。

从而得到了 f(x) 关于 x 的表达式：

f(x) =


x, x < 0

0, x = 0

x2, x > 0

又 lim
x→0−

f(x) = lim
x→0−

x = lim
x→0+

f(x) = lim
x→0−

x2 = f(0) = 0。

f(x) 在 R 上连续。

1.1.2 已知连续区间求参数

一般会给出带有参数的分段函数，要计算参数就必须了解连续区间与函数

之间的关系。

1



例题：f(x) =


6, x ⩽ 0

eax
3 − 1

x− arcsinx
, x > 0

，g(x) =


3 sin(x− 1)

x− 1
, x < 1

ebx + 1, x ⩾ 1
，

若 f(x) + g(x) 在 R 上连续，则求 a, b。

解：已知 f(x) + g(x) 在 R 上连续，但是不能判断 f(x) 与 g(x) 的连续性。

所以分开讨论。

对于 f(x) 因为左侧为常数函数，所以若是 f(x) 连续，则必然：

lim
x→0+

eax
3 − 1

x− arcsinx
= 6

∴ lim
x→0+

eax
3 − 1

x− arcsinx
= lim

x→0+

ax3

x− arcsinx

令t = arcsinx ⇒= lim
x→0+

a sin3 t

sin t− t
= a lim

x→0+

t3

sin t− t
= a lim

x→0+

3t2

cos t− 1
= −6a = 6。

∴ a = −1 时 f(x) 在 R 上连续。

对于 g(x)，当 x < 1 时， lim
x→1−

3 sin(x− 1)

x− 1
= lim

t→0−

3 sin t

t
= 3。

∴ lim
x→1+

ebx + 1 = eb + 1 = 3。

∴ b = ln 2 时 g(x) 在 R 上连续。

∴ a = −1, b = ln 2 时 f(x) + g(x) 在 R 上连续。而 a ̸= −1 时 f(x) + g(x)

在 x = 0 时不连续，b ̸= ln 2 时 f(x) + g(x) 在 x = 1 时不连续。

1.2 间断

1.2.1 求间断点

求间断点需要首先分析函数的表达形式。

例题：设 f(x) = lim
n→∞

1 + x

1 + x2n
，求其间断点并分析其类型。

解：根据函数形式，我们需要首先回顾一下幂函数的性质，幂函数的变化趋

势取决于底数。

当 x = 1时，xn ≡ 1，当 x ∈ (−∞,−1)∪(1,+∞)时，当 n → ∞时，xn → ∞，

而 x ∈ (−1, 1) 时，当 n → ∞ 时，xn → 0。

∴ lim
n→∞

1 + x

1 + x2n
=


0, x ∈ (−∞,−1] ∪ (1,+∞)

1, x = 1

x+ 1, x ∈ (−1, 1)
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所以分段点为 x = ±1。

当 x = −1 时，f(−1+) = f(−1−) = f(−1) = 0，所以在此处连续。

当 x = 1 时，f(1+) = 0 ̸= f(1−) = 2，所以在此处简短，为跳跃间断点。

1.2.2 已知间断点求参数

这种题目已知间断点，而未知式子中的参数，只用将间断点代入式子并利用

极限计算间断点的类型就可以了。

例题：f(x) =
ex − b

(x− a)(x− b)
有无穷间断点 x = e，可去间断点 x = 1，求

ab 的值。

解：已知有两个间断点 x = a, x = b，其中无穷间断点指极限值为无穷的点，

可去间断点表示极限值存在且两侧相等，但是与函数值不相等的点。

已经给出两个间断点的值为 x = 1和 x = e，所以 ab必然对应其中一个，但

是不清楚到底谁是谁。

当 a = 1, b = e 时，f(x) =
ex − e

(x− 1)(x− e)
。

当 x → 1 时，lim
x→1

ex − e

(x− 1)(x− e)
=

1

1− e
lim
x→1

ex − e

x− 1
=

e

1− e
lim
x→1

ex−1 − 1

x− 1
=

e

1− e
lim
x→1

x− 1

x− 1
=

e

1− e
。

∴ x = 1 为可去间断点。

当 x → e 时，lim
x→e

ex − e

(x− 1)(x− e)
=

1

e− 1
lim
x→e

ex − e

x− e
=

e

e− 1
lim
x→e

ex−1 − 1

x− e
=

e

e− 1
lim
x→e

x− 1

x− e
=

e(e− 1)

