# Categorical data This is an introduction to pandas categorical data type, including a short comparison with R’s ``factor``. *Categoricals* are a pandas data type corresponding to categorical variables in statistics. A categorical variable takes on a limited, and usually fixed, number of possible values (*categories*; *levels* in R). Examples are gender, social class, blood type, country affiliation, observation time or rating via Likert scales. In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, …) are not possible. All values of categorical data are either in *categories* or *np.nan*. Order is defined by the order of *categories*, not lexical order of the values. Internally, the data structure consists of a *categories* array and an integer array of *codes* which point to the real value in the *categories* array. The categorical data type is useful in the following cases: - A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see [here](#categorical-memory). - The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see [here](#categorical-sort). - As a signal to other Python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types). See also the [API docs on categoricals](https://pandas.pydata.org/pandas-docs/stable/reference/arrays.html#api-arrays-categorical). ## Object creation ### Series creation Categorical ``Series`` or columns in a ``DataFrame`` can be created in several ways: By specifying ``dtype="category"`` when constructing a ``Series``: ``` python In [1]: s = pd.Series(["a", "b", "c", "a"], dtype="category") In [2]: s Out[2]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): [a, b, c] ``` By converting an existing ``Series`` or column to a ``category`` dtype: ``` python In [3]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]}) In [4]: df["B"] = df["A"].astype('category') In [5]: df Out[5]: A B 0 a a 1 b b 2 c c 3 a a ``` By using special functions, such as [``cut()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.cut.html#pandas.cut), which groups data into discrete bins. See the [example on tiling](reshaping.html#reshaping-tile-cut) in the docs. ``` python In [6]: df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) In [7]: labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)] In [8]: df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) In [9]: df.head(10) Out[9]: value group 0 65 60 - 69 1 49 40 - 49 2 56 50 - 59 3 43 40 - 49 4 43 40 - 49 5 91 90 - 99 6 32 30 - 39 7 87 80 - 89 8 36 30 - 39 9 8 0 - 9 ``` By passing a [``pandas.Categorical``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Categorical.html#pandas.Categorical) object to a ``Series`` or assigning it to a ``DataFrame``. ``` python In [10]: raw_cat = pd.Categorical(["a", "b", "c", "a"], categories=["b", "c", "d"], ....: ordered=False) ....: In [11]: s = pd.Series(raw_cat) In [12]: s Out[12]: 0 NaN 1 b 2 c 3 NaN dtype: category Categories (3, object): [b, c, d] In [13]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]}) In [14]: df["B"] = raw_cat In [15]: df Out[15]: A B 0 a NaN 1 b b 2 c c 3 a NaN ``` Categorical data has a specific ``category`` [dtype](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes): ``` python In [16]: df.dtypes Out[16]: A object B category dtype: object ``` ### DataFrame creation Similar to the previous section where a single column was converted to categorical, all columns in a ``DataFrame`` can be batch converted to categorical either during or after construction. This can be done during construction by specifying ``dtype="category"`` in the ``DataFrame`` constructor: ``` python In [17]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}, dtype="category") In [18]: df.dtypes Out[18]: A category B category dtype: object ``` Note that the categories present in each column differ; the conversion is done column by column, so only labels present in a given column are categories: ``` python In [19]: df['A'] Out[19]: 0 a 1 b 2 c 3 a Name: A, dtype: category Categories (3, object): [a, b, c] In [20]: df['B'] Out[20]: 0 b 1 c 2 c 3 d Name: B, dtype: category Categories (3, object): [b, c, d] ``` *New in version 0.23.0.* Analogously, all columns in an existing ``DataFrame`` can be batch converted using [``DataFrame.astype()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html#pandas.DataFrame.astype): ``` python In [21]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}) In [22]: df_cat = df.astype('category') In [23]: df_cat.dtypes Out[23]: A category B category dtype: object ``` This conversion is likewise done column by column: ``` python In [24]: df_cat['A'] Out[24]: 0 a 1 b 2 c 3 a Name: A, dtype: category Categories (3, object): [a, b, c] In [25]: df_cat['B'] Out[25]: 0 b 1 c 2 c 3 d Name: B, dtype: category Categories (3, object): [b, c, d] ``` ### Controlling behavior In the examples above where we passed ``dtype='category'``, we used the default behavior: 1. Categories are inferred from the data. 1. Categories are unordered. To control those behaviors, instead of passing ``'category'``, use an instance of ``CategoricalDtype``. ``` python In [26]: from pandas.api.types import CategoricalDtype In [27]: s = pd.Series(["a", "b", "c", "a"]) In [28]: cat_type = CategoricalDtype(categories=["b", "c", "d"], ....: ordered=True) ....: In [29]: s_cat = s.astype(cat_type) In [30]: s_cat Out[30]: 0 NaN 1 b 2 c 3 NaN dtype: category Categories (3, object): [b < c < d] ``` Similarly, a ``CategoricalDtype`` can be used with a ``DataFrame`` to ensure that categories are consistent among all columns. ``` python In [31]: from pandas.api.types import CategoricalDtype In [32]: df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}) In [33]: cat_type = CategoricalDtype(categories=list('abcd'), ....: ordered=True) ....: In [34]: df_cat = df.astype(cat_type) In [35]: df_cat['A'] Out[35]: 0 a 1 b 2 c 3 a Name: A, dtype: category Categories (4, object): [a < b < c < d] In [36]: df_cat['B'] Out[36]: 0 b 1 c 2 c 3 d Name: B, dtype: category Categories (4, object): [a < b < c < d] ``` ::: tip Note To perform table-wise conversion, where all labels in the entire ``DataFrame`` are used as categories for each column, the ``categories`` parameter can be determined programmatically by ``categories = pd.unique(df.to_numpy().ravel())``. ::: If you already have ``codes`` and ``categories``, you can use the [``from_codes()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Categorical.from_codes.html#pandas.Categorical.from_codes) constructor to save the factorize step during normal constructor mode: ``` python In [37]: splitter = np.random.choice([0, 1], 5, p=[0.5, 0.5]) In [38]: s = pd.Series(pd.Categorical.from_codes(splitter, ....: categories=["train", "test"])) ....: ``` ### Regaining original data To get back to the original ``Series`` or NumPy array, use ``Series.astype(original_dtype)`` or ``np.asarray(categorical)``: ``` python In [39]: s = pd.Series(["a", "b", "c", "a"]) In [40]: s Out[40]: 0 a 1 b 2 c 3 a dtype: object In [41]: s2 = s.astype('category') In [42]: s2 Out[42]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): [a, b, c] In [43]: s2.astype(str) Out[43]: 0 a 1 b 2 c 3 a dtype: object In [44]: np.asarray(s2) Out[44]: array(['a', 'b', 'c', 'a'], dtype=object) ``` ::: tip Note In contrast to R’s *factor* function, categorical data is not converting input values to strings; categories will end up the same data type as the original values. ::: ::: tip Note In contrast to R’s *factor* function, there is currently no way to assign/change labels at creation time. Use *categories* to change the categories after creation time. ::: ## CategoricalDtype *Changed in version 0.21.0.* A categorical’s type is fully described by 1. ``categories``: a sequence of unique values and no missing values 1. ``ordered``: a boolean This information can be stored in a ``CategoricalDtype``. The ``categories`` argument is optional, which implies that the actual categories should be inferred from whatever is present in the data when the [``pandas.Categorical``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Categorical.html#pandas.Categorical) is created. The categories are assumed to be unordered by default. ``` python In [45]: from pandas.api.types import CategoricalDtype In [46]: CategoricalDtype(['a', 'b', 'c']) Out[46]: CategoricalDtype(categories=['a', 'b', 'c'], ordered=None) In [47]: CategoricalDtype(['a', 'b', 'c'], ordered=True) Out[47]: CategoricalDtype(categories=['a', 'b', 'c'], ordered=True) In [48]: CategoricalDtype() Out[48]: CategoricalDtype(categories=None, ordered=None) ``` A ``CategoricalDtype`` can be used in any place pandas expects a *dtype*. For example [``pandas.read_csv()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html#pandas.read_csv), [``pandas.DataFrame.astype()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html#pandas.DataFrame.astype), or in the ``Series`` constructor. ::: tip Note As a convenience, you can use the string ``'category'`` in place of a ``CategoricalDtype`` when you want the default behavior of the categories being unordered, and equal to the set values present in the array. In other words, ``dtype='category'`` is equivalent to ``dtype=CategoricalDtype()``. ::: ### Equality semantics Two instances of ``CategoricalDtype`` compare equal whenever they have the same categories and order. When comparing two unordered categoricals, the order of the ``categories`` is not considered. ``` python In [49]: c1 = CategoricalDtype(['a', 'b', 'c'], ordered=False) # Equal, since order is not considered when ordered=False In [50]: c1 == CategoricalDtype(['b', 'c', 'a'], ordered=False) Out[50]: True # Unequal, since the second CategoricalDtype is ordered In [51]: c1 == CategoricalDtype(['a', 'b', 'c'], ordered=True) Out[51]: False ``` All instances of ``CategoricalDtype`` compare equal to the string ``'category'``. ``` python In [52]: c1 == 'category' Out[52]: True ``` ::: danger Warning Since ``dtype='category'`` is essentially ``CategoricalDtype(None, False)``, and since all instances ``CategoricalDtype`` compare equal to ``'category'``, all instances of ``CategoricalDtype`` compare equal to a ``CategoricalDtype(None, False)``, regardless of ``categories`` or ``ordered``. ::: ## Description Using [``describe()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html#pandas.DataFrame.describe) on categorical data will produce similar output to a ``Series`` or ``DataFrame`` of type ``string``. ``` python In [53]: cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c"]) In [54]: df = pd.DataFrame({"cat": cat, "s": ["a", "c", "c", np.nan]}) In [55]: df.describe() Out[55]: cat s count 3 3 unique 2 2 top c c freq 2 2 In [56]: df["cat"].describe() Out[56]: count 3 unique 2 top c freq 2 Name: cat, dtype: object ``` ## Working with categories Categorical data has a *categories* and a *ordered* property, which list their possible values and whether the ordering matters or not. These properties are exposed as ``s.cat.categories`` and ``s.cat.ordered``. If you don’t manually specify categories and ordering, they are inferred from the passed arguments. ``` python In [57]: s = pd.Series(["a", "b", "c", "a"], dtype="category") In [58]: s.cat.categories Out[58]: Index(['a', 'b', 'c'], dtype='object') In [59]: s.cat.ordered Out[59]: False ``` It’s