
1

B-树与B+树（重要）

B树

B 树的定义

B 树的搜索操作

B 树的插⼊操作

基本步骤

图⽂说明

总结

B树的删除操作

基本步骤

图⽂说明

B+树

B + 树的定义

B + 树的搜索操作

B + 树的插⼊操作

基本步骤

图⽂说明

B + 树的删除操作

基本步骤

图⽂说明

其余总结

B 数也称为 B - 树，他是⼀棵多路平衡查找树。我们描述⼀棵 B 树时需要指定它的阶数，阶数表示了⼀个节点

最多有多少的孩⼦节点，⼀般使⽤字⺟ m 表示阶数。当 m 取 2 时，就是我们常⻅的⼆叉搜索树。

⼀棵 m 阶的 B 数定义如下：

1）每个节点最多有m-1个关键字

2）根节点最少可以只有⼀个关键字

B树

B 树的定义

●

●



2

2）⾮根节点⾄少有Math.ceil(m/2)-1个关键字（）

4）每个节点的关键字都按照从⼩到⼤的顺序排列，每个关键字的左⼦树中的所有关键字都⼩于它，⽽右⼦

树中的所有关键字都⼤于它

5）所有叶⼦节点都位于同⼀层，或者说根节点到每个叶⼦节点的路径⻓度都相同

上图表示是⼀棵 4 阶 B 树（当然实际中 B 树的阶数⼀般远⼤于 4，通常⼤于 100，这样即使存储⼤量的数

据，B 树的⾼度仍然很低），每个节点最多有 3 个关键字，每个⾮根节点最少有Math.ceil(4/2)-1=1 个关键

字。我们将⼀个 key 和其对应的 data 称为⼀个记录。数据库中如果以 B 树作为索引结构，此时 B 树中的key

就表示键，⽽data表示了这个键对应的条⽬在硬盘上的逻辑地址。

以上图为例，⽐如我要查找关键字为 25 对应的数据，步骤如下：

1）⾸先拿到根节点关键字，⽬标关键字与根节点的关键字 key ⽐较，25<36，去往其左孩⼦节点查找

2）获取当前节点的关键字 15 和 28,15<25<28，所有查询 15 和 28 的中间孩⼦节点

3）获取当前节点的关键字 19 和 25，发现 25=25，所以直接返回关键字和 data 数据（如果没有查询到

则返回 null）

插⼊操作是指插⼊⼀条记录，即（key, data）的键值对。如果 B 树中已存在需要插⼊的键值对，则⽤需要插⼊

的新 data 替换旧的 data。若 B 树不存在这个 key，则⼀定是在叶⼦节点中进⾏插⼊操作。

根据 key 找到要插⼊的叶⼦节点位置，插⼊记录

判断当前节点 key 的个数是否⼩于等于m-1，如果是直接结束，否则进⾏第三步

●

●

●

B 树的搜索操作

●

●

●

B 树的插⼊操作

基本步骤

●

●



3

以节点中间的 key 为中⼼分裂成左右两部分，然后将这个中间的 key 插⼊到⽗节点中，这个 key 的左⼦

树指向分裂后的左半部分，这个 key 的右⼦⽀指向分裂后的右半部分，然后将当前节点指向⽗节点，继续

进⾏第 3 步，直到处理完根节点。

以 5 阶 B 树为例（5 阶 B 树节点最多有 4 个关键字，最少有 2 个关键字，其中根节点最少可以只有⼀个关键

字），从初始时刻依次插⼊数据。

1. 在空数中插⼊ 39

2）继续插⼊ 22，97 和 41

此时根节点有 4 个关键字

3）继续插⼊ 53

此时发现该节点有 5 个关键字超过了最⼤允许的关键字个数 4，所以以 key 为 41 为中⼼进⾏分裂，分裂

后当前节点指向根节点，根节点的关键字为 1，满⾜ B 数条件，插⼊操作结束，结果如下所示（注意，如

●

图⽂说明

●

●



4

果阶数是偶数，分裂时就不存在排序恰好在中间的 key，那么我们选择中间位置的前⼀个 key 或中间位置

的后⼀个 key 为中⼼进⾏分裂即可）

4）插⼊ 13，21，40

此时当前节点 5 个关键字，需要分裂，则以 22 为中⼼，22 节点插⼊到其⽗节点中，分裂后当前节点指向根节

点，根节点的关键字为 2，满⾜ B 数条件，插⼊操作结束，结果如下所示

●



5

5）同理依次输⼊ 30，27, 33 ，36，35，34 ，24，29，结果如下所示

