# Group By: split-apply-combine By “group by” we are referring to a process involving one or more of the following steps: - **Splitting** the data into groups based on some criteria. - **Applying** a function to each group independently. - **Combining** the results into a data structure. Out of these, the split step is the most straightforward. In fact, in many situations we may wish to split the data set into groups and do something with those groups. In the apply step, we might wish to do one of the following: - **Aggregation**: compute a summary statistic (or statistics) for each group. Some examples: - Compute group sums or means. - Compute group sizes / counts. - **Transformation**: perform some group-specific computations and return a like-indexed object. Some examples: - Standardize data (zscore) within a group. - Filling NAs within groups with a value derived from each group. - **Filtration**: discard some groups, according to a group-wise computation that evaluates True or False. Some examples: - Discard data that belongs to groups with only a few members. - Filter out data based on the group sum or mean. - Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly combined result if it doesn’t fit into either of the above two categories. Since the set of object instance methods on pandas data structures are generally rich and expressive, we often simply want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who have used a SQL-based tool (or ``itertools``), in which you can write code like: ``` sql SELECT Column1, Column2, mean(Column3), sum(Column4) FROM SomeTable GROUP BY Column1, Column2 ``` We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy functionality then provide some non-trivial examples / use cases. See the [cookbook](cookbook.html#cookbook-grouping) for some advanced strategies. ## Splitting an object into groups pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. To create a GroupBy object (more on what the GroupBy object is later), you may do the following: ``` python In [1]: df = pd.DataFrame([('bird', 'Falconiformes', 389.0), ...: ('bird', 'Psittaciformes', 24.0), ...: ('mammal', 'Carnivora', 80.2), ...: ('mammal', 'Primates', np.nan), ...: ('mammal', 'Carnivora', 58)], ...: index=['falcon', 'parrot', 'lion', 'monkey', 'leopard'], ...: columns=('class', 'order', 'max_speed')) ...: In [2]: df Out[2]: class order max_speed falcon bird Falconiformes 389.0 parrot bird Psittaciformes 24.0 lion mammal Carnivora 80.2 monkey mammal Primates NaN leopard mammal Carnivora 58.0 # default is axis=0 In [3]: grouped = df.groupby('class') In [4]: grouped = df.groupby('order', axis='columns') In [5]: grouped = df.groupby(['class', 'order']) ``` The mapping can be specified many different ways: - A Python function, to be called on each of the axis labels. - A list or NumPy array of the same length as the selected axis. - A dict or ``Series``, providing a ``label -> group name`` mapping. - For ``DataFrame`` objects, a string indicating a column to be used to group. Of course ``df.groupby('A')`` is just syntactic sugar for ``df.groupby(df['A'])``, but it makes life simpler. - For ``DataFrame`` objects, a string indicating an index level to be used to group. - A list of any of the above things. Collectively we refer to the grouping objects as the **keys**. For example, consider the following ``DataFrame``: ::: tip Note A string passed to ``groupby`` may refer to either a column or an index level. If a string matches both a column name and an index level name, a ``ValueError`` will be raised. ::: ``` python In [6]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', ...: 'foo', 'bar', 'foo', 'foo'], ...: 'B': ['one', 'one', 'two', 'three', ...: 'two', 'two', 'one', 'three'], ...: 'C': np.random.randn(8), ...: 'D': np.random.randn(8)}) ...: In [7]: df Out[7]: A B C D 0 foo one 0.469112 -0.861849 1 bar one -0.282863 -2.104569 2 foo two -1.509059 -0.494929 3 bar three -1.135632 1.071804 4 foo two 1.212112 0.721555 5 bar two -0.173215 -0.706771 6 foo one 0.119209 -1.039575 7 foo three -1.044236 0.271860 ``` On a DataFrame, we obtain a GroupBy object by calling [``groupby()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby). We could naturally group by either the ``A`` or ``B`` columns, or both: ``` python In [8]: grouped = df.groupby('A') In [9]: grouped = df.groupby(['A', 'B']) ``` *New in version 0.24.