also possible to pass in the categories in a specific order: ``` python In [60]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], ....: categories=["c", "b", "a"])) ....: In [61]: s.cat.categories Out[61]: Index(['c', 'b', 'a'], dtype='object') In [62]: s.cat.ordered Out[62]: False ``` ::: tip Note New categorical data are **not** automatically ordered. You must explicitly pass ``ordered=True`` to indicate an ordered ``Categorical``. ::: ::: tip Note The result of [``unique()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.unique.html#pandas.Series.unique) is not always the same as ``Series.cat.categories``, because ``Series.unique()`` has a couple of guarantees, namely that it returns categories in the order of appearance, and it only includes values that are actually present. ``` python In [63]: s = pd.Series(list('babc')).astype(CategoricalDtype(list('abcd'))) In [64]: s Out[64]: 0 b 1 a 2 b 3 c dtype: category Categories (4, object): [a, b, c, d] # categories In [65]: s.cat.categories Out[65]: Index(['a', 'b', 'c', 'd'], dtype='object') # uniques In [66]: s.unique() Out[66]: [b, a, c] Categories (3, object): [b, a, c] ``` ::: ### Renaming categories Renaming categories is done by assigning new values to the ``Series.cat.categories`` property or by using the ``rename_categories()`` method: ``` python In [67]: s = pd.Series(["a", "b", "c", "a"], dtype="category") In [68]: s Out[68]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): [a, b, c] In [69]: s.cat.categories = ["Group %s" % g for g in s.cat.categories] In [70]: s Out[70]: 0 Group a 1 Group b 2 Group c 3 Group a dtype: category Categories (3, object): [Group a, Group b, Group c] In [71]: s = s.cat.rename_categories([1, 2, 3]) In [72]: s Out[72]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [1, 2, 3] # You can also pass a dict-like object to map the renaming In [73]: s = s.cat.rename_categories({1: 'x', 2: 'y', 3: 'z'}) In [74]: s Out[74]: 0 x 1 y 2 z 3 x dtype: category Categories (3, object): [x, y, z] ``` ::: tip Note In contrast to R’s *factor*, categorical data can have categories of other types than string. ::: ::: tip Note Be aware that assigning new categories is an inplace operation, while most other operations under ``Series.cat`` per default return a new ``Series`` of dtype *category*. ::: Categories must be unique or a *ValueError* is raised: ``` python In [75]: try: ....: s.cat.categories = [1, 1, 1] ....: except ValueError as e: ....: print("ValueError:", str(e)) ....: ValueError: Categorical categories must be unique ``` Categories must also not be ``NaN`` or a *ValueError* is raised: ``` python In [76]: try: ....: s.cat.categories = [1, 2, np.nan] ....: except ValueError as e: ....: print("ValueError:", str(e)) ....: ValueError: Categorial categories cannot be null ``` ### Appending new categories Appending categories can be done by using the ``add_categories()`` method: ``` python In [77]: s = s.cat.add_categories([4]) In [78]: s.cat.categories Out[78]: Index(['x', 'y', 'z', 4], dtype='object') In [79]: s Out[79]: 0 x 1 y 2 z 3 x dtype: category Categories (4, object): [x, y, z, 4] ``` ### Removing categories Removing categories can be done by using the ``remove_categories()`` method. Values which are removed are replaced by ``np.nan``.: ``` python In [80]: s = s.cat.remove_categories([4]) In [81]: s Out[81]: 0 x 1 y 2 z 3 x dtype: category Categories (3, object): [x, y, z] ``` ### Removing unused categories Removing unused categories can also be done: ``` python In [82]: s = pd.Series(pd.Categorical(["a", "b", "a"], ....: categories=["a", "b", "c", "d"])) ....: In [83]: s Out[83]: 0 a 1 b 2 a dtype: category Categories (4, object): [a, b, c, d] In [84]: s.cat.remove_unused_categories() Out[84]: 0 a 1 b 2 a dtype: category Categories (2, object): [a, b] ``` ### Setting categories If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the categories to a predefined scale, use ``set_categories()``. ``` python In [85]: s = pd.Series(["one", "two", "four", "-"], dtype="category") In [86]: s Out[86]: 0 one 1 two 2 four 3 - dtype: category Categories (4, object): [-, four, one, two] In [87]: s = s.cat.set_categories(["one", "two", "three", "four"]) In [88]: s Out[88]: 0 one 1 two 2 four 3 NaN dtype: category Categories (4, object): [one, two, three, four] ``` ::: tip Note Be aware that ``Categorical.set_categories()`` cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., NumPy S1 dtype and Python strings). This can result in surprising behaviour! ::: ## Sorting and order If categorical data is ordered (``s.cat.ordered == True``), then the order of the categories has a meaning and certain operations are possible. If the categorical is unordered, ``.min()/.max()`` will raise a ``TypeError``. ``` python In [89]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], ordered=False)) In [90]: s.sort_values(inplace=True) In [91]: s = pd.Series(["a", "b", "c", "a"]).astype( ....: CategoricalDtype(ordered=True) ....: ) ....: In [92]: s.sort_values(inplace=True) In [93]: s Out[93]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): [a < b < c] In [94]: s.min(), s.max() Out[94]: ('a', 'c') ``` You can set categorical data to be ordered by using ``as_ordered()`` or unordered by using ``as_unordered()``. These will by default return a *new* object. ``` python In [95]: s.cat.as_ordered() Out[95]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): [a < b < c] In [96]: s.cat.as_unordered() Out[96]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): [a, b, c] ``` Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data: ``` python In [97]: s = pd.Series([1, 2, 