6）继续插⼊ 26

此时节点关键字等于 5，以 27 为中⼼分裂，并将 27 插⼊到⽗节点中，分裂后当前节点指向根节点，如下所示

●

●



6

此时 27 的进位导致当前节点也需要分裂，则以 33 为中⼼进⾏分裂，结果如下

7）同理最后再依次插⼊ 17，28，29，31，32，结果如下图所示●



7

⼀般来说，对于确定的 m 和确定类型的记录，节点⼤⼩是固定的，⽆论它实际存储了多少个记录。但是分配固

定节点⼤⼩的⽅法会存在浪费的情况，⽐如 key 为 28 和 29 所在的节点，还有 2 个 key 的位置没有使⽤，但

是已经不可能继续在插⼊任何值了，因为这个节点的前序 key 是 27，后继 key 是 30，所有整数值都⽤完了。

所以如果记录先按 key 的⼤⼩排好序，再插⼊到 B 树中，节点的使⽤率就会很低，最差情况下使⽤率仅为 

50%。

删除操作是指根据 key 删除记录，如果 B 树中的记录中不存对应 key 的记录，则删除失败。

如果当前需要删除的 key 位于⾮叶⼦节点上，则⽤后继 key（这⾥的后继 key 均指后继记录的意思）覆盖

要删除的 key，然后在后继 key 所在的⼦⽀中删除该后继 key。此时后继 key ⼀定位于叶⼦节点上，这个

过程和⼆叉搜索树删除节点的⽅式类似。删除这个记录后执⾏第 2 步

该节点 key 个数⼤于等于Math.ceil(m/2)-1，结束删除操作，否则执⾏第 3 步。

如果兄弟节点 key 个数⼤于Math.ceil(m/2)-1，则⽗节点中的 key 下移到该节点，兄弟节点中的⼀个 key 

上移，删除操作结束。

否则，将⽗节点中的 key 下移与当前节点及它的兄弟节点中的 key 合并，形成⼀个新的节点。原⽗节点中

的 key 的两个孩⼦指针就变成了⼀个孩⼦指针，指向这个新节点。然后当前节点的指针指向⽗节点，重复

上第 2 步。（有些节点它可能即有左兄弟，⼜有右兄弟，那么我们任意选择⼀个兄弟节点进⾏操作即可）

以 5 阶 B 树为例（5 阶 B 树节点最多有 4 个关键字，最少有 2 个关键字，其中根节点最少可以只有⼀个关键

字）。初始时刻以上述插⼊操作的最终状态为例。

1）初始状态

总结

B树的删除操作

基本步骤

●

●

●

●

图⽂说明

●



8

2）删除节点 21

删除后节点中的关键字个数仍然⼤于等 2，所以删除结束。

3）继续删除 27，此时 27 由于是⾮叶⼦节点，则由它的后继节点 28 替换 27，再删除 28，结果如下所

示

●

●



9

此时发现叶⼦节点的个数⼩于 2，⽽它的兄弟节点中有 3 个记录（当前节点还有⼀个右兄弟，选择右兄弟就会

出现合并节点的情况，不论选哪⼀个都⾏，只是最后 B 树的形态会不⼀样⽽已），我们可以从兄弟节点中借取

⼀个 key。所以⽗节点中的 28 下移，兄弟节点中的 26 上移, 删除结束。结果如下图所示

4）删除 32，结果如下图所示

当前节点中只有⼀个 key，⽽兄弟节点中也仅有 2 个 key。所以只能让⽗节点中的 30 下移和这个两个孩

●

●



10

⼦节点中的 key 合并，成为⼀个新的节点，当前节点的指针指向⽗节点。结果如下图所示

当前节点 key 的个数满⾜条件，故删除结束

5）接着删除 key 为 40 的记录，删除后结果如下图所示

同理，当前节点的记录数⼩于 2，兄弟节点中没有多余 key，所以⽗节点中的 key 下移，和兄弟（这⾥我们选

择左兄弟，选择右兄弟也可以）节点合并，合并后的指向当前节点的指针就指向了⽗节点。如下图所示

●



11

同理，对于当前节点⽽⾔只能继续合并了，最后结果如下所示

合并后节点当前节点满⾜条件，删除结束。

B + 树是 B 树的⼀种变形形式。⽹上各种资料上 B + 树的定义各有不同，⼀种定义⽅式是关键字个数和孩⼦节

点个数相同。这⾥我们采取维基百科上所定义的⽅式，即关键字个数⽐孩⼦节点个数⼩ 1，这种⽅式是和 B 树

基本等价的。除了 B 树的性质，B + 树还包括以下要求：

