
1

TCP--超时重传、流量控制、拥塞控制

重传机制

超时重传

快速重传

SACK

D-SACK

滑动窗⼝

累计确认

窗⼝⼤⼩由哪⼀⽅决定？

发送⽅的滑动窗⼝

接收⽅的滑动窗⼝

流量控制

操作系统缓冲区与滑动窗⼝的关系

窗⼝关闭(零窗⼝通知)

窗⼝探测

糊涂窗⼝综合征

延迟确认与Nagle算法

Nagle算法（发送⽅）

延迟确认（接收⽅）

混合使⽤

拥塞控制

拥塞窗⼝

慢启动

拥塞避免

拥塞发⽣

超时重传时的拥塞发⽣算法

快速重传的拥塞发⽣算法

快速恢复



2

TCP实现可靠传输的⽅式之⼀，是通过序列号与确认应答。在TCP中，当发送端的数据到达接收主机的

时候，接收端主机会返回⼀个确认应答消息ACK，表示已收到消息

但是错综复杂的⽹络中，并不能总是进⾏正常的数据传输，当数据在传输过程中丢失了，TCP就会启动

重传机制来解决数据包丢失的问题

常⻅的重传机制有四种：超时重传、快速重传、SACK、D-SACK

在发送数据时，设定⼀个定时器，当超过指定时间后，没有收到对⽅的ACK确认应答报⽂，发送⽅就会

重新发送数据。

TCP会在下⾯两种情况下超时重传

数据包丢失

确认应答丢失

重传机制

超时重传

●

●



3

缺点：超时重传存在的问题是，超时周期可能会⽐较⻓，导致重传时间较⻓

这时候就需要使⽤【快速重传】机制来解决问题

快速重传不以时间为驱动，⽽是以数据驱动重传

从图中可以很明显看到，发送⽅收到3个ACK2的回复，这时候发送⽅就会知道seq2没收到，在超时时

间之前就会重传丢失的报⽂段。

不过快速重传只解决了⼀个问题，就是超时时间的问题，但是它依然⾯临着另⼀个问题，就是重传的时

候，是重传之前的⼀个还是重传所有的问题

选择性确认：需要在TCP头部的【选项】字段⾥加⼀个SACK的东⻄，它可以将缓存的地图(??信息)发

送给发送⽅，这样发送⽅就知道哪些数据收到了，哪些数据没收到，知道了这些信息，就可以只重传丢

失的数据。（SACK Block：记录丢失块后⾯收到的数据）

快速重传

⽐如上⾯是重传2，还是重传2，3，4，5呢，因为发送⽅不知道这个连续的三个ACK2是谁传回来

的，根据TCP的不同实现，这都是有可能的

为了解决不知道该重传哪些报⽂的问题，有了【SACK】⽅法

SACK



4

如图，发送⽅收到了三次同样的ACK报⽂，就会触发快速重传机制，通过SACK信息发现只有【200-

299】这⼀段数据丢失，那么重发时只需要对这个TCP段进⾏重传就⾏

Duplicate-SACK，主要是使⽤SACK来告诉发送⽅哪些数据被重复接收了，举两个例⼦

ACK丢包

接收⽅发给发送⽅的两个 ACK 确认应答都丢失了，所以发送⽅超时后，重传第⼀个数据包（3000 

~3499）

于是接收⽅发现数据是重复收到的，于是回了⼀个 SACK = 3000~3500，告诉发送⽅3000~3500

的数据早已被接收了，因为 ACK 都到了 4000 了，已经意味着 4000 之前的所有数据都已收到，

所以这个SACK 就代表着 D-SACK 。

这样发送⽅就知道了，数据没有丢，是接收⽅的 ACK 确认报⽂丢了。

⽹络延时

数据包（1000~1499） 被⽹络延迟了，导致发送⽅没有收到 ACK=1500 的确认报⽂。

如果要⽀持SACK，需要双⽅都⽀持

D-SACK

●

●

●

●



5

⽽后⾯报⽂到达的三个相同的 ACK 确认报⽂，就触发了快速重传机制，但是在重传后，被延迟的

数据包（1000~1499）⼜到了接收⽅；

所以「接收⽅」回了⼀个 SACK=1000~1500，因为 ACK 已经到了 3000，所以这个 SACK 是 D-

SACK，表示收到了重复的包。

这样发送⽅就知道快速重传触发的原因不是发出去的包丢了，也不是因为回应的 ACK 包丢了，⽽

是因为⽹络延迟了。

窗⼝⼤⼩就是指的是不需要等待确认应答，⽽可以继续发送数据的最⼤值

窗⼝的实现实际上是操作系统开辟的⼀个缓存空间，发送⽅主机在等待确认应答返回之前，必须在缓冲

区中保留已发送数据，如果按期收到确认应答，那么此时数据就可以从缓存区清除

假设窗⼝⼤⼩为 3 个 TCP 段，那么发送⽅就可以「连续发送」 3 个 TCP 段，并且中途若有 ACK 丢

失，可以通过「下⼀个确认应答进⾏确认」。如下图：

●

●

●

可⻅， D-SACK 有这么⼏个好处：

1. 可以让「发送⽅」知道，是发出去的包丢了，还是接收⽅回应的 ACK 包丢了;

2. 可以知道是不是「发送⽅」的数据包被⽹络延迟了;

3. 可以知道⽹络中是不是把「发送⽅」的数据包给复制了;