3, 1], dtype="category") In [98]: s = s.cat.set_categories([2, 3, 1], ordered=True) In [99]: s Out[99]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [100]: s.sort_values(inplace=True) In [101]: s Out[101]: 1 2 2 3 0 1 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [102]: s.min(), s.max() Out[102]: (2, 1) ``` ### Reordering Reordering the categories is possible via the ``Categorical.reorder_categories()`` and the ``Categorical.set_categories()`` methods. For ``Categorical.reorder_categories()``, all old categories must be included in the new categories and no new categories are allowed. This will necessarily make the sort order the same as the categories order. ``` python In [103]: s = pd.Series([1, 2, 3, 1], dtype="category") In [104]: s = s.cat.reorder_categories([2, 3, 1], ordered=True) In [105]: s Out[105]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [106]: s.sort_values(inplace=True) In [107]: s Out[107]: 1 2 2 3 0 1 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [108]: s.min(), s.max() Out[108]: (2, 1) ``` ::: tip Note Note the difference between assigning new categories and reordering the categories: the first renames categories and therefore the individual values in the ``Series``, but if the first position was sorted last, the renamed value will still be sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values in the ``Series`` are changed. ::: ::: tip Note If the ``Categorical`` is not ordered, [``Series.min()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.min.html#pandas.Series.min) and [``Series.max()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.max.html#pandas.Series.max) will raise ``TypeError``. Numeric operations like ``+``, ``-``, ``*``, ``/`` and operations based on them (e.g. [``Series.median()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.median.html#pandas.Series.median), which would need to compute the mean between two values if the length of an array is even) do not work and raise a ``TypeError``. ::: ### Multi column sorting A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns. The ordering of the categorical is determined by the ``categories`` of that column. ``` python In [109]: dfs = pd.DataFrame({'A': pd.Categorical(list('bbeebbaa'), .....: categories=['e', 'a', 'b'], .....: ordered=True), .....: 'B': [1, 2, 1, 2, 2, 1, 2, 1]}) .....: In [110]: dfs.sort_values(by=['A', 'B']) Out[110]: A B 2 e 1 3 e 2 7 a 1 6 a 2 0 b 1 5 b 1 1 b 2 4 b 2 ``` Reordering the ``categories`` changes a future sort. ``` python In [111]: dfs['A'] = dfs['A'].cat.reorder_categories(['a', 'b', 'e']) In [112]: dfs.sort_values(by=['A', 'B']) Out[112]: A B 7 a 1 6 a 2 0 b 1 5 b 1 1 b 2 4 b 2 2 e 1 3 e 2 ``` ## Comparisons Comparing categorical data with other objects is possible in three cases: - Comparing equality (``==`` and ``!=``) to a list-like object (list, Series, array, …) of the same length as the categorical data. - All comparisons (``==``, ``!=``, ``>``, ``>=``, ``<``, and ``<=``) of categorical data to another categorical Series, when ``ordered==True`` and the *categories* are the same. - All comparisons of a categorical data to a scalar. All other comparisons, especially “non-equality” comparisons of two categoricals with different categories or a categorical with any list-like object, will raise a ``TypeError``. ::: tip Note Any “non-equality” comparisons of categorical data with a ``Series``, ``np.array``, ``list`` or categorical data with different categories or ordering will raise a ``TypeError`` because custom categories ordering could be interpreted in two ways: one with taking into account the ordering and one without. ::: ``` python In [113]: cat = pd.Series([1, 2, 3]).astype( .....: CategoricalDtype([3, 2, 1], ordered=True) .....: ) .....: In [114]: cat_base = pd.Series([2, 2, 2]).astype( .....: CategoricalDtype([3, 2, 1], ordered=True) .....: ) .....: In [115]: cat_base2 = pd.Series([2, 2, 2]).astype( .....: CategoricalDtype(ordered=True) .....: ) .....: In [116]: cat Out[116]: 0 1 1 2 2 3 dtype: category Categories (3, int64): [3 < 2 < 1] In [117]: cat_base Out[117]: 0 2 1 2 2 2 dtype: category Categories (3, int64): [3 < 2 < 1] In [118]: cat_base2 Out[118]: 0 2 1 2 2 2 dtype: category Categories (1, int64): [2] ``` Comparing to a categorical with the same categories and ordering or to a scalar works: ``` python In [119]: cat > cat_base Out[119]: 0 True 1 False 2 False dtype: bool In [120]: cat > 2 Out[120]: 0 True 1 False 2 False dtype: bool ``` Equality comparisons work with any list-like object of same length and scalars: ``` python In [121]: cat == cat_base Out[121]: 0 False 1 True 2 False dtype: bool In [122]: cat == np.array([1, 2, 3]) Out[122]: 0 True 1 True 2 True dtype: bool In [123]: cat == 2 Out[123]: 0 False 1 True 2 False dtype: bool ``` This doesn’t work because the categories are not the same: ``` python In [124]: try: .....: cat > cat_base2 .....: except TypeError as e: .....: print("TypeError:", str(e)) .....: TypeError: Categoricals can only be compared if 'categories' are the same. Categories are different lengths ``` If you want to do a “non-equality” comparison of a categorical series with a list-like object which is not categorical data, you need to be explicit and convert the categorical data back to the original values: ``` python In [125]: base = np.array([1, 2, 3]) In [126]: try: .....: cat > base .....: except TypeError as e: .....: print("TypeError:", str(e)) .....: TypeError: Cannot compare a Categorical for op __gt__ with type . If you want to compare values, use 'np.asarray(cat) other'. In [127]: np.asarray(cat) > base Out[127]: array([False, False, False]) ``` When you compare two unordered categoricals with the same categories, the order is not considered: ``` python In [128]: c1 = pd.Categorical(['a', 'b'], categories=['a', 'b'], ordered=False) In [129]: c2 = pd.Categorical(['a', 'b'], categories=['b', 'a'], ordered=False) In [130]: c1 == c2 Out[130]: array([ True, True]) ``` ## Operations Apart from [``Series.min()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.min.html#pandas.Series.min), [``Series.max()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.max.html#pandas.Series.max) and [``Series.mode()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.mode.html#pandas.Series.mode), the following operations are possible with categorical data: ``Series`` methods like [``Series.value_counts()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.value_counts.html#pandas.Series.value_counts) will use all categories, even if some categories are not present in the data: ``` python In [131]: s = pd.Series(pd.Categorical(["a", "b", "c", "c"], .....: categories=["c", "a", "b", "d"])) .....: In [132]: s.value_counts() Out[132]: c 2 b 1 a 1 d 0 dtype: int64 ``` Groupby will also show “unused” categories: ``` python In [133]: cats = pd.Categorical(["a", "b", "b", "b", "c", "c", "c"], .....: categories=["a", "b", "c", "d"]) .....: In [134]: df = pd.DataFrame({"cats": cats, "values": [1, 2, 2, 2, 3, 4, 5]}) In [135]: df.groupby("cats").mean() Out[135]: values cats a 1.0 b 2.0 c 4.0 d NaN In [136]: cats2 = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"]) In [137]: df2 = pd.DataFrame({"cats": cats2, .....: "B": ["c", "d", "c", "d"], .....: "values": [1, 2, 3, 4]}) .....: In [138]: df2.groupby(["cats", "B"]).mean() Out[138]: values cats B a c 1.0 d 2.0 b c 3.0 d 4.0 c c NaN d NaN ``` Pivot tables: ``` python In [139]: raw_cat = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"]) In [140]: df = pd.DataFrame({"A": raw_cat, .....: "B": ["c", "d", "c", "d"], .....: "values": [1, 2, 3, 4]}) .....: In [141]: pd.pivot_table(df, values='values', index=['A', 'B']) Out[141]: values A B a c 1 d 2 b c 3 d 4 ``` ## Data munging The optimized pandas data access methods ``.loc``, ``.iloc``, ``.at``, and ``.iat``, work as normal. The only difference is the return type (for getting) and that only values already in *categories* can be assigned. ### Getting If the slicing operation returns either a ``DataFrame`` or a column of type ``Series``, the ``category`` dtype is preserved. ``` python In [142]: idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) In [143]: cats = pd.Series(["a", "b", "b", "b", "c", "c", "c"], .....: dtype="category", index=idx) .....: In [144]: values = [1, 2, 2, 2, 3, 4, 5] In [145]: df = pd.DataFrame({"cats": cats, "values": values}, index=idx) In [146]: df.iloc[2:4, :] Out[146]: cats values j b 2 k b 2 In [147]: df.iloc[2:4, :].dtypes Out[147]: cats category values int64 dtype: object In [148]: df.loc["h":"j", "cats"] Out[148]: h a i b j b Name: cats, dtype: category Categories (3, object): [a, b, c] In [149]: df[df["cats"] == "b"] Out[149]: cats values i b 2 j b 2 k b 2 ``` An example where the category type is not preserved is if you take one single row: the resulting ``Series`` is of dtype ``object``: ``` python # get the complete "h" row as a Series In [150]: df.loc["h", :] Out[150]: cats a values 1 Name: h, dtype: object ``` Returning a single item from categorical data will also return the value, not a categorical of length “1”. ``` python In [151]: df.iat[0, 0] Out[151]: 'a' In [152]: df["cats"].cat.categories = ["x", "y", "z"] In [153]: df.at["h", "cats"] # returns a string Out[153]: 'x' ``` ::: tip Note The is in contrast to R’s *factor* function, where ``factor(c(1,2,3))[1]`` returns a single value *factor*. ::: To get a single value ``Series`` of type ``category``, you pass in a list with a single value: ``` python In [154]: df.loc[["h"], "cats"] Out[154]: h x Name: cats, dtype: category Categories (3, object): [x, y, z] ``` ### String and datetime accessors The accessors ``.dt`` and ``.str`` will work if the ``s.cat.categories`` are of an appropriate type: ``` python In [155]: str_s = pd.Series(list('aabb')) In [156]: str_cat = str_s.astype('category') In [157]: str_cat Out[157]: 0 a 1 a 2 b 3 b dtype: category Categories (2, object): [a, b] In [158]: str_cat.str.contains("a") Out[158]: 0 True 1 True 2 False 3 False dtype: bool In [159]: date_s = pd.Series(pd.date_range('1/1/2015', periods=5)) In [160]: date_cat = date_s.astype('category') In [161]: date_cat Out[161]: 0 2015-01-01 1 2015-01-02 2 2015-01-03 3 2015-01-04 4 2015-01-05 dtype: category Categories (5, datetime64[ns]): [2015-01-01, 2015-01-02, 2015-01-03, 2015-01-04, 2015-01-05] In [162]: date_cat.dt.day Out[162]: 0 1 1 2 2 3 3 4 4 5 dtype: int64 ``` ::: tip Note The returned ``Series`` (or ``DataFrame``) is of the same type as if you used the ``.str.`` / ``.dt.`` on a ``Series`` of that type (and not of type ``category``!). ::: That means, that the returned values from methods and properties on the accessors of a ``Series`` and the returned values from methods and properties on the accessors of this ``Series`` transformed to one of type *category* will be equal: ``` python In [163]: ret_s = str_s.str.contains("a") In [164]: ret_cat = str_cat.str.contains("a") In [165]: ret_s.dtype == ret_cat.dtype Out[165]: True In [166]: ret_s == ret_cat Out[166]: 0 True 1 True 2 True 3 True dtype: bool ``` ::: tip Note The work is done on the ``categories`` and then a new ``Series`` is constructed. This has some performance implication if you have a ``Series`` of type string, where lots of elements are repeated (i.e. the number of unique elements in the ``Series`` is a lot smaller than the length of the ``Series``). In this case it can be faster to convert the original ``Series`` to one of type ``category`` and use ``.str.