e− 1
lim
x→e

1

x− e
= ∞。

∴ x = e 为无穷间断点。

当 a = e, b = 1 时，f(x) =
ex − 1

(x− e)(x− 1)
。

而作为分子的 ex − 1 必然为一个常数，当式子趋向 1 或 e 的时候分母两个

不等式中的一个不等式必然为一个常数，从而另一个不等式则变为了无穷小，所

以 lim
x→1

f(x) = lim
x→e

f(x) = ∞。

∴ a = 1, b = e。

2 中值定理

中值定理一般用于判断不等式。
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2.1 罗尔定理

2.1.1 寻找原函数

通过乘积求导公式 (uv)′ = u′v + uv′ 的逆运算来构造辅助函数。

如 f(x)f ′(x)，作 F (x) = f 2(x)，[f ′(x)]2 + f(x)f ′′(x)，作 F (x) = f(x)f ′(x)，

f ′(x) + f(x)φ′(x)，作 F (x) = f(x)eφ(x)。

即证明什么就构造他的原函数为函数式子。

2.1.2 零点情况

2.1.2.1 直接式子

需要证明所给式子的导数是否在该区间为 0 即可。

例题：证明多项式 f(x) = x3 − 3x+ a 在 [0, 1] 上不可能有两个零点。

证明：假设 f(x) = x3 − 3x+ a 在 [0, 1] 有两个零点 x1 和 x2，其中 x1 < x2。

因为 f(x) = x3 − 3x + a 在 [0, 1] 内连续，所以 f(x) = x3 − 3x + a 在 [0, 1]

内可导。

由罗尔定理得知 ∃ξ ∈ (x1, x2) ⊂ (0, 1)，使得 f ′(ξ) = 0，但是 f ′(x) = 3x2− 3

在 (0, 1) 上不超过 0，所以 ξ 不存在，从而多项式 f(x) = x3 − 3x+ a 在 [0, 1] 上

不可能有两个零点。

2.1.2.2 含参数式子

若所求式子是一个含参数，那么其一定还有另一个式子约束参数，此时我们

就需要构建一个新的式子来利用所给的条件，然后将新式子转换为旧式子。

例题：设 a0+
a1
2
+ · · ·+ an

n+ 1
= 0，证明多项式 f(x) = a0+a1x+ · · ·+anx

n

在 (0, 1) 中至少有一个零点。

证明：因为所要证明零点，所以一定使用罗尔定理。所给出的约束参数式子

a0 +
a1
2

+ · · ·+ an
n+ 1

= 0 与所求 f(x) 之间存在一个关系。

设 F (x) = a0x+a1
x2

2
+ · · ·+an

xn+1

n+ 1
，F ′(x) = a0+a1x+ · · ·+anx

n = f(x)。

又 F (0) = 0,F (1) = a0 +
a1
2

+ · · · + an
n+ 1

= 0，又罗尔定理一定存在一个

ξ ∈ (0, 1)，使得 F ′(ξ) = f(ξ) = 0。

从而 f(x) = a0 + a1x+ · · ·+ anx
n 在 (0, 1) 中至少有一个零点。
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2.2 拉格朗日中值定理