滑动窗⼝

引⼊窗⼝概念的原因？

当TCP每发送⼀个数据时，都要进⾏⼀次确认应答，当收到⼀个应答后，再发送下⼀个TCP段，这样

数据包的往返时间很⻓，通信的效率也会变得很低，所以引⼊窗⼝概念，类似消息队列或者缓冲区的

概念

累计确认



6

图中的 ACK 600 确认应答报⽂丢失，也没关系，因为可以通过下⼀个确认应答进⾏确认，只要发送⽅

收到了 ACK700 确认应答，就意味着 700 之前的所有数据「接收⽅」都收到了。这个模式就叫累计确

认或者累计应答。

我们先来看看发送⽅的窗⼝，下图就是发送⽅缓存的数据，根据处理的情况分成四个部分，其中深蓝⾊

⽅框是发送窗⼝，紫⾊⽅框是可⽤窗⼝：

如果TCP是每次发送⼀个数据都要进⾏⼀次应答确认，收到了上⼀个数据的ACK，再发送下⼀个数

据，这种效率会⽐较低

这样的传输就有⼀个缺点：数据包的往返时间越⻓，通信的效率就越低。要解决这个问题，我们可以

有累计确认这个⽅法

窗⼝⼤⼩由哪⼀⽅决定？

在TCP头中有⼀个字段叫Window，就是窗⼝⼤⼩

这个字段是接收端告诉发送端⾃⼰还有多少缓冲区可以接收数据，于是发送端就可以根据这个接收端

的处理能⼒来发送数据，⽽不会导致接收端处理不过来

所以这个窗⼝⼤⼩由接收⼤窗⼝⼤⼩来决定。发送⽅数据不能超过接收⽅窗⼝⼤⼩，否则接收⽅就⽆

法正常接收到数据

发送⽅的滑动窗⼝



7

#1 是已发送并收到 ACK确认的数据： 1~31 字节

#2 是已发送但未收到 ACK确认的数据： 32~45 字节

#3 是未发送但总⼤⼩在接收⽅处理范围内（接收⽅还有空间）： 46~51字节

#4 是未发送但总⼤⼩超过接收⽅处理范围（接收⽅没有空间）： 52字节以后

在下图，当发送⽅把数据「全部」都⼀下发送出去后，可⽤窗⼝的⼤⼩就为 0 了，表明可⽤窗⼝耗尽，

在没收到ACK 确认之前是⽆法继续发送数据了。

在下图，当收到之前发送的数据 32~36 字节的 ACK 确认应答后，如果发送窗⼝的⼤⼩没有变化，则滑

动窗⼝往右边移动 5 个字节，因为有 5 个字节的数据被应答确认，接下来 52~56 字节⼜变成了可⽤窗

⼝，那么后续也就可以发送 52~56 这 5 个字节的数据了。

●

●

●

●

程序如何标识发送⽅的四个部分？？

TCP 滑动窗⼝⽅案使⽤三个指针来跟踪在四个传输类别中的每⼀个类别中的字节。其中两个指针是绝

对指针（指特定的序列号），⼀个是相对指针（需要做偏移）。



8

SND.WND ：表示发送窗⼝的⼤⼩（⼤⼩是由接收⽅指定的）；

SND.UNA ：是⼀个绝对指针，它指向的是已发送但未收到确认的第⼀个字节的序列号，也就是 #2 

的第⼀个字节。

SND.NXT ：也是⼀个绝对指针，它指向未发送但可发送范围的第⼀个字节的序列号，也就是 #3 的

第⼀个字节。

指向 #4 的第⼀个字节是个相对指针，它需要 SND.UNA 指针加上 SND.WND ⼤⼩的偏移量，就可

以指向#4 的第⼀个字节了。

那么可⽤窗⼝⼤⼩的计算就可以是：可⽤窗⼝⼤⼩ = SND.WND -（SND.NXT - SND.UNA）

接下来我们看看接收⽅的窗⼝，接收窗⼝相对简单⼀些，根据处理的情况划分成三个部分：

#1 + #2 是已成功接收并确认的数据（等待应⽤进程读取）；

#3 是未收到数据但可以接收的数据；

#4 未收到数据并不可以接收的数据；

其中三个接收部分，使⽤两个指针进⾏划分:

RCV.WND ：表示接收窗⼝的⼤⼩，它会通告给发送⽅。

●

●

●

●

接收⽅的滑动窗⼝

●

●

●

●



9

RCV.NXT ：是⼀个指针，它指向期望从发送⽅发送来的下⼀个数据字节的序列号，也就是 #3 的第

⼀个字节。

指向 #4 的第⼀个字节是个相对指针，它需要 RCV.NXT 指针加上 RCV.WND ⼤⼩的偏移量，就可

以指向#4 的第⼀个字节了。

TCP保证每⼀个报⽂都能抵达对⽅，机制是这样的：报⽂发出后，必须接收到对⽅返回的确认报⽂

ACK，如果很久都没收到，就会超时重传该报⽂，直到收到对⽅的ACK为⽌。所以，TCP报⽂发出去

后，并不会⽴⻢从内存中删除，因为在重传中还需要⽤到它

发送⽅不能⽆脑发数据给接收⽅，需要考虑接收⽅处理能⼒，如果⼀直⽆脑发数据给对⽅，但对⽅处理

不过来，那么就会导致触发重发机制，从⽽导致⽹络流量⽆端浪费

为了解决这个问题，TCP提供⼀种机制可以让发送⽅根据接收⽅的实际接收能⼒控制发送的数据量，也

就是流量控制

●

●

接收窗⼝和发送窗⼝的⼤⼩是相等的吗？

并不是完全相等，是约等于，因为滑动窗⼝⼤⼩并不是⼀成不变的，当接收⽅的应⽤进程读取数据的

速度⾮常快的话，这样接收窗⼝就可以很快空缺出来，那么新的接收窗⼝⼤⼩是通过TCP报⽂头中

Window字段告诉发送⽅，这个传输存在延时，所以不是等于⽽是约等于

流量控制



10

根据上图的流量控制，说明下每个过程：

1. 客户端向服务端发送请求数据报⽂。这⾥要说明下，本次例⼦是把服务端作为发送⽅，所以没有画
出服务端的接收窗⼝。

2. 服务端收到请求报⽂后，发送确认报⽂和 80 字节的数据，于是可⽤窗⼝ Usable 减少为 120 字

节，同时SND.NXT 指针也向右偏移 80 字节后，指向 321， 这意味着下次发送数据的时候，序列

号是 321。

3. 客户端收到 80 字节数据后，于是接收窗⼝往右移动 80 字节， RCV.NXT 也就指向 321， 这意味

着客户端期望的下⼀个报⽂的序列号是 321，接着发送确认报⽂给服务端。

4. 服务端再次发送了 120 字节数据，于是可⽤窗⼝耗尽为 0，服务端⽆法再继续发送数据。

5. 客户端收到 120 字节的数据后，于是接收窗⼝往右移动 120 字节， RCV.NXT 也就指向 441，接着

发送确认报⽂给服务端。



11

6. 服务端收到对 80 字节数据的确认报⽂后， SND.UNA 指针往右偏移后指向 321，于是可⽤窗⼝ 

Usable增⼤到 80。

7. 服务端收到对 120 字节数据的确认报⽂后， SND.UNA 指针往右偏移后指向 441，于是可⽤窗⼝ 

Usable增⼤到 200。

8. 服务端可以继续发送了，于是发送了 160 字节的数据后， SND.NXT 指向 601，于是可⽤窗⼝ 

Usable 减少到 40。

9. 客户端收到 160 字节后，接收窗⼝往右移动了 160 字节， RCV.NXT 也就是指向了 601，接着发送

确认报⽂给服务端。

10. 服务端收到对 160 字节数据的确认报⽂后，发送窗⼝往右移动了 160 字节，于是 SND.UNA 指针

偏移了160 后指向 601，可⽤窗⼝ Usable 也就增⼤⾄了 200。

上⾯例⼦中，假设发送窗⼝和接收窗⼝是不变的，但是实际上，发送窗⼝和接收窗⼝中所存放的字节

数，都是存放在操作系统的内存缓冲区中的，⽽操作系统的缓冲区，会被操作系统调整，当应⽤进程⽆

法及时读取缓冲区的内容时，也会对我们的缓冲区造成影响

操作系统缓冲区与滑动窗⼝的关系

例1：当应⽤程序没有及时读取缓存时，发⽣窗⼝和接收窗⼝的变化

考虑以下场景：

● 客户端作为发送⽅，服务端作为发送⽅，发送窗⼝和接收窗⼝初始⼤⼩为360

● 服务端⾮常地繁忙，当收到客户端数据时，应⽤层不能及时读取数据。



12

【这⾥还有没记录的】

TCP规定不允许减少缓存的同时⼜收缩窗⼝的，⽽是采⽤先收缩窗⼝，过段时间再减少缓存，这样可以

避免丢包情况

如果窗⼝⼤⼩为0时，就会阻⽌发送⽅给接收⽅传递数据，这就是窗⼝关闭。直到窗⼝变成不是0，才会

继续发送

窗⼝关闭(零窗⼝通知)