`` or ``.dt.`` on that. ::: ### Setting Setting values in a categorical column (or ``Series``) works as long as the value is included in the *categories*: ``` python In [167]: idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"]) In [168]: cats = pd.Categorical(["a", "a", "a", "a", "a", "a", "a"], .....: categories=["a", "b"]) .....: In [169]: values = [1, 1, 1, 1, 1, 1, 1] In [170]: df = pd.DataFrame({"cats": cats, "values": values}, index=idx) In [171]: df.iloc[2:4, :] = [["b", 2], ["b", 2]] In [172]: df Out[172]: cats values h a 1 i a 1 j b 2 k b 2 l a 1 m a 1 n a 1 In [173]: try: .....: df.iloc[2:4, :] = [["c", 3], ["c", 3]] .....: except ValueError as e: .....: print("ValueError:", str(e)) .....: ValueError: Cannot setitem on a Categorical with a new category, set the categories first ``` Setting values by assigning categorical data will also check that the *categories* match: ``` python In [174]: df.loc["j":"k", "cats"] = pd.Categorical(["a", "a"], categories=["a", "b"]) In [175]: df Out[175]: cats values h a 1 i a 1 j a 2 k a 2 l a 1 m a 1 n a 1 In [176]: try: .....: df.loc["j":"k", "cats"] = pd.Categorical(["b", "b"], .....: categories=["a", "b", "c"]) .....: except ValueError as e: .....: print("ValueError:", str(e)) .....: ValueError: Cannot set a Categorical with another, without identical categories ``` Assigning a ``Categorical`` to parts of a column of other types will use the values: ``` python In [177]: df = pd.DataFrame({"a": [1, 1, 1, 1, 1], "b": ["a", "a", "a", "a", "a"]}) In [178]: df.loc[1:2, "a"] = pd.Categorical(["b", "b"], categories=["a", "b"]) In [179]: df.loc[2:3, "b"] = pd.Categorical(["b", "b"], categories=["a", "b"]) In [180]: df Out[180]: a b 0 1 a 1 b a 2 b b 3 1 b 4 1 a In [181]: df.dtypes Out[181]: a object b object dtype: object ``` ### Merging You can concat two ``DataFrames`` containing categorical data together, but the categories of these categoricals need to be the same: ``` python In [182]: cat = pd.Series(["a", "b"], dtype="category") In [183]: vals = [1, 2] In [184]: df = pd.DataFrame({"cats": cat, "vals": vals}) In [185]: res = pd.concat([df, df]) In [186]: res Out[186]: cats vals 0 a 1 1 b 2 0 a 1 1 b 2 In [187]: res.dtypes Out[187]: cats category vals int64 dtype: object ``` In this case the categories are not the same, and therefore an error is raised: ``` python In [188]: df_different = df.copy() In [189]: df_different["cats"].cat.categories = ["c", "d"] In [190]: try: .....: pd.concat([df, df_different]) .....: except ValueError as e: .....: print("ValueError:", str(e)) .....: ``` The same applies to ``df.append(df_different)``. See also the section on [merge dtypes](merging.html#merging-dtypes) for notes about preserving merge dtypes and performance. ### Unioning *New in version 0.19.0.* If you want to combine categoricals that do not necessarily have the same categories, the [``union_categoricals()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.types.union_categoricals.html#pandas.api.types.union_categoricals) function will combine a list-like of categoricals. The new categories will be the union of the categories being combined. ``` python In [191]: from pandas.api.types import union_categoricals In [192]: a = pd.Categorical(["b", "c"]) In [193]: b = pd.Categorical(["a", "b"]) In [194]: union_categoricals([a, b]) Out[194]: [b, c, a, b] Categories (3, object): [b, c, a] ``` By default, the resulting categories will be ordered as they appear in the data. If you want the categories to be lexsorted, use ``sort_categories=True`` argument. ``` python In [195]: union_categoricals([a, b], sort_categories=True) Out[195]: [b, c, a, b] Categories (3, object): [a, b, c] ``` ``union_categoricals`` also works with the “easy” case of combining two categoricals of the same categories and order information (e.g. what you could also ``append`` for). ``` python In [196]: a = pd.Categorical(["a", "b"], ordered=True) In [197]: b = pd.Categorical(["a", "b", "a"], ordered=True) In [198]: union_categoricals([a, b]) Out[198]: [a, b, a, b, a] Categories (2, object): [a < b] ``` The below raises ``TypeError`` because the categories are ordered and not identical. ``` python In [1]: a = pd.Categorical(["a", "b"], ordered=True) In [2]: b = pd.Categorical(["a", "b", "c"], ordered=True) In [3]: union_categoricals([a, b]) Out[3]: TypeError: to union ordered Categoricals, all categories must be the same ``` *New in version 0.20.0.* Ordered categoricals with different categories or orderings can be combined by using the ``ignore_ordered=True`` argument. ``` python In [199]: a = pd.Categorical(["a", "b", "c"], ordered=True) In [200]: b = pd.Categorical(["c", "b", "a"], ordered=True) In [201]: union_categoricals([a, b], ignore_order=True) Out[201]: [a, b, c, c, b, a] Categories (3, object): [a, b, c] ``` [``union_categoricals()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.types.union_categoricals.html#pandas.api.types.union_categoricals) also works with a ``CategoricalIndex``, or ``Series`` containing categorical data, but note that the resulting array will always be a plain ``Categorical``: ``` python In [202]: a = pd.Series(["b", "c"], dtype='category') In [203]: b = pd.Series(["a", "b"], dtype='category') In [204]: union_categoricals([a, b]) Out[204]: [b, c, a, b] Categories (3, object): [b, c, a] ``` ::: tip Note ``union_categoricals`` may recode the integer codes for categories when combining