证明不等式最重要的还是找到 f(x)，即出现差值 f(a)− f(b)，那么 f(x) 就

是我们的目标函数，有时候不等式不存在 f(a) − f(b) 这种式子，就需要我们转

换。

2.2.1 式子转换

使用初等运算将目标式子转换减式。

例题：设 f(x) 在闭区间 [0, c] 上连续，其导数 f ′(x) 在开区间 (0, c) 内存在

且单调减少，又 f(0) = 0，证明 f(a+ b) ⩽ f(a) + f(b)，0 ⩽ a ⩽ b ⩽ a+ b ⩽ c。

解：不存在两端点相等的条件，所以使用拉格朗日中值定理。

因为所要证明的式子中含有 a、b、a+ b，f(0) = 0，所以对这几个区间进行

拉格朗日中值定理。

证明式子中没有减的形式只有和的形式，所以需要对其转换。

f(a)− f(0) = f ′(ξ1)(a− 0)，f(a+ b)− f(b) = f ′(ξ2)(a+ b− b)。

从而 f(a) = f ′(ξ1)a，f(a+ b)− f(b) = f ′(ξ2)a。

又 f ′(x) 单调减少，所以 f ′(ξ1) > f ′(ξ2)。

f(a) ⩾ f(a+ b)− f(b)，所以 f(a+ b) ⩽ f(a) + f(b)。

2.2.2 求原函数

这种题目就是证明某个式子成立，式子一边是常数一边是导数式子，要证明，

就要将导数式子转换为原函数，方法跟罗尔定理使用的转换原函数的技巧一样。

例题：设 f(x)在 [0, 1]上连续且可导，证明存在一点 ε ∈ (0, 1)，使得 f(1) =

3ε2f(ε) + ε3f ′(ϵ)。

证明：由 3ε2f(ε) + ε3f ′(ϵ)，可推出原函数为 x3f(x)，令 F (x) = x3f(x)，则

其在 (0, 1) 也可导。

即使用拉格朗日中值定理，F (1) − F (0) = F ′(ε)，ε ∈ (0, 1)。即 f(1) =

3ε2f(ε) + ε3f ′(ϵ)。

2.2.3 对数函数特性

对于对数函数，要记住其特定的性质：logn(
a

b
) = logn a− logn b。

例题：设 a > b > 0，证明：
a− b

a
< ln a

b
<

a− b

b
。
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证明：因为 ln a

b
= ln a− ln b，所以令 f(x) = lnx。

所以根据拉格朗日中值定理：ln a− ln b = f ′(ξ)(a− b)（ξ ∈ (b, a)）。

又 f ′(ξ) =
1

ξ
，所以 ln a− ln b =

a− b

ξ
。

又 ξ ∈ (b, a)，所以
1

ξ
∈ (

1

a
,
1

b
)。

所以
a− b

a
<

a− b

ξ
<

a− b

b
，从而

a− b

a
< ln a

b
<

a− b

b
，得证。

2.2.4 划分区间

证明存在两个不同的点在同一个区间满足一个不等式。如果两个点彼此存

在一定关系，如上面式子转换的例子 a+ b，a，b，那么我们可以使用转换，如果

两个完全独立的变量，则这种方式没用，我们可以考虑划分区间，假定这两个点

在不同的区间，中间以一个区间变量分隔，由于拉格朗日中值定理中两个变量只

会出现一次，而间隔变量会出现多次，所以对其分别拉格朗日中值定理，就可以

把两个变量换成以间隔变量表示的形式，将两个无关变量的式子变成一个变量

的式子。

例题：设函数 f(x)在 [0, 1]上连续，在 (0, 1)内可导，且 f(0) = 0，f(1) = 1，

证明存在不同的 ε1、ε2，使得
1

f ′(ε1)
+

1

f ′(ε2)
= 2。

证明：使用 ε 将 [0, 1] 划分为 [0, ε] 和 [ε, 1] 两个区间，假定 ε1、ε2 分别在这

两个区间上。

分别对其进行拉格朗日：f(ε) − f(0) = f ′(ε1)(ε − 0)，即
1

f ′(ε1)
=

ε

f(ε)
，

f(1)− f(ε) = f ′(ε2)(1− ε)，即
1

f ′(ε2)
=

1− ε

1− f(ε)
。

即
1

f ′(ε1)
+

1

f ′(ε2)
=

ε

f(ε)
+

1− ε

1− f(ε)
，任取 f(ε) =

1

2
，原式等于 2，得证。

2.2.5 查找特定值

对于证明一种不等式，如果里面没有差式，也无法转换为差式（没有相同的

f(x)），那么就可以考虑制造差式，对于 f(x) 一般选择更高阶的，a选择 x，b 要

根据题目和不等式设置一个常数。

一般是 0 或 1。可以先尝试 1。

对于这种不等式子看上去一般不会想到拉格朗日中值定理。

例题：当 x > 1 时，证明 ex > ex。

证明：题目中没有差式，所以需要选择一个函数作为基准函数，里面有一个

指数函数和一个幂函数，所以选择 ex 作为基准函数。
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然后选择一个常数作为 b 值，可以先选一个 1 作为 b 值：f(x) − f(1) =

f ′(ξ)(x− 1)。

从而 ex − e = eξ(x− 1)，ξ ∈ (1, x)，所以 ex − e > e(x− 1)，即 ex > ex，得

证。

2.3 柯西中值定理

需要找到两个函数，使得
f(b)− f(a)

