# Frequently Asked Questions (FAQ) ## DataFrame memory usage The memory usage of a ``DataFrame`` (including the index) is shown when calling the [``info()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html#pandas.DataFrame.info). A configuration option, ``display.memory_usage`` (see [the list of options](options.html#options-available)), specifies if the ``DataFrame``’s memory usage will be displayed when invoking the ``df.info()`` method. For example, the memory usage of the ``DataFrame`` below is shown when calling [``info()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html#pandas.DataFrame.info): ``` python In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]', ...: 'complex128', 'object', 'bool'] ...: In [2]: n = 5000 In [3]: data = {t: np.random.randint(100, size=n).astype(t) for t in dtypes} In [4]: df = pd.DataFrame(data) In [5]: df['categorical'] = df['object'].astype('category') In [6]: df.info() RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): int64 5000 non-null int64 float64 5000 non-null float64 datetime64[ns] 5000 non-null datetime64[ns] timedelta64[ns] 5000 non-null timedelta64[ns] complex128 5000 non-null complex128 object 5000 non-null object bool 5000 non-null bool categorical 5000 non-null category dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1) memory usage: 289.1+ KB ``` The ``+`` symbol indicates that the true memory usage could be higher, because pandas does not count the memory used by values in columns with ``dtype=object``. Passing ``memory_usage='deep'`` will enable a more accurate memory usage report, accounting for the full usage of the contained objects. This is optional as it can be expensive to do this deeper introspection. ``` python In [7]: df.info(memory_usage='deep') RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): int64 5000 non-null int64 float64 5000 non-null float64 datetime64[ns] 5000 non-null datetime64[ns] timedelta64[ns] 5000 non-null timedelta64[ns] complex128 5000 non-null complex128 object 5000 non-null object bool 5000 non-null bool categorical 5000 non-null category dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1) memory usage: 425.6 KB ``` By default the display option is set to ``True`` but can be explicitly overridden by passing the ``memory_usage`` argument when invoking ``df.info()``. The memory usage of each column can be found by calling the [``memory_usage()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.memory_usage.html#pandas.DataFrame.memory_usage) method. This returns a ``Series`` with an index represented by column names and memory usage of each column shown in bytes. For the ``DataFrame`` above, the memory usage of each column and the total memory usage can be found with the ``memory_usage`` method: ``` python In [8]: df.memory_usage() Out[8]: Index 128 int64 40000 float64 40000 datetime64[ns] 40000 timedelta64[ns] 40000 complex128 80000 object 40000 bool 5000 categorical 10920 dtype: int64 # total memory usage of dataframe In [9]: df.memory_usage().sum() Out[9]: 296048 ``` By default the memory usage of the ``DataFrame``’s index is shown in the returned ``Series``, the memory usage of the index can be suppressed by passing the ``index=False`` argument: ``` python In [10]: df.memory_usage(index=False) Out[10]: int64 40000 float64 40000 datetime64[ns] 40000 timedelta64[ns] 40000 complex128 80000 object 40000 bool 5000 categorical 10920 dtype: int64 ``` The memory usage displayed by the [``info()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.info.html#pandas.DataFrame.info) method utilizes the [``memory_usage()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.memory_usage.html#pandas.DataFrame.memory_usage) method to determine the memory usage of a ``DataFrame`` while also formatting the output in human-readable units (base-2 representation; i.e. 1KB = 1024 bytes). See also [Categorical Memory Usage](categorical.html#categorical-memory). ## Using if/truth statements with pandas pandas follows the NumPy convention of raising an error when you try to convert something to a ``bool``. This happens in an ``if``-statement or when using the boolean operations: ``and``, ``or``, and ``not``. It is not clear what the result of the following code should be: ``` python >>> if pd.Series([False, True, False]): ... pass ``` Should it be ``True`` because it’s not zero-length, or ``False`` because there are ``False`` values? It