* If we also have a MultiIndex on columns ``A`` and ``B``, we can group by all but the specified columns ``` python In [10]: df2 = df.set_index(['A', 'B']) In [11]: grouped = df2.groupby(level=df2.index.names.difference(['B'])) In [12]: grouped.sum() Out[12]: C D A bar -1.591710 -1.739537 foo -0.752861 -1.402938 ``` These will split the DataFrame on its index (rows). We could also split by the columns: ``` python In [13]: def get_letter_type(letter): ....: if letter.lower() in 'aeiou': ....: return 'vowel' ....: else: ....: return 'consonant' ....: In [14]: grouped = df.groupby(get_letter_type, axis=1) ``` pandas [``Index``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index) objects support duplicate values. If a non-unique index is used as the group key in a groupby operation, all values for the same index value will be considered to be in one group and thus the output of aggregation functions will only contain unique index values: ``` python In [15]: lst = [1, 2, 3, 1, 2, 3] In [16]: s = pd.Series([1, 2, 3, 10, 20, 30], lst) In [17]: grouped = s.groupby(level=0) In [18]: grouped.first() Out[18]: 1 1 2 2 3 3 dtype: int64 In [19]: grouped.last() Out[19]: 1 10 2 20 3 30 dtype: int64 In [20]: grouped.sum() Out[20]: 1 11 2 22 3 33 dtype: int64 ``` Note that **no splitting occurs** until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid mapping. ::: tip Note Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can’t be guaranteed to be the most efficient). You can get quite creative with the label mapping functions. ::: ### GroupBy sorting By default the group keys are sorted during the ``groupby`` operation. You may however pass ``sort=False`` for potential speedups: ``` python In [21]: df2 = pd.DataFrame({'X': ['B', 'B', 'A', 'A'], 'Y': [1, 2, 3, 4]}) In [22]: df2.groupby(['X']).sum() Out[22]: Y X A 7 B 3 In [23]: df2.groupby(['X'], sort=False).sum() Out[23]: Y X B 3 A 7 ``` Note that ``groupby`` will preserve the order in which *observations* are sorted *within* each group. For example, the groups created by ``groupby()`` below are in the order they appeared in the original ``DataFrame``: ``` python In [24]: df3 = pd.DataFrame({'X': ['A', 'B', 'A', 'B'], 'Y': [1, 4, 3, 2]}) In [25]: df3.groupby(['X']).get_group('A') Out[25]: X Y 0 A 1 2 A 3 In [26]: df3.groupby(['X']).get_group('B') Out[26]: X Y 1 B 4 3 B 2 ``` ### GroupBy object attributes The ``groups`` attribute is a dict whose keys are the computed unique groups and corresponding values being the axis labels belonging to each group. In the above example we have: ``` python In [27]: df.groupby('A').groups Out[27]: {'bar': Int64Index([1, 3, 5], dtype='int64'), 'foo': Int64Index([0, 2, 4, 6, 7], dtype='int64')} In [28]: df.groupby(get_letter_type, axis=1).groups Out[28]: {'consonant': Index(['B', 'C', 'D'], dtype='object'), 'vowel': Index(['A'], dtype='object')} ``` Calling the standard Python ``len`` function on the GroupBy object just returns the length of the ``groups`` dict, so it is largely just a convenience: ``` python In [29]: grouped = df.groupby(['A', 'B']) In [30]: grouped.groups Out[30]: {('bar', 'one'): Int64Index([1], dtype='int64'), ('bar', 'three'): Int64Index([3], dtype='int64'), ('bar', 'two'): Int64Index([5], dtype='int64'), ('foo', 'one'): Int64Index([0, 6], dtype='int64'), ('foo', 'three'): Int64Index([7], dtype='int64'), ('foo', 'two'): Int64Index([2, 4], dtype='int64')} In [31]: len(grouped) Out[31]: 6 ``` ``GroupBy`` will tab complete column names (and other attributes): ``` python In [32]: df Out[32]: height weight gender 2000-01-01 42.849980 157.500553 male 2000-01-02 49.607315 177.340407 male 2000-01-03 56.293531 171.524640 male 2000-01-04 48.421077 144.251986 female 2000-01-05 46.556882 152.526206 male 2000-01-06 68.448851 168.272968 female 2000-01-07 70.757698 136.431469 male 2000-01-08 58.909500 176.499753 female 2000-01-09 76.435631 174.094104 female 2000-01-10 45.306120 177.540920 male In [33]: gb = df.groupby('gender') ``` ``` python In [34]: gb. # noqa: E225, E999 gb.agg gb.boxplot gb.cummin gb.describe gb.filter gb.get_group gb.height gb.last gb.median gb.ngroups gb.plot gb.rank gb.std gb.transform gb.aggregate gb.count gb.cumprod gb.dtype gb.first gb.groups gb.hist gb.max gb.min gb.nth gb.prod gb.resample gb.sum gb.var gb.apply gb.cummax gb.cumsum gb.fillna gb.gender gb.head