窗⼝关闭潜在的危险

接收⽅向发送⽅通告窗⼝⼤⼩时，是通过ACK报⽂来通告的



13

这就导致发送⽅⼀直在等待接收⽅的⾮0窗⼝通知，接收⽅也⼀直等待发送⽅的数据，如果不采取措

施，这种相互等待的过程，就会造成死锁的现象。

为了解决这个问题，TCP为每个连接设置⼀个持续定时器，只要TCP连接⼀⽅收到对⽅的零窗⼝通知，

就启动持续计时器

如果持续计时器超时，就会发送窗⼝探测报⽂（window probe）报⽂，⽽对⽅在确认这个探测报⽂

时，给出⾃⼰现在的接收窗⼝⼤⼩。

当发⽣窗⼝关闭时，如果接收⽅已经处理完数据后，回复了⼀个⾮0ACK报⽂，如果这个ACK报⽂丢

失，那么就很麻烦

窗⼝探测

如何解决窗⼝关闭时潜在的死锁现象？？



14

如果接收窗⼝仍然是0，那么收到这报⽂的⼀⽅就会重新启动持续计数器

如果接收窗⼝不是0，死锁就破解了

窗⼝探测次数⼀般为3次，每次⼤约30-60秒。如果三次过后还是收到接收窗⼝为0的话，有的TCP实现

就会发RST报⽂来中断连接

举例说明：

假如接收⽅处理数据的速度跟不上接收数据的速度，缓存就会被占满，从⽽导致接收窗⼝为0，当发送

⽅接收到零窗⼝通知时，就会停⽌发送数据。

例⼦：如下图可以看到，接收⽅的窗⼝⼤⼩在不断收缩到0

接下来，发送⽅就会定时发送窗⼝⼤⼩的探测报⽂，以便及时指导接收⽅窗⼝的⼤⼩的变化。

●

●



15

a. 发送⽅发送了⼀个数据包给接收⽅，接收⽅收到后，由于缓冲区被占满，回复了Win=0（零窗

⼝通知）；

b. 发送⽅收到零窗⼝通知后，就不再发送数据了，过了3.4秒后，发送了⼀个TCP Keep-

Alive（窗⼝⼤⼩探测报⽂）；

c. 接收⽅收到探测报⽂后，⽴⻢回复⼀个窗⼝通知，但此时还是Win=0；

d. 发送⽅知道接收窗⼝还是0之后，继续等待了6.8（翻倍）秒，再次发送Keep-Alive报⽂，接收

⽅还是回复了Win=0；

e. 同样，等待13.5（继续翻倍）秒后，再次发送Keep-Alive报⽂，接收⽅还是回复了Win=0；

如果接收⽅太忙了，来不及取⾛接收窗⼝⾥的数据，那么就会导致发送⽅的发送窗⼝越来越⼩。到最

后，如果接收⽅腾出⼏个字节并告诉发送⽅现在有⼏个字节的窗⼝，⽽发送⽅会义⽆反顾发送这⼏个字

节，这就是糊涂窗⼝综合征。

因为TCP+IP头部有40个字节的开销，如果每次传输的字节太⼩，总的传输代价太⼤，就相当于，⼀个

可以装50⼈的⼤巴⻋，每次上两个⼈就发⻋，不划算

不过⼤巴⻋司机可以设定如果到达了25⼈，就选择发⻋，这就解决了这个问题。

现举个糊涂窗⼝综合症的栗⼦，考虑以下场景：

接收⽅的窗⼝⼤⼩是 360 字节，但接收⽅由于某些原因陷⼊困境，假设接收⽅的应⽤层读取的能⼒如