1）B + 树包含 2 种类型的节点：内部节点（也称索引节点）和叶⼦节点。根节点本身即可以是内部节点，

也可以是叶⼦节点。根节点的关键字个数最少可以只有 1 个。

2）B + 树与 B 树最⼤的不同是内部节点不保存数据，只⽤于索引，所有数据（或者说记录）都保存在叶

⼦节点中。

3） m 阶 B + 树表示了内部节点最多有 m-1 个关键字（或者说内部节点最多有 m 个⼦树），阶数 m 同

时限制了叶⼦节点最多存储 m-1 个记录。

B+树

B + 树的定义

●

●

●



12

4）内部节点中的 key 都按照从⼩到⼤的顺序排列，对于内部节点中的⼀个 key，左树中的所有 key 都⼩

于它，右⼦树中的 key 都⼤于等于它。叶⼦节点中的记录也按照 key 的⼤⼩排列。

5）每个叶⼦节点都存有相邻叶⼦节点的指针，叶⼦节点本身依关键字的⼤⼩⾃⼩⽽⼤顺序链接。

上图是⼀棵阶数为 4 的 B + 树

操作流程同 B 树的搜索流程，只不过如果要找的关键字匹配上了索引节点的关键字，需要继续往下找，因为索

引节点不存储数据，所有的数据都存储在叶⼦节点上。

1）若为空树，创建⼀个叶⼦节点，然后将记录插⼊其中，此时这个叶⼦节点也是根节点，插⼊操作结束。

2）针对叶⼦类型节点：根据 key 值找到叶⼦节点，向这个叶⼦节点插⼊记录。插⼊后，若当前节点 key 

的个数⼩于等于 m-1，则插⼊结束。否则将这个叶⼦节点分裂成左右两个叶⼦节点，左叶⼦节点包含前 

m/2 个记录，右节点包含剩下的记录，将第 m/2+1 个记录的 key 进位到⽗节点中（⽗节点⼀定是索引类

型节点），进位到⽗节点的 key 左孩⼦指针向左节点, 右孩⼦指针向右节点。将当前节点的指针指向⽗节

点，然后执⾏第 3 步。

3）针对索引类型节点：若当前节点 key 的个数⼩于等于 m-1，则插⼊结束。否则，将这个索引类型节点

分裂成两个索引节点，左索引节点包含前 (m-1)/2 个 key，右节点包含 m-(m-1)/2 个 key，将第 m/2 个 

key 进位到⽗节点中，进位到⽗节点的 key 左孩⼦指向左节点, 进位到⽗节点的 key 右孩⼦指向右节点。

将当前节点的指针指向⽗节点，然后重复第 3 步。

以 5 阶 B + 树为例（5 阶 B + 树节点最多有 4 个关键字，最少有 2 个关键字，其中根节点最少可以只有⼀个

关键字），从初始时刻依次插⼊数据。

●

●

B + 树的搜索操作

B + 树的插⼊操作

基本步骤

●

●

●

图⽂说明



13

1）在空树插⼊ 5

2）依次插⼊ 8,10,15

3）插⼊ 16

此时节点超过关键字的个数，所以需要进⾏分裂。由于该节点为叶⼦节点，所以可以分裂出来左节点 2 个记

录，右边 3 个记录，中间 key 成为索引节点中的 key（也可以左节点 3 个记录，右节点 2 个记录），分裂后

当前节点指向了⽗节点（根节点）。结果如下图所示

●

●

●



14

当前节点的关键字个数满⾜条件，插⼊结束

4）插⼊ 17

5）插⼊ 18

●

●



15

当前节点超过关键字的个数，进⾏分裂。由于是叶⼦节点，分裂成两个节点，左节点 2 个记录，右节点 3 个记

录，关键字 16 进位到⽗节点（索引类型）中，将当前节点的指针指向⽗节点，如下图所示

当前节点的关键字个数满⾜条件，插⼊结束

6）同理继续插⼊ 6,9,19，细节不再描述●



16

7）继续插⼊ 7

当前节点超过关键字的个数，进⾏分裂。由于是叶⼦节点，分裂成两个节点，左节点 2 个记录，右节点 3 个记

录，关键字 7 进位到⽗节点（索引类型）中，将当前节点的指针指向⽗节点，如下图所示

当前节点超过关键字的个数，进⾏分裂。由于是索引节点，左节点 2 个关键字，右节点 2 个关键字，关键字 

16 进⼊到⽗节点中，将当前节点指向⽗节点，如下图所示

当前节点的关键字个数满⾜条件，插⼊结束

如果叶⼦节点中没有相应的 key，则删除失败。否则执⾏下⾯的步骤：