categoricals. This is likely what you want, but if you are relying on the exact numbering of the categories, be aware. ``` python In [205]: c1 = pd.Categorical(["b", "c"]) In [206]: c2 = pd.Categorical(["a", "b"]) In [207]: c1 Out[207]: [b, c] Categories (2, object): [b, c] # "b" is coded to 0 In [208]: c1.codes Out[208]: array([0, 1], dtype=int8) In [209]: c2 Out[209]: [a, b] Categories (2, object): [a, b] # "b" is coded to 1 In [210]: c2.codes Out[210]: array([0, 1], dtype=int8) In [211]: c = union_categoricals([c1, c2]) In [212]: c Out[212]: [b, c, a, b] Categories (3, object): [b, c, a] # "b" is coded to 0 throughout, same as c1, different from c2 In [213]: c.codes Out[213]: array([0, 1, 2, 0], dtype=int8) ``` ::: ### Concatenation This section describes concatenations specific to ``category`` dtype. See [Concatenating objects](merging.html#merging-concat) for general description. By default, ``Series`` or ``DataFrame`` concatenation which contains the same categories results in ``category`` dtype, otherwise results in ``object`` dtype. Use ``.astype`` or ``union_categoricals`` to get ``category`` result. ``` python # same categories In [214]: s1 = pd.Series(['a', 'b'], dtype='category') In [215]: s2 = pd.Series(['a', 'b', 'a'], dtype='category') In [216]: pd.concat([s1, s2]) Out[216]: 0 a 1 b 0 a 1 b 2 a dtype: category Categories (2, object): [a, b] # different categories In [217]: s3 = pd.Series(['b', 'c'], dtype='category') In [218]: pd.concat([s1, s3]) Out[218]: 0 a 1 b 0 b 1 c dtype: object In [219]: pd.concat([s1, s3]).astype('category') Out[219]: 0 a 1 b 0 b 1 c dtype: category Categories (3, object): [a, b, c] In [220]: union_categoricals([s1.array, s3.array]) Out[220]: [a, b, b, c] Categories (3, object): [a, b, c] ``` Following table summarizes the results of ``Categoricals`` related concatenations. arg1 | arg2 | result ---|---|--- category | category (identical categories) | category category | category (different categories, both not ordered) | object (dtype is inferred) category | category (different categories, either one is ordered) | object (dtype is inferred) category | not category | object (dtype is inferred) ## Getting data in/out You can write data that contains ``category`` dtypes to a ``HDFStore``. See [here](io.html#io-hdf5-categorical) for an example and caveats. It is also possible to write data to and reading data from *Stata* format files. See [here](io.html#io-stata-categorical) for an example and caveats. Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and ordering). So if you read back the CSV file you have to convert the relevant columns back to *category* and assign the right categories and categories ordering. ``` python In [221]: import io In [222]: s = pd.Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'd'])) # rename the categories In [223]: s.cat.categories = ["very good", "good", "bad"] # reorder the categories and add missing categories In [224]: s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [225]: df = pd.DataFrame({"cats": s, "vals": [1, 2, 3, 4, 5, 6]}) In [226]: csv = io.StringIO() In [227]: df.to_csv(csv) In [228]: df2 = pd.read_csv(io.StringIO(csv.getvalue())) In [229]: df2.dtypes Out[229]: Unnamed: 0 int64 cats object vals int64 dtype: object In [230]: df2["cats"] Out[230]: 0 very good 1 good 2 good 3 very good 4 very good 5 bad Name: cats, dtype: object # Redo the category In [231]: df2["cats"] = df2["cats"].astype("category") In [232]: df2["cats"].cat.set_categories(["very bad", "bad", "medium", .....: "good", "very good"], .....: inplace=True) .....: In [233]: df2.dtypes Out[233]: Unnamed: 0 int64 cats category vals int64 dtype: object In [234]: df2["cats"] Out[234]: 0 very good 1 good 2 good 3 very good 4 very good 5 bad Name: cats, dtype: category Categories (5, object): [very bad, bad, medium, good, very good] ``` The same holds for writing to a SQL database with ``to_sql``. ## Missing data pandas primarily uses the value *np.nan* to represent missing data. It is by default not included in computations. See the [Missing Data section](missing_data.html#missing-data). Missing values should **not** be included in the Categorical’s ``categories``, only in the ``values``. Instead, it is understood that NaN is different, and is always a possibility. When working with the Categorical’s ``codes``, missing values will always have a code of ``-1``. ``` python In [235]: s = pd.Series(["a", "b", np.nan, "a"], dtype="category") # only two categories In [236]: s Out[236]: 0 a 1 b 2 NaN 3 a dtype: category Categories (2, object): [a, b] In [237]: s.cat.codes Out[237]: 0 0 1 1 2 -1 3 0 dtype: int8 ``` Methods for working with missing data, e.g. [``isna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.isna.html#pandas.Series.isna), [``fillna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.fillna.html#pandas.Series.fillna), [``dropna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dropna.html#pandas.Series.dropna), all work normally: ``` python In [238]: s = pd.Series(["a", "b", np.nan], dtype="category") In [239]: s Out[239]: 0 a 1 b 2 NaN dtype: category Categories (2, object): [a, b] In [240]: pd.isna(s) Out[240]: 0 False 1 False 2 True dtype: bool In [241]: s.fillna("a") Out[241]: 0 a 1 b 2 a dtype: category Categories (2, object): [a, b] ``` ## Differences to R’s factor The following differences to R’s factor functions can be observed: - R’s *levels* are named *categories*. - R’s *levels* are always of type string, while *categories* in pandas can be of any dtype. - It’s not possible to specify labels at creation time. Use ``s.cat.rename_categories(new_labels)`` afterwards. - In contrast