下：

接收⽅每接收 3 个字节，应⽤程序就只能从缓冲区中读取 1 个字节的数据；

在下⼀个发送⽅的 TCP 段到达之前，应⽤程序还从缓冲区中读取了 40 个额外的字节；

糊涂窗⼝综合征

●

●



16

可以发现，由于应⽤程序没法及时使⽤数据，每个阶段窗⼝都在不断减少，发送的数据也越来越⼩

所以，糊涂窗⼝综合征现象是可以发⽣在发送⽅和接收⽅的

接收⽅可以通告⼀个⼩窗⼝

发送⽅可以发送⼩数据

所以解决⽅法可以是

接收⽅不通告⼩窗⼝

发送⽅不发送⼩数据

接收⽅通常策略是：当窗⼝⼤⼩⼩于min（MSS，缓存空间/2），也就是⼩于MSS与1/2缓存⼤⼩中的

最⼩值时，就会向发送⽅通告窗⼝为0，也就阻⽌了发送⽅再发数据过来，等到接收⽅处理了⼀些数据

●

●

●

●



17

之后，窗⼝⼤⼩>=MSS，或者接收⽅缓存空间有⼀半可以使⽤，就可以把窗⼝打开让发送⽅发送数据过

来。

发送⽅策略是使⽤Nagle算法，思路是延时处理，满⾜下⾯其中之⼀才可继续传输

要等到窗⼝⼤⼩ >= MSS 或是 数据⼤⼩ >= MSS

收到之前发送数据的 ack 回包

没满⾜时，发送⽅就⼀直囤积数据，直到满⾜条件

当TCP报⽂承载的数据⾮常⼩的时候，可能只有⼏字节，由于每个TCP报⽂的头部有20字节，还有20字

节的IP头部，真正有效数据⽐重⾮常低。

两种处理⽅案：

Nagle算法

延迟处理

Nagle如何避免⼤量TCP⼩数据报⽂的传输？？策略：

没有已发送未确认报⽂时，⽴刻发送数据；

存在已发送未确认报⽂时，直到没有已发送未确认报⽂或者数据⻓度达到MSS，再发送数据。

只要没满⾜上⾯条件中的⼀条，发送⽅⼀直在囤积数据，直到满⾜上⾯的发送条件。

简单说明⼀下右侧发送数据的过程：

1. 最开始没有已发送未确认的报⽂，⽴刻发送H字符

2. 然后，在还没有收到对H字符的确认报⽂，发送⽅就⼀直在囤积数据，直到收到了确认报⽂后，这

时候没有了已发送未确认报⽂，于是将囤积的ELL字符⼀起发给了接收⽅

3. 最后，等到收到了ELL字符的ACK，将最后的O字符发送出去

●

●

延迟确认与Nagle算法

●

●

Nagle算法（发送⽅）

●

●



18

⼩结：Nagle算法⼀定会有⼀个⼩报⽂，在最开始进⾏数据发送的时候。由于Nagle算法有囤积数据的过

程，如果需要⼩数据包交互的场景的程序，⽐如，telnet或ssh这样的交互性⽐较强的程序，需要将

Nagle算法关闭（默认是打开的），可以在Socket中设置 TCP_NODELAY选项来关闭这个算法（关闭
Nagle没有全局参数，需要根据每个应⽤⾃⼰的特点来关闭）