is unclear, so instead, pandas raises a ``ValueError``: ``` python >>> if pd.Series([False, True, False]): ... print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all(). ``` You need to explicitly choose what you want to do with the ``DataFrame``, e.g. use [``any()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.any.html#pandas.DataFrame.any), [``all()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.all.html#pandas.DataFrame.all) or [``empty()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.empty.html#pandas.DataFrame.empty). Alternatively, you might want to compare if the pandas object is ``None``: ``` python >>> if pd.Series([False, True, False]) is not None: ... print("I was not None") I was not None ``` Below is how to check if any of the values are ``True``: ``` python >>> if pd.Series([False, True, False]).any(): ... print("I am any") I am any ``` To evaluate single-element pandas objects in a boolean context, use the method [``bool()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.bool.html#pandas.DataFrame.bool): ``` python In [11]: pd.Series([True]).bool() Out[11]: True In [12]: pd.Series([False]).bool() Out[12]: False In [13]: pd.DataFrame([[True]]).bool() Out[13]: True In [14]: pd.DataFrame([[False]]).bool() Out[14]: False ``` ### Bitwise boolean Bitwise boolean operators like ``==`` and ``!=`` return a boolean ``Series``, which is almost always what you want anyways. ``` python >>> s = pd.Series(range(5)) >>> s == 4 0 False 1 False 2 False 3 False 4 True dtype: bool ``` See [boolean comparisons](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-compare) for more examples. ### Using the ``in`` operator Using the Python ``in`` operator on a ``Series`` tests for membership in the index, not membership among the values. ``` python In [15]: s = pd.Series(range(5), index=list('abcde')) In [16]: 2 in s Out[16]: False In [17]: 'b' in s Out[17]: True ``` If this behavior is surprising, keep in mind that using ``in`` on a Python dictionary tests keys, not values, and ``Series`` are dict-like. To test for membership in the values, use the method [``isin()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.isin.html#pandas.Series.isin): ``` python In [18]: s.isin([2]) Out[18]: a False b False c True d False e False dtype: bool In [19]: s.isin([2]).any() Out[19]: True ``` For ``DataFrames``, likewise, ``in`` applies to the column axis, testing for membership in the list of column names. ## ``NaN``, Integer ``NA`` values and ``NA`` type promotions ### Choice of ``NA`` representation For lack of ``NA`` (missing) support from the ground up in NumPy and Python in general, we were given the difficult choice between either: - A *masked array* solution: an array of data and an array of boolean values indicating whether a value is there or is missing. - Using a special sentinel value, bit pattern, or set of sentinel values to denote ``NA`` across the dtypes. For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best decision given the state of affairs in NumPy and Python in general. The special value ``NaN`` (Not-A-Number) is used everywhere as the ``NA`` value, and there are API functions ``isna`` and ``notna`` which can be used across the dtypes to detect NA values. However, it comes with it a couple of trade-offs which I most certainly have not ignored. ### Support for integer ``NA`` In the absence of high performance ``NA`` support being built into NumPy from the ground up, the primary casualty is the ability to represent NAs in integer arrays. For example: ``` python In [20]: s = pd.Series([1, 2, 3, 4, 5], index=list('abcde')) In [21]: s Out[21]: a 1 b 2 c 3 d 4 e 5 dtype: int64 In [22]: s.dtype Out[22]: dtype('int64') In [23]: s2 = s.reindex(['a', 'b', 'c', 'f', 'u']) In [24]: s2 Out[24]: a 1.0 b 2.0 c 3.0 f NaN u NaN dtype: float64 In [25]: s2.dtype Out[25]: dtype('float64') ``` This trade-off is made largely for memory and performance reasons, and also so that the resulting ``Series`` continues to be “numeric”. If you need to represent integers with possibly missing values, use one of the nullable-integer extension dtypes provided by pandas - [``Int8Dtype``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Int8Dtype.html#pandas.Int8Dtype) - [``Int16Dtype``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Int16Dtype.html#pandas.Int16Dtype) - [``Int32Dtype``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Int32Dtype.html#pandas.Int32Dtype) - [``Int64Dtype``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Int64Dtype.html#pandas.Int64Dtype) ``` python