F (b)− F (a)
=

f ′(ξ)

F ′(ξ)
。

例题：设 0 < a < b，函数 f(x) 在 [a, b] 上连续，在 (a, b) 内可导，证明存

在一点 ξ ∈ (a, b) 使得 f(b)− f(a) = ξf ′(ξ) ln b

a
。

证明：由对数函数的特性可以知道
b

a
= ln b− ln a，所以可以令 F (x) = lnx，

所以 F ′(x) =
1

x
。

f(b)− f(a) = ξf ′(ξ) ln b

a
=

f(b)− f(a)

ln b− ln a
=

f ′(ξ)
1

ξ

f(b)− f(a)

F (b)− F (a)
=

f ′(ξ)

F ′(ξ)
。

根据柯西中值定理得证。

3 导数应用

3.1 单调性

例题：求 y = x+ | sin 2x| 的单调区间。

解：因为函数的定义域为 R。

又 y =

 x+ sin 2x, nπ ⩽ x ⩽ nπ +
π

2

x− sin 2x, nπ +
π

2
⩽ x ⩽ (n+ 1)π

（n = 0,±1,±2, · · ·）。

∴ y′ =

 1 + 2 cos 2x, nπ ⩽ x ⩽ nπ +
π

2

1− 2 cos 2x, nπ +
π

2
⩽ x ⩽ (n+ 1)π

（n = 0,±1,±2, · · ·）。

令 y′ = 0，所以得到驻点为 x = nπ +
π

3
和 x = nπ +

5π

6
。

分割区间：
[
nπ, nπ +

π

3

]
，

[
nπ +

π

3
, nπ +

π

2

]
，

[
nπ +

π

2
, x = nπ +

5π

6

]
，[

x = nπ +
5π

6
, (n+ 1)π

]
（n = 0,±1,±2, · · ·）。

当 x ∈
[
nπ, nπ +

π

3

]
，y′ > 0，所以函数在区间上单调递增。

当 x ∈
[
nπ +

π

3
, nπ +

π

2

]
，y′ < 0，所以函数在区间上单调递减。

当 x ∈
[
nπ +

π

2
, x = nπ +

5π

6

]
，y′ > 0，所以函数在区间上单调递增。
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当 x ∈
[
x = nπ +