to R’s *factor* function, using categorical data as the sole input to create a new categorical series will *not* remove unused categories but create a new categorical series which is equal to the passed in one! - R allows for missing values to be included in its *levels* (pandas’ *categories*). Pandas does not allow *NaN* categories, but missing values can still be in the *values*. ## Gotchas ### Memory usage The memory usage of a ``Categorical`` is proportional to the number of categories plus the length of the data. In contrast, an ``object`` dtype is a constant times the length of the data. ``` python In [242]: s = pd.Series(['foo', 'bar'] * 1000) # object dtype In [243]: s.nbytes Out[243]: 16000 # category dtype In [244]: s.astype('category').nbytes Out[244]: 2016 ``` ::: tip Note If the number of categories approaches the length of the data, the ``Categorical`` will use nearly the same or more memory than an equivalent ``object`` dtype representation. ``` python In [245]: s = pd.Series(['foo%04d' % i for i in range(2000)]) # object dtype In [246]: s.nbytes Out[246]: 16000 # category dtype In [247]: s.astype('category').nbytes Out[247]: 20000 ``` ::: ### Categorical is not a numpy array Currently, categorical data and the underlying ``Categorical`` is implemented as a Python object and not as a low-level NumPy array dtype. This leads to some problems. NumPy itself doesn’t know about the new *dtype*: ``` python In [248]: try: .....: np.dtype("category") .....: except TypeError as e: .....: print("TypeError:", str(e)) .....: TypeError: data type "category" not understood In [249]: dtype = pd.Categorical(["a"]).dtype In [250]: try: .....: np.dtype(dtype) .....: except TypeError as e: .....: print("TypeError:", str(e)) .....: TypeError: data type not understood ``` Dtype comparisons work: ``` python In [251]: dtype == np.str_ Out[251]: False In [252]: np.str_ == dtype Out[252]: False ``` To check if a Series contains Categorical data, use ``hasattr(s, 'cat')``: ``` python In [253]: hasattr(pd.Series(['a'], dtype='category'), 'cat') Out[253]: True In [254]: hasattr(pd.Series(['a']), 'cat') Out[254]: False ``` Using NumPy functions on a ``Series`` of type ``category`` should not work as *Categoricals* are not numeric data (even in the case that ``.categories`` is numeric). ``` python In [255]: s = pd.Series(pd.Categorical([1, 2, 3, 4])) In [256]: try: .....: np.sum(s) .....: except TypeError as e: .....: print("TypeError:", str(e)) .....: TypeError: Categorical cannot perform the operation sum ``` ::: tip Note If such a function works, please file a bug at [https://github.com/pandas-dev/pandas](https://github.com/pandas-dev/pandas)! ::: ### dtype in apply Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get a *Series* of ``object`` *dtype* (same as getting a row -> getting one element will return a basic type) and applying along columns will also convert to object. ``NaN`` values are unaffected. You can use ``fillna`` to handle missing values before applying a function. ``` python In [257]: df = pd.DataFrame({"a": [1, 2, 3, 4], .....: "b": ["a", "b", "c", "d"], .....: "cats": pd.Categorical([1, 2, 3, 2])}) .....: In [258]: df.apply(lambda row: type(row["cats"]), axis=1) Out[258]: 0 1 2 3 dtype: object In [259]: df.apply(lambda col: col.dtype, axis=0) Out[259]: a int64 b object cats category dtype: object ``` ### Categorical index ``CategoricalIndex`` is a type of index that is useful for supporting indexing with duplicates. This is a container around a ``Categorical`` and allows efficient indexing and storage of an index with a large number of duplicated elements. See the [advanced indexing docs](advanced.html#indexing-categoricalindex) for a more detailed explanation. Setting the index will create a ``CategoricalIndex``: ``` python In [260]: cats = pd.Categorical([1, 2, 3, 4], categories=[4, 2, 3, 1]) In [261]: strings = ["a", "b", "c", "d"] In [262]: values = [4, 2, 3, 1] In [263]: df = pd.DataFrame({"strings": strings, "values": values}, index=cats) In [264]: df.index Out[264]: CategoricalIndex([1, 2, 3, 4], categories=[4, 2, 3, 1], ordered=False, dtype='category') # This now sorts by the categories order In [265]: df.sort_index() Out[265]: strings values 4 d 1 2 b 2 3 c 3 1 a 4 ``` ### Side effects Constructing a ``Series`` from a ``Categorical`` will not copy the input ``Categorical``. This means that changes to the ``Series`` will in most cases change the original ``Categorical``: ``` python In [266]: cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) In [267]: s = pd.Series(cat, name="cat") In [268]: cat Out[268]: [1, 2, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10] In [269]: s.iloc[0:2] = 10 In [270]: cat Out[270]: [10, 10, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10] In [271]: df = pd.DataFrame(s) In [272]: df["cat"].cat.categories = [1, 2, 3, 4, 5] In [273]: cat Out[273]: [5, 5, 3, 5] Categories (5, int64): [1, 2, 3, 4, 5] ``` Use ``copy=True`` to prevent such a behaviour or simply don’t reuse ``Categoricals``: ``` python In [274]: cat = pd.Categorical([1, 2, 3, 10], categories=[1, 2, 3, 4, 10]) In [275]: s = pd.Series(cat, name="cat", copy=True) In [276]: cat Out[276]: [1, 2, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10] In [277]: s.iloc[0:2] = 10 In [278]: cat Out[278]: [1, 2, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10] ``` ::: tip Note This also happens in some cases when you supply a NumPy array instead of a ``Categorical``: using an int array (e.g. ``np.array([1,2,3,4])``) will exhibit the same behavior, while using a string array (e.g. ``np.array(["a","b","c","a"])``) will not. :::