gb.indices gb.mean gb.name gb.ohlc gb.quantile gb.size gb.tail gb.weight ``` ### GroupBy with MultiIndex With [hierarchically-indexed data](advanced.html#advanced-hierarchical), it’s quite natural to group by one of the levels of the hierarchy. Let’s create a Series with a two-level ``MultiIndex``. ``` python In [35]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] ....: In [36]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second']) In [37]: s = pd.Series(np.random.randn(8), index=index) In [38]: s Out[38]: first second bar one -0.919854 two -0.042379 baz one 1.247642 two -0.009920 foo one 0.290213 two 0.495767 qux one 0.362949 two 1.548106 dtype: float64 ``` We can then group by one of the levels in ``s``. ``` python In [39]: grouped = s.groupby(level=0) In [40]: grouped.sum() Out[40]: first bar -0.962232 baz 1.237723 foo 0.785980 qux 1.911055 dtype: float64 ``` If the MultiIndex has names specified, these can be passed instead of the level number: ``` python In [41]: s.groupby(level='second').sum() Out[41]: second one 0.980950 two 1.991575 dtype: float64 ``` The aggregation functions such as ``sum`` will take the level parameter directly. Additionally, the resulting index will be named according to the chosen level: ``` python In [42]: s.sum(level='second') Out[42]: second one 0.980950 two 1.991575 dtype: float64 ``` Grouping with multiple levels is supported. ``` python In [43]: s Out[43]: first second third bar doo one -1.131345 two -0.089329 baz bee one 0.337863 two -0.945867 foo bop one -0.932132 two 1.956030 qux bop one 0.017587 two -0.016692 dtype: float64 In [44]: s.groupby(level=['first', 'second']).sum() Out[44]: first second bar doo -1.220674 baz bee -0.608004 foo bop 1.023898 qux bop 0.000895 dtype: float64 ``` *New in version 0.20.* Index level names may be supplied as keys. ``` python In [45]: s.groupby(['first', 'second']).sum() Out[45]: first second bar doo -1.220674 baz bee -0.608004 foo bop 1.023898 qux bop 0.000895 dtype: float64 ``` More on the ``sum`` function and aggregation later. ### Grouping DataFrame with Index levels and columns A DataFrame may be grouped by a combination of columns and index levels by specifying the column names as strings and the index levels as ``pd.Grouper`` objects. ``` python In [46]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ....: ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] ....: In [47]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second']) In [48]: df = pd.DataFrame({'A': [1, 1, 1, 1, 2, 2, 3, 3], ....: 'B': np.arange(8)}, ....: index=index) ....: In [49]: df Out[49]: A B first second bar one 1 0 two 1 1 baz one 1 2 two 1 3 foo one 2 4 two 2 5 qux one 3 6 two 3 7 ``` The following example groups ``df`` by the ``second`` index level and the ``A`` column. ``` python In [50]: df.groupby([pd.Grouper(level=1), 'A']).sum() Out[50]: B second A one 1 2 2 4 3 6 two 1 4 2 5 3 7 ``` Index levels may also be specified by name. ``` python In [51]: df.groupby([pd.Grouper(level='second'), 'A']).sum() Out[51]: B second A one 1 2 2 4 3 6 two 1 4 2 5 3 7 ``` *New in version 0.20.* Index level names may be specified as keys directly to ``groupby``. ``` python In [52]: df.groupby(['second', 'A']).sum() Out[52]: B second A one 1 2 2 4 3 6 two 1 4 2 5 3 7 ``` ### DataFrame column selection in GroupBy Once you have created the GroupBy object from a DataFrame, you might want to do something different for each of the columns. Thus, using ``[]`` similar to getting a column from a DataFrame, you can do: ``` python In [53]: grouped = df.groupby(['A']) In [54]: grouped_C = grouped['C'] In [55]: grouped_D = grouped['D'] ``` This is mainly syntactic sugar for the alternative and much more verbose: ``` python In [56]: df['C'].groupby(df['A']) Out[56]: ``` Additionally this method avoids recomputing the internal grouping information derived from the passed key. ## Iterating through groups With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to [``itertools.groupby()``](https://docs.python.org/3/library/itertools.html#itertools.groupby): ``` python In [57]: grouped = df.groupby('A') In [58]: for name, group in grouped: ....: print(name) ....: print(group) ....: bar A B C D 1 bar one 0.254161 1.511763 3 bar three 0.215897 -0.990582 5 bar two -0.077118 1.211526 foo A B C D 0 foo one -0.575247 1.346061 2 foo two -1.143704 1.627081 4 