其实不仅仅是发送报⽂会有承载数据⽐重低的问题，事实上当没有携带数据的ACK，它的⽹络效率也是

很低的，只有IP头部和TCP头部40字节，但是却没有携带数据报⽂，为了解决ACK传输效率低的问题，

所以就衍⽣出了TCP延迟确认。

策略：

当有响应数据要发送时，ACK会随着响应数据⼀起⽴刻发送给对⽅

当没有响应数据要发送时，ACK会延迟⼀段时间，来等待是否有响应数据可以⼀起发送

如果在延迟等待时，对⽅第⼆个数据报⽂到达了，此时⽴刻发送ACK

TCP延迟确认可以在Socket设置TCP_QUICKACK选项来启闭这个算法

延迟确认（接收⽅）

●

●

●



19

当TCP延迟确认和Nagle算法混合使⽤时，会导致时耗增⻓

当发送⽅使⽤Nagle算法，接收⽅使⽤延迟确认会发⽣如下过程：

1. 开始由于没有已发送未确认的报⽂，发送⽅会⽴刻发送⼀个⼩报⽂；
2. 接收⽅接收到了后，由于接受⽅没有需要发送的数据，所以⼀直等待发送⽅的下⼀个报⽂到达；
3. 此刻的发送⽅由于没有等到前⼀个报⽂的ACK，⽽其他的数据还是⼩数据时，必须等待ACK否则⽆