1）删除叶⼦节点中对应的 key。删除后若节点的 key 的个数⼤于等于 Math.ceil(m-1)/2 – 1，删除操作

结束, 否则执⾏第 2 步。

2）若兄弟节点 key 有富余（⼤于 Math.ceil(m-1)/2 – 1），向兄弟节点借⼀个记录，同时⽤借到的 key 

替换⽗结（指当前节点和兄弟节点共同的⽗节点）点中的 key，删除结束。否则执⾏第 3 步。

●

B + 树的删除操作

基本步骤

●

●



17

3）若兄弟节点中没有富余的 key, 则当前节点和兄弟节点合并成⼀个新的叶⼦节点，并删除⽗节点中的 

key（⽗节点中的这个 key 两边的孩⼦指针就变成了⼀个指针，正好指向这个新的叶⼦节点），将当前节

点指向⽗节点（必为索引节点），执⾏第 4 步（第 4 步以后的操作和 B 树就完全⼀样了，主要是为了更

新索引节点）。

4）若索引节点的 key 的个数⼤于等于 Math.ceil(m-1)/2 – 1，则删除操作结束。否则执⾏第 5 步

5）若兄弟节点有富余，⽗节点 key 下移，兄弟节点 key 上移，删除结束。否则执⾏第 6 步

6）当前节点和兄弟节点及⽗节点下移 key 合并成⼀个新的节点。将当前节点指向⽗节点，重复第 4 步。

注意，通过 B + 树的删除操作后，索引节点中存在的 key，不⼀定在叶⼦节点中存在对应的记录。

以 5 阶 B 树为例（5 阶 B 树节点最多有 4 个关键字，最少有 2 个关键字，其中根节点最少可以只有⼀个关键

字）。初始时刻以上述插⼊操作的最终状态为例。

1）初始状态

2）删除 22

删除后叶⼦节点中 key 的个数⼤于等于 2，删除结束

3）删除 15

●

●

●

●

图⽂说明

●

●

●



18

当前节点只有⼀个 key，不满⾜条件，⽽兄弟节点有三个 key，可以从兄弟节点借⼀个关键字为 9 的记录, 同

时更新将⽗节点中的关键字由 10 也变为 9，删除结束。

4）删除 7

当前节点关键字个数⼩于 2，（左）兄弟节点中的也没有富余的关键字（当前节点还有个右兄弟，不过选

择任意⼀个进⾏分析就可以了，这⾥我们选择了左边的），所以当前节点和兄弟节点合并，并删除⽗节点

中的 key，当前节点指向⽗节点。

●

●



19

此时当前节点的关键字个数⼩于 2，兄弟节点的关键字也没有富余，所以⽗节点中的关键字下移，和两个

孩⼦节点合并，结果如下图所示。

删除结束。

原博⽂地址：http://xianzilei.cn/blog/31

B树（balance tree）和B+树应⽤在数据库索引，可以认为是m叉的多路平衡查找树，但是从理论上

讲，⼆叉搜索树查找速度和⽐较次数都是最⼩的，为什么不⽤⼆叉搜索树呢？ 因为我们要考虑磁盘IO的

影响，它相对于内存来说是很慢的。

数据库索引是存储在磁盘上的，当数据量⼤时，就不能把整个索引全部加载到内存了，只能逐⼀加载每

⼀个磁盘⻚（对应索引树的节点）。所以我们要减少IO次数，对于树来说，IO次数就是树的⾼度，

⽽“矮胖”就是b树的特征之⼀，它的每个节点最多包含m个孩⼦，m称为B树的阶，m的⼤⼩取决于磁盘

⻚的⼤⼩。

其余总结

http://xianzilei.cn/blog/31


20

B+树主要应⽤场景是MySQL的索引（范围查询快，稳定，IO更少），B-树的应⽤场景是MangoDB的

索引（热点数据查询快）

B-树中间节点也存在卫星数据，B+树只有叶⼦存在卫星数据，如果是⾮聚簇索引，叶⼦节点存在的

是指向卫星数据的指针

由于B+树中间节点不存放卫星数据，所以可以存放更多数据，所以B+树更扁平（IO更少）

B-树查找不稳定，可能在中间节点查找到，也可能在叶⼦节点查找到。B+树稳定（更稳定）

范围查找，B+可以通过叶⼦节点的指针直接遍历，⽽B-只能通过中序遍历，将数据取出来，效率不

⾼，且IO更⼤，（适合范围查找）

B树的优点是：如果经常访问的数据离根节点很近，⽽B树的⾮叶⼦节点本身存放数据，所以这种情况下

的数据检索会⽐B+树快。

●

●

●

●