foo two 1.193555 -0.441652 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580 ``` In the case of grouping by multiple keys, the group name will be a tuple: ``` python In [59]: for name, group in df.groupby(['A', 'B']): ....: print(name) ....: print(group) ....: ('bar', 'one') A B C D 1 bar one 0.254161 1.511763 ('bar', 'three') A B C D 3 bar three 0.215897 -0.990582 ('bar', 'two') A B C D 5 bar two -0.077118 1.211526 ('foo', 'one') A B C D 0 foo one -0.575247 1.346061 6 foo one -0.408530 0.268520 ('foo', 'three') A B C D 7 foo three -0.862495 0.02458 ('foo', 'two') A B C D 2 foo two -1.143704 1.627081 4 foo two 1.193555 -0.441652 ``` See [Iterating through groups](timeseries.html#timeseries-iterating-label). ## Selecting a group A single group can be selected using ``get_group()``: ``` python In [60]: grouped.get_group('bar') Out[60]: A B C D 1 bar one 0.254161 1.511763 3 bar three 0.215897 -0.990582 5 bar two -0.077118 1.211526 ``` Or for an object grouped on multiple columns: ``` python In [61]: df.groupby(['A', 'B']).get_group(('bar', 'one')) Out[61]: A B C D 1 bar one 0.254161 1.511763 ``` ## Aggregation Once the GroupBy object has been created, several methods are available to perform a computation on the grouped data. These operations are similar to the [aggregating API](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-aggregate), [window functions API](computation.html#stats-aggregate), and [resample API](timeseries.html#timeseries-aggregate). An obvious one is aggregation via the ``aggregate()`` or equivalently ``agg()`` method: ``` python In [62]: grouped = df.groupby('A') In [63]: grouped.aggregate(np.sum) Out[63]: C D A bar 0.392940 1.732707 foo -1.796421 2.824590 In [64]: grouped = df.groupby(['A', 'B']) In [65]: grouped.aggregate(np.sum) Out[65]: C D A B bar one 0.254161 1.511763 three 0.215897 -0.990582 two -0.077118 1.211526 foo one -0.983776 1.614581 three -0.862495 0.024580 two 0.049851 1.185429 ``` As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In the case of multiple keys, the result is a [MultiIndex](advanced.html#advanced-hierarchical) by default, though this can be changed by using the ``as_index`` option: ``` python In [66]: grouped = df.groupby(['A', 'B'], as_index=False) In [67]: grouped.aggregate(np.sum) Out[67]: A B C D 0 bar one 0.254161 1.511763 1 bar three 0.215897 -0.990582 2 bar two -0.077118 1.211526 3 foo one -0.983776 1.614581 4 foo three -0.862495 0.024580 5 foo two 0.049851 1.185429 In [68]: df.groupby('A', as_index=False).sum() Out[68]: A C D 0 bar 0.392940 1.732707 1 foo -1.796421 2.824590 ``` Note that you could use the ``reset_index`` DataFrame function to achieve the same result as the column names are stored in the resulting ``MultiIndex``: ``` python In [69]: df.groupby(['A', 'B']).sum().reset_index() Out[69]: A B C D 0 bar one 0.254161 1.511763 1 bar three 0.215897 -0.990582 2 bar two -0.077118 1.211526 3 foo one -0.983776 1.614581 4 foo three -0.862495 0.024580 5 foo two 0.049851 1.185429 ``` Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the ``size`` method. It returns a Series whose index are the group names and whose values are the sizes of each group. ``` python In [70]: grouped.size() Out[70]: A B bar one 1 three 1 two 1 foo one 2 three 1 two 2 dtype: int64 ``` ``` python In [71]: grouped.describe() Out[71]: C D count mean std min 25% 50% 75% max count mean std min 25% 50% 75% max 0 1.0 0.254161 NaN 0.254161 0.254161 0.254161 0.254161 0.254161 1.0 1.511763 NaN 1.511763 1.511763 1.511763 1.511763 1.511763 1 1.0 0.215897 NaN 0.215897 0.215897 0.215897 0.215897 0.215897 1.0 -0.990582 NaN -0.990582 -0.990582 -0.990582 -0.990582 -0.990582 2 1.0 -0.077118 NaN -0.077118 -0.077118 -0.077118 -0.077118 -0.077118 1.0 1.211526 NaN 1.211526 1.211526 1.211526 1.211526 1.211526 3 2.0 -0.491888 0.117887 -0.575247 -0.533567 -0.491888 -0.450209 -0.408530 2.0 0.807291 0.761937 0.268520 0.537905 0.807291 1.076676 1.346061 4 1.0 -0.862495 NaN -0.862495 -0.862495 -0.862495 -0.862495 -0.862495 1.0 0.024580 NaN 0.024580 0.024580 0.024580 0.024580 0.024580 5 2.0 0.024925 1.652692 -1.143704 -0.559389 0.024925 0.609240 1.193555 2.0 0.592714 1.462816 -0.441652 0.075531 0.592714 1.109898 1.627081 ``` ::: tip Note Aggregation functions **will not** return the groups that you are aggregating over if they are named *columns*, when ``as_index=True``, the