5π

6
, (n+ 1)π

]
，y′ < 0，所以函数在区间上单调递减。

从而函数在

[
kπ

2
,
kπ

2
+

π

3

]
时单调增加，在

[
kπ

2
+

π

3
,
kπ

2
+

π

2

]
上单调减少

（k = 0,±1,±2, · · ·）。

3.2 凹凸性

二阶导数为 0 处就是拐点。

例题：决定曲线 y = ax3 + bx2 + cx + d 中参数，使得 x = −2 处曲线有水

平切线，(1,−10) 为拐点，且点 (−2, 44) 在曲线上。

解：y′ = 3ax2 + 2bx+ c，y′′ = 6ax+ 2b。

因为 x = −2 处曲线有水平切线，即 y′|x=−2 = 12a− 4b+ c = 0。

(1,−10) 为拐点，代入：y′′|x=1 = 6a+ 2b = 0，y|x=1 = a+ b+ c+ d = −10。

又点 (−2, 44) 在曲线上，所以 y|x=−2 = −8a+ 4b− 2c+ d = 44。

解得四个方程：a = 1，b = −3，c = −24，d = 16。

3.3 极值与最值

求极值需要考虑 y′ 与点两边正负号，如果 y′′ 存在则可以考虑，y′′ < 0 则取

极大值，y′′ > 0 则取极小值。

对于最值需要考虑极值和闭区间端点两个部分。

3.4 函数图像

3.5 零点问题

3.5.1 零点定理

若 f(x) 在 [a, b] 上连续，且 f(a)f(b) < 0，则 f(x) = 0 在 (a, b) 内至少有一

个根。其中 ab 是具体数也可以是无穷大。

用于证明存在某一个零点。

3.5.2 单调性

若 f(x)在 (a, b)内单调（f ′(x)存在且不恒等于 0），则 f(x) = 0 在 (a, b)内

至多有一个根。

用于证明只有一个零点。
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3.5.3 罗尔原话

若 f (n)(x) = 0 至多有 k 个根，则 f(x) = 0 至多有 k + n 个根。是罗尔定理

的推论。

即若 f(x) = 0 至少有两个根，则 f ′(x) 至少有一个根。

例题：证明方程 2x − x2 = 1 有且仅有 3 个实根。

解：令 f(x) = 2x − x2 − 1，则 f ′(x) = ln 22x − 2x，f ′′(x) = (ln 2)22x − 2，

f ′′′(x) = (ln 2)32x ̸= 0。

所以 f ′′′(x) = 0 至多 0 个根。所以根据罗尔原话 f(x) = 0 至多三个根。

又观察法 f(0) = 0，f(1) = 0 得到两个实根。

f(4) = −1，f(5) = 6，所以 (4, 5) 内存在一个实根，从而一共与三个根。

3.5.4 实系数奇次方程

实系数奇次方程至少与一个实根。即 x2n+1 + a1x
2n + · · ·+ a2nx+ a2n+1 = 0

至少与一个实根。

例题：若 3a2 − 5b < 0，则方程 x5 + 2ax3 + 3bx+ 4c = 0()。

A.无实根 B.有唯一实根 C.有三个不同实根 D.与五个不同实根

解：令 f(x) = x5 + 2ax3 + 3bx+ 4c，该实系数奇次方程至少有一个根。

f ′(x) = 5x4 + 6ax2 + 3b，令 t = x2，5t2 + 6at+ 3b = 0。

∆ = 36a2 − 4 · 5 · 3b = 36a2 − 60b = 12(3a2 − 5b) < 0。

∴ f ′(x) 无实根，所以 t = x2 解不出来，所以 f ′(x) ̸= 0。

f ′(x) = 0 至多 0 个根。所以根据罗尔原话 f(x) = 0 至多一个根，又由上面

至少一个根，所以只有一个根，选择 B。

3.5.5 函数含参导数不含参

参数是一个加在式子上的常数，函数求导后参数就被消掉了，所以可以在计

算过程中不考虑参数，等到了最后的结果再讨论参数。

例题：设常数 k > 0，函数 f(x) = lnx− x

e
+ k 在 (0,+∞) 内的零点个数为

()。

A.3 B.2 C.1 D.0

解：f ′(x) =
1

x
− 1

e
，令其为 0，则 x = e。

x ∈ (0, e)，f ′(x) > 0，f(x) ↗，x ∈ (e,+∞)，f ′(x) < 0，f(x) ↘。
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又 f(e) = k > 0， lim
x→0+

f(x) = lim
x→0+

(lnx − x

e
+ k) = −∞，所以左边有一个

根， lim
x→+∞

f(x) = lim
x→+∞

(lnx− x

e
+ k) = −∞，所以一共有两个根。

3.5.6 函数导数含参

参数与自变量进行运算，从而求导后参数仍在式子中，计算时需要携带参数

来思考。

例题：求方程 k arctanx− x = 0 的不同实根的个数，其中 k 为参数。

解：令 f(x) = k arctanx− x� ∵ f(−x) = −f(x)，所以 f(x) 是一个奇函数，

所以可以只要考虑一边的情况。x = 0 是函数的一个根。

f ′(x) =
k

1 + x2
− 1 =

k − 1− x2

1 + x2
。

若 k − 1 ⩽ 0 即 k < 1 则 f ′(x) ⩽ 0，所以 f(x) 单调减少，从而只有一个根。

若 k − 1 > 0 即 k > 1，令 f ′(x) = 0，即 k − 1− x2 = 0，x =
√
k − 1。

x ∈ (0,
√
k − 1)，f ′(x) > 0，f(x) ↗。x ∈ (

√
k − 1,+∞)，f ′(x) < 0，f(x) ↘。

lim
x→+∞

(k arctanx − x) = −∞，所以在 0 的右侧一定存在一个零点，同理左

边也因为奇函数对称存在一个零点，所以一共有三个根。
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