法发送下⼀个报⽂；

4. 接收⽅在等待了200ms后，回复ACK报⽂，发送⽅收到第⼀个报⽂的确认报⽂后，开始后续的发送

⼩结：由于两个算法混合使⽤，会导致发送⽅和接收⽅增加了额外的时延，会使得⽹络变得很慢，解决

⽅案只有两种⽅法：

1. 发送⽅关闭Nagle算法；

2. 接收⽅关闭TCP延迟确认

在⽹络出现拥堵的时候，如果继续发送⼤量的数据包，可能会导致数据包时延、丢失等，这时TCP就会

重传数据，但是⼀旦重传数据就会导致⽹络中的负担更重，于是导致了更⼤的延迟和更多的丢包，这情

况就会进⼊恶性循环被不断放⼤，所以TCP不能忽略⽹络上发⽣的事情，TCP设计者将其设计成⼀个⽆

私的协议，当⽹络发送拥塞时，TCP会⾃我牺牲，降低发送的数据量。

混合使⽤

拥塞控制

为什么有了流量控制了还需要需要流量控制？

流量控制是避免发送⽅数据填满接收⽅缓存，但是并不知道⽹络中具体发⽣了什么，⼀般来说，计算

机⽹络都处在⼀个共享的环境中，因此也有可能会因为其他主机之间的通信导致⽹络拥堵



20

于是，就有了拥塞控制，控制的⽬的就是为了避免发送⽅的数据填满整个⽹络

为了在发送⽅调节需要发送数据的量，定义了⼀个叫做【拥塞窗⼝】的概念（流量控制是接收⽅控制滑

动窗⼝⼤⼩，发送⽅被动调整，拥塞控制是发送⽅主动控制）

拥塞窗⼝cwnd是发送⽅维护的⼀个状态变量，它会根据⽹络的拥塞程度动态进⾏变化的

前⾯的发送窗⼝swnd和接收窗⼝rwnd是约等于关系，加⼊拥塞窗⼝概念后，发送窗⼝swnd的值为

swnd=min(cwnd,rwnd)，也就是取拥塞窗⼝和接收窗⼝中的最⼩值。

拥塞窗⼝变化规则是：

只要⽹络中没有出现拥塞，cwnd就会增⼤

⽹络中出现了拥塞，cwnd减⼩

当发送⽅没有在规定时间内收到ACK应答报⽂，也就是发⽣了超时重传，就会认为⽹络出现了拥塞

拥塞控制的主要四个算法如下

在TCP连接刚建⽴是，⾸先是慢启动的过程，慢启动的意思就是⼀点⼀点提⾼发送数据包的数量（如果

⼀开始就发⼤量数据，直接就会堵住⽹络）

慢启动规则：当发送⽅每收到⼀个ACK后，拥塞窗⼝cwnd的⼤⼩就会加1

这⾥假设拥塞窗⼝和发送窗⼝相等，举个例⼦

连接建⽴后，⼀开始初始化cwnd=1，表示可以传⼀个MSS（最⼤报⽂段⻓度）⼤⼩的数据

拥塞窗⼝

什么是拥塞窗⼝，和发送窗⼝有什么关系？？

●

●

慢启动

●



21

当收到1个ACK确认应答之后，cwnd增加1，于是⼀次就可以发送两个

当收到2个ACK确认应答之后，cwnd增加2，于是下次可以⽐这次增加两个，也就是四个

当收到4个ACK确认应答之后，每个ACK会让cwnd增加1，4个确认cwnd会增加4，所以下⼀次就可

以发8个

可以看出，慢启动算法，发送⽅发送包的个数会指数增⻓（就记住1个ACK会让cwnd增加1）

这⾥有个慢启动⻔限ssthresh（slow start threshold）状态变量

当cwnd<ssthresh，使⽤慢启动算法

当cwnd≥ssthresh，就需要使⽤下⾯的【拥塞避免算法】

⼀般来说ssthresh的⼤⼩是65535字节。

那么进⼊拥塞避免算法后，它的规则是：每收到⼀个ACK时，cwnd增加1/cwnd

继续接慢启动的例⼦，假设ssthresh为8

当8个ACK应答确认来的时候，每个确认增加1/8，8个ACK确认会让cwnd增加1，于是下⼀次发送

可以发送窗⼝就是8+1=9个MSS，变成了线性增⻓

此时要记得拥塞避免算法中，拥塞窗⼝cwnd还是在增加的，但变成了线性增⻓，⼀直增⻓，⽹络就

会慢慢进⼊拥塞状态，于是就会出现丢包现象，这时候就会触发重传机制，这时候就会进⼊【拥塞

发⽣算法】

●

●

●

那么慢启动涨到什么时候是个头？

●

●

拥塞避免

●

●



22

当⽹络出现拥塞时，也就是会发⽣数据包重传，这⾥重传主要是两种

超时重传

快速重传

对于这两种重传来说，拥塞发送算法是不同的，下⾯分别来说

发⽣超时重传后，就会使⽤拥塞发⽣算法。

这时候，ssthresh和cwnd都会发⽣变化

ssthresh会变成ssthresh/2

cwnd会被重置为1

继续举上⾯的例⼦

接着重新继续慢启动，这⾥慢启动是突然减少数据流的，这⽅式太过激进，反应也很强烈，会造成

⽹络卡顿。

快速重传是在接受⽅发现丢了⼀个包后，发三次前⼀个包的ACK来表示下⼀个想收到包，于是发送⽅会

快速进⾏重传，不必等到超时重传

TCP认为这种情况不严重，因为⼤部分没丢，只是丢了⼀部分，所以ssthresh和cwnd变化如下

拥塞发⽣

●

●

超时重传时的拥塞发⽣算法

●

●

●

快速重传的拥塞发⽣算法



23

cwnd=cwnd/2 （= 6）

ssthresh = cwnd （= 6）

然后进⼊【快速恢复算法】

快速重传和快速重传算法⼀般同时使⽤

快恢复算法是认为，发送⽅还能收到三个重复ACK，说明⽹络也不⾄于那么糟糕，所以没必要和超时重

传时那么夸张，直接将cwnd重置

还是继续上⾯例⼦来讲解快恢复算法

cwnd = ssthresh+3（3的意思是有那三个ACK，会增加3）

重传丢失的数据包

如果再收到重复的ACK，那么cwnd+1

如果收到新数据的ACK，将cwnd设置为第⼀步中ssthresh的值，原因是该ACK确认了新的数

据，说明从重复ACK后的数据都已收到，该恢复过程结束，可以回到恢复之前的状态了，也就

是在此进⼊拥塞避免状态

●

●

快速恢复

●

●

○

○



24

整个拥塞控制的图如下