default. The grouped columns will be the **indices** of the returned object. Passing ``as_index=False`` **will** return the groups that you are aggregating over, if they are named *columns*. ::: Aggregating functions are the ones that reduce the dimension of the returned objects. Some common aggregating functions are tabulated below: Function | Description ---|--- mean() | Compute mean of groups sum() | Compute sum of group values size() | Compute group sizes count() | Compute count of group std() | Standard deviation of groups var() | Compute variance of groups sem() | Standard error of the mean of groups describe() | Generates descriptive statistics first() | Compute first of group values last() | Compute last of group values nth() | Take nth value, or a subset if n is a list min() | Compute min of group values max() | Compute max of group values The aggregating functions above will exclude NA values. Any function which reduces a [``Series``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series) to a scalar value is an aggregation function and will work, a trivial example is ``df.groupby('A').agg(lambda ser: 1)``. Note that ``nth()`` can act as a reducer *or* a filter, see [here](#groupby-nth). ### Applying multiple functions at once With grouped ``Series`` you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame: ``` python In [72]: grouped = df.groupby('A') In [73]: grouped['C'].agg([np.sum, np.mean, np.std]) Out[73]: sum mean std A bar 0.392940 0.130980 0.181231 foo -1.796421 -0.359284 0.912265 ``` On a grouped ``DataFrame``, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index: ``` python In [74]: grouped.agg([np.sum, np.mean, np.std]) Out[74]: C D sum mean std sum mean std A bar 0.392940 0.130980 0.181231 1.732707 0.577569 1.366330 foo -1.796421 -0.359284 0.912265 2.824590 0.564918 0.884785 ``` The resulting aggregations are named for the functions themselves. If you need to rename, then you can add in a chained operation for a ``Series`` like this: ``` python In [75]: (grouped['C'].agg([np.sum, np.mean, np.std]) ....: .rename(columns={'sum': 'foo', ....: 'mean': 'bar', ....: 'std': 'baz'})) ....: Out[75]: foo bar baz A bar 0.392940 0.130980 0.181231 foo -1.796421 -0.359284 0.912265 ``` For a grouped ``DataFrame``, you can rename in a similar manner: ``` python In [76]: (grouped.agg([np.sum, np.mean, np.std]) ....: .rename(columns={'sum': 'foo', ....: 'mean': 'bar', ....: 'std': 'baz'})) ....: Out[76]: C D foo bar baz foo bar baz A bar 0.392940 0.130980 0.181231 1.732707 0.577569 1.366330 foo -1.796421 -0.359284 0.912265 2.824590 0.564918 0.884785 ``` ::: tip Note In general, the output column names should be unique. You can’t apply the same function (or two functions with the same name) to the same column. ``` python In [77]: grouped['C'].agg(['sum', 'sum']) --------------------------------------------------------------------------- SpecificationError Traceback (most recent call last) in ----> 1 grouped['C'].agg(['sum', 'sum']) /pandas/pandas/core/groupby/generic.py in aggregate(self, func_or_funcs, *args, **kwargs) 849 # but not the class list / tuple itself. 850 func_or_funcs = _maybe_mangle_lambdas(func_or_funcs) --> 851 ret = self._aggregate_multiple_funcs(func_or_funcs, (_level or 0) + 1) 852 if relabeling: 853 ret.columns = columns /pandas/pandas/core/groupby/generic.py in _aggregate_multiple_funcs(self, arg, _level) 919 raise SpecificationError( 920 "Function names must be unique, found multiple named " --> 921 "{}".format(name) 922 ) 923 SpecificationError: Function names must be unique, found multiple named sum ``` Pandas *does* allow you to provide multiple lambdas. In this case, pandas will mangle the name of the (nameless) lambda functions, appending ``_`` to each subsequent lambda. ``` python In [78]: grouped['C'].agg([lambda x: x.max() - x.min(), ....: lambda x: x.median() - x.mean()]) ....: Out[78]: A bar 0.331279 0.084917 foo 2.337259 -0.215962 ``` ::: ### Named aggregation *New in version 0.25.0.