In [26]: s_int = pd.Series([1, 2, 3, 4, 5], index=list('abcde'), ....: dtype=pd.Int64Dtype()) ....: In [27]: s_int Out[27]: a 1 b 2 c 3 d 4 e 5 dtype: Int64 In [28]: s_int.dtype Out[28]: Int64Dtype() In [29]: s2_int = s_int.reindex(['a', 'b', 'c', 'f', 'u']) In [30]: s2_int Out[30]: a 1 b 2 c 3 f NaN u NaN dtype: Int64 In [31]: s2_int.dtype Out[31]: Int64Dtype() ``` See [Nullable integer data type](integer_na.html#integer-na) for more. ### ``NA`` type promotions When introducing NAs into an existing ``Series`` or ``DataFrame`` via [``reindex()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.reindex.html#pandas.Series.reindex) or some other means, boolean and integer types will be promoted to a different dtype in order to store the NAs. The promotions are summarized in this table: Typeclass | Promotion dtype for storing NAs ---|--- floating | no change object | no change integer | cast to float64 boolean | cast to object While this may seem like a heavy trade-off, I have found very few cases where this is an issue in practice i.e. storing values greater than 2**53. Some explanation for the motivation is in the next section. ### Why not make NumPy like R? Many people have suggested that NumPy should simply emulate the ``NA`` support present in the more domain-specific statistical programming language [R](https://r-project.org). Part of the reason is the NumPy type hierarchy: Typeclass | Dtypes ---|--- numpy.floating | float16, float32, float64, float128 numpy.integer | int8, int16, int32, int64 numpy.unsignedinteger | uint8, uint16, uint32, uint64 numpy.object_ | object_ numpy.bool_ | bool_ numpy.character | string_, unicode_ The R language, by contrast, only has a handful of built-in data types: ``integer``, ``numeric`` (floating-point), ``character``, and ``boolean``. ``NA`` types are implemented by reserving special bit patterns for each type to be used as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking. An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean *mask* denoting whether each value should be considered ``NA`` or not. I am personally not in love with this approach as I feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly high performance cost when working with numerical data compared with the simple approach of using ``NaN``. Thus, I have chosen the Pythonic “practicality beats purity” approach and traded integer ``NA`` capability for a much simpler approach of using a special value in float and object arrays to denote ``NA``, and promoting integer arrays to floating when NAs must be introduced. ## Differences with NumPy For ``Series`` and ``DataFrame`` objects, [``var()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.var.html#pandas.DataFrame.var) normalizes by ``N-1`` to produce unbiased estimates of the sample variance, while NumPy’s ``var`` normalizes by N, which measures the variance of the sample. Note that [``cov()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.cov.html#pandas.DataFrame.cov) normalizes by ``N-1`` in both pandas and NumPy. ## Thread-safety As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to the [``copy()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.copy.html#pandas.DataFrame.copy) method. If you are doing a lot of copying of ``DataFrame`` objects shared among threads, we recommend holding locks inside the threads where the data copying occurs. See [this link](https://stackoverflow.com/questions/13592618/python-pandas-dataframe-thread-safe) for more information. ## Byte-Ordering issues Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. A common symptom of this issue is an error like:: ``` python Traceback ... ValueError: Big-endian buffer not supported on little-endian compiler ``` To deal with this issue you should convert the underlying NumPy array to the native system byte order *before* passing it to ``Series`` or ``DataFrame`` constructors using something similar to the following: ``` python In [32]: x = np.array(list(range(10)), '>i4') # big endian In [33]: newx = x.byteswap().newbyteorder() # force native byteorder In [34]: s = pd.Series(newx) ``` See [the NumPy documentation on byte order](https://docs.scipy.org/doc/numpy/user/basics.byteswapping.html) for more details.