* To support column-specific aggregation *with control over the output column names*, pandas accepts the special syntax in ``GroupBy.agg()``, known as “named aggregation”, where - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias. ``` python In [79]: animals = pd.DataFrame({'kind': ['cat', 'dog', 'cat', 'dog'], ....: 'height': [9.1, 6.0, 9.5, 34.0], ....: 'weight': [7.9, 7.5, 9.9, 198.0]}) ....: In [80]: animals Out[80]: kind height weight 0 cat 9.1 7.9 1 dog 6.0 7.5 2 cat 9.5 9.9 3 dog 34.0 198.0 In [81]: animals.groupby("kind").agg( ....: min_height=pd.NamedAgg(column='height', aggfunc='min'), ....: max_height=pd.NamedAgg(column='height', aggfunc='max'), ....: average_weight=pd.NamedAgg(column='weight', aggfunc=np.mean), ....: ) ....: Out[81]: min_height max_height average_weight kind cat 9.1 9.5 8.90 dog 6.0 34.0 102.75 ``` ``pandas.NamedAgg`` is just a ``namedtuple``. Plain tuples are allowed as well. ``` python In [82]: animals.groupby("kind").agg( ....: min_height=('height', 'min'), ....: max_height=('height', 'max'), ....: average_weight=('weight', np.mean), ....: ) ....: Out[82]: min_height max_height average_weight kind cat 9.1 9.5 8.90 dog 6.0 34.0 102.75 ``` If your desired output column names are not valid python keywords, construct a dictionary and unpack the keyword arguments ``` python In [83]: animals.groupby("kind").agg(**{ ....: 'total weight': pd.NamedAgg(column='weight', aggfunc=sum), ....: }) ....: Out[83]: total weight kind cat 17.8 dog 205.5 ``` Additional keyword arguments are not passed through to the aggregation functions. Only pairs of ``(column, aggfunc)`` should be passed as ``**kwargs``. If your aggregation functions requires additional arguments, partially apply them with ``functools.partial()``. ::: tip Note For Python 3.5 and earlier, the order of ``**kwargs`` in a functions was not preserved. This means that the output column ordering would not be consistent. To ensure consistent ordering, the keys (and so output columns) will always be sorted for Python 3.5. ::: Named aggregation is also valid for Series groupby aggregations. In this case there’s no column selection, so the values are just the functions. ``` python In [84]: animals.groupby("kind").height.agg( ....: min_height='min', ....: max_height='max', ....: ) ....: Out[84]: min_height max_height kind cat 9.1 9.5 dog 6.0 34.0 ``` ### Applying different functions to DataFrame columns By passing a dict to ``aggregate`` you can apply a different aggregation to the columns of a DataFrame: ``` python In [85]: grouped.agg({'C': np.sum, ....: 'D': lambda x: np.std(x, ddof=1)}) ....: Out[85]: C D A bar 0.392940 1.366330 foo -1.796421 0.884785 ``` The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or available via [dispatching](#groupby-dispatch): ``` python In [86]: grouped.agg({'C': 'sum', 'D': 'std'}) Out[86]: C D A bar 0.392940 1.366330 foo -1.796421 0.884785 ``` ### Cython-optimized aggregation functions Some common aggregations, currently only ``sum``, ``mean``, ``std``, and ``sem``, have optimized Cython implementations: ``` python In [87]: df.groupby('A').sum() Out[87]: C D A bar 0.392940 1.732707 foo -1.796421 2.824590 In [88]: df.groupby(['A', 'B']).mean() Out[88]: C D A B bar one 0.254161 1.511763 three 0.215897 -0.990582 two -0.077118 1.211526 foo one -0.491888 0.807291 three -0.862495 0.024580 two 0.024925 0.592714 ``` Of course ``sum`` and ``mean`` are implemented on pandas objects, so the above code would work even without the special versions via dispatching (see below). ## Transformation The ``transform`` method returns an object that is indexed the same (same size) as the one being grouped. The transform function must: - Return a result that is either the same size as the group chunk or broadcastable to the size of the group chunk (e.g., a scalar, ``grouped.transform(lambda x: x.iloc[-1])``). - Operate column-by-column on the group chunk. The transform is applied to the first group chunk using chunk.apply. - Not perform in-place operations on the group chunk. Group chunks should be treated as immutable, and changes to a group chunk may produce unexpected results. For example, when using ``fillna``, ``inplace`` must be ``False`` (``grouped.transform(lambda x: x.fillna(inplace=False))``). - (Optionally) operates on the entire group chunk. If this is supported, a fast path is used starting from the *second* chunk. For example, suppose we wished to standardize the data within each group: ``` python In [89]: index = pd.date_range('10/1/1999', periods=1100) In [90]: ts = pd.Series(np.random.normal(0.5, 2, 1100), index) In [91]: ts = ts.rolling(window=100, min_periods=100).mean().dropna() In [92]: ts.head() Out[92]: 2000-01-08 0.779333 2000-01-09 0.778852 2000-01-10 0.786476 2000-01-11 0.782797 2000-01-12 0.798110 Freq: D, dtype: float64 In [93]: ts.tail() Out[93]: 2002-09-30 0.660294 2002-10-01 0.631095 2002-10-02 0.673601 2002-10-03 0.709213 2002-10-04 0.719369 Freq: D, dtype: float64 In [94]: transformed = (ts.groupby(lambda x: x.year) ....: .transform(lambda x: (x - x.mean()) / x.std())) ....: ``` We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily check: ``` python # Original Data In [95]: grouped = ts.groupby(lambda x: x.year) In [96]: grouped.mean() Out[96]: 2000 0.442441 2001 0.526246 2002 0.459365 dtype: float64 In [97]: grouped.std() Out[97]: 2000 0.131752 2001 0.210945 2002 0.128753 dtype: float64 # Transformed Data In [98]: grouped_trans = transformed.groupby(lambda x: x.year) In [99]: grouped_trans.mean() Out[99]: 2000 1.168208e-15 2001 1.454544e-15 2002 1.726657e-15 dtype: float64 In [100]: grouped_trans.std() Out[100]: 2000 1.0 2001 1.0 2002 1.0 dtype: float64 ``` We can also visually compare the original and transformed data sets. ``` python In [101]: compare = pd.DataFrame({'Original': ts, 'Transformed': transformed}) In [102]: compare.plot() Out[102]: ``` ![groupby_transform_plot](https://static.pypandas.cn/public/static/images/groupby_transform_plot.png) Transformation functions that have lower dimension outputs are broadcast to match the shape of the input array. ``` python In [103]: ts.groupby(lambda x: x.year).transform(lambda x: x.max() - x.min()) Out[103]: 2000-01-08 0.623893 2000-01-09 0.623893 2000-01-10 0.623893 2000-01-11 0.623893 2000-01-12 0.623893 ... 2002-09-30 0.558275 2002-10-01 0.558275 2002-10-02 0.558275 2002-10-03 0.558275 2002-10-04 0.558275 Freq: D, Length: 1001, dtype: float64 ``` Alternatively, the built-in methods could be used to produce the same outputs. ``` python In [104]: max = ts.groupby(lambda x: x.year).transform('max') In [105]: min = ts.groupby(lambda x: x.year).transform('min') In [106]: max - min Out[106]: 2000-01-08 0.623893 2000-01-09 0.623893 2000-01-10 0.623893 2000-01-11 0.623893 2000-01-12 0.623893 ... 2002-09-30 0.558275 2002-10-01 0.558275 2002-10-02 0.558275 2002-10-03 0.558275 2002-10-04 0.558275 Freq: D, Length: 1001, dtype: float64 ``` Another common data transform is to replace missing data with the group mean. ``` python In [107]: data_df Out[107]: A B C 0 1.539708 -1.166480 0.533026 1 1.302092 -0.505754 NaN 2 -0.371983 1.104803 -0.651520 3 -1.309622 1.118697 -1.161657 4 -1.924296 0.396437 0.812436 .. ... ... ... 995 -0.093110 0.683847 -0.774753 996 -0.185043 1.438572 NaN 997 -0.394469 -0.642343 0.011374 998 -1.174126 1.857148 NaN 999 0.234564 0.517098 0.393534 [1000 rows x 3 columns] In [108]: countries = np.array(['US', 'UK', 'GR', 'JP']) In [109]: key = countries[np.random.randint(0, 4, 1000)] In [110]: grouped = data_df.groupby(key) # Non-NA count in each group In [111]: grouped.count() Out[111]: A B C GR 209 217 189 JP 240 255 217 UK 216 231 193 US 239 250 217 In [112]: transformed = grouped.transform(lambda x: x.fillna(x.mean())) ``` We can verify that the group means have not changed in the transformed data and that the transformed data contains no NAs. ``` python In [113]: grouped_trans = transformed.groupby(key) In [114]: grouped.mean() # original group means Out[114]: A B C GR -0.098371 -0.015420 0.068053 JP 0.069025 0.023100 -0.077324 UK 0.034069 -0.052580 -0.116525 US 0.058664 -0.020399 0.028603 In [115]: grouped_trans.mean() # transformation did not change group means Out[115]: A B C GR -0.098371 -0.015420 0.068053 JP 0.069025 0.023100 -0.077324 UK 0.034069 -0.052580 -0.116525 US 0.058664 -0.020399 0.028603 In [116]: grouped.count() # original has some missing data points Out[116]: A B C GR 209 217 189 JP 240 255 217 UK 216 231 193 US 239 250 217 In [117]: grouped_trans.count() # counts after transformation Out[117]: A B C GR 228 228 228 JP 267 267 267 UK 247 247 247 US 258 258 258 In [118]: grouped_trans.size() # Verify non-NA count equals group size Out[118]: GR 228 JP 267 UK 247 US 258 dtype: int64 ``` ::: tip Note Some functions will automatically transform the input when applied to a GroupBy object, but returning an object of the same shape as the original. Passing ``as_index=False`` will not affect these transformation methods. For example: ``fillna, ffill, bfill, shift.``. ``` python In [119]: grouped.ffill() Out[119]: A B C 0 1.539708 -1.166480 0.533026 1 1.302092 -0.505754 0.533026 2 -0.371983 1.104803 -0.651520 3 -1.309622 1.118697 -1.161657 4 -1.924296 0.396437 0.812436 .. ... ... ... 995 -0.093110 0.683847 -0.774753 996 -0.185043 1.438572 -0.774753 997 -0.394469 -0.642343 0.011374 998 -1.174126 1.857148 -0.774753 999 0.234564 0.517098 0.393534 [1000 rows x 3 columns] ``` ::: ### New syntax to window and resample operations *New in version 0.18.1.* Working with the resample, expanding or rolling operations on the groupby level used to require the application of helper functions. However, now it is possible to use ``resample()``, ``expanding()`` and ``rolling()`` as methods on groupbys. The example below will apply the ``rolling()`` method on the samples of the column B based on the groups of column A. ``` python In [120]: df_re = pd.DataFrame({'A': [1] * 10 + [5] * 10, .....: 'B': np.arange(20)}) .....: In [121]: df_re Out[121]: A B 0 1 0 1 1 1 2 1 2 3 1 3 4 1 4 .. .. .. 15 5 15 16 5 16 17 5 17 18 5 18 19 5 19 [20 rows x 2 columns] In [122]: df_re.groupby('A').rolling(4).B.mean() Out[122]: A 1 0 NaN 1 NaN 2 NaN 3 1.5 4 2.5 ... 5 15 13.5 16 14.5 17 15.5 18 16.5 19 17.5 Name: B, Length: 20, dtype: float64 ``` The ``expanding()`` method will accumulate a given operation (``sum()`` in the example) for all the members of each particular group. ``` python In [123]: df_re.groupby('A').expanding().sum() Out[123]: A B A 1 0 1.0 0.0 1 2.0 1.0 2 3.0 3.0 3 4.0 6.0 4 5.0 10.0 ... ... ... 5 15 30.0 75.0 16 35.0 91.0 17 40.0 108.0 18 45.0 126.0 19 50.0 145.0 [20 rows x 2 columns] ``` Suppose you want to use the ``resample()`` method to get a daily frequency in each group of your dataframe and wish to complete the missing values with the ``ffill()`` method. ``` python In [124]: df_re = pd.DataFrame({'date': pd.date_range(start='2016-01-01', periods=4, .....: freq='W'), .....: 'group': [1, 1, 2, 2], .....: 'val': [5, 6, 7, 8]}).set_index('date') .....: In [125]: df_re Out[125]: group val date 2016-01-03 1 5 2016-01-10 1 6 2016-01-17 2 7 2016-01-24 2 8 In [126]: df_re.groupby('group').resample('1D').ffill() Out[126]: group val group date 1 2016-01-03 1 5 2016-01-04 1 5 2016-01-05 1 5 2016-01-06 1 5 2016-01-07 1 5 ... ... ... 2 2016-01-20 2 7 2016-01-21 2 7 2016-01-22 2 7 2016-01-23 2 7 2016-01-24 2 8 [16 rows x 2 columns] ``` ## Filtration The ``filter`` method returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2. ``` python In [127]: sf = pd.Series([1, 1, 2, 3, 3, 3]) In [128]: sf.groupby(sf).filter(lambda x: x.sum() > 2) Out[128]: 3 3 4 3 5 3 dtype: int64 ``` The argument of ``filter`` must be a function that, applied to the group as a whole, returns ``True`` or ``False``. Another useful operation is filtering out elements that belong to groups with only a couple members. ``` python In [129]: dff = pd.DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')}) In [130]: dff.groupby('B').filter(lambda x: len(x) > 2) Out[130]: A B 2 2 b 3 3 b 4 4 b 5 5 b ``` Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs. ``` python In [131]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False) Out[131]: A B 0 NaN NaN 1 NaN NaN 2 2.0 b 3 3.0 b 4 4.0 b 5 5.0 b 6 NaN NaN 7 NaN NaN ``` For DataFrames with multiple columns, filters should explicitly specify a column as the filter criterion. ``` python In [132]: dff['C'] = np.arange(8) In [133]: dff.groupby('B').filter(lambda x: len(x['C']) > 2) Out[133]: A B C 2 2 b 2 3 3 b 3 4 4 b 4 5 5 b 5 ``` ::: tip Note Some functions when applied to a groupby object will act as a **filter** on the input, returning a reduced shape of the original (and potentially eliminating groups), but with the index unchanged. Passing ``as_index=False`` will not affect these transformation methods. For example: ``head, tail``. ``` python In [134]: dff.groupby('B').head(2) Out[134]: A B C 0 0 a 0 1 1 a 1 2 2 b 2 3 3 b 3 6 6 c 6 7 7 c 7 ``` ::: ## Dispatching to instance methods When doing an aggregation or transformation, you might just want to call an instance method on each data group. This is pretty easy to do by passing lambda functions: ``` python In [135]: grouped = df.groupby('A') In [136]: grouped.agg(lambda x: x.std()) Out[136]: C D A bar 0.181231 1.366330 foo 0.912265 0.884785 ``` But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming cleverness, GroupBy now has the ability to “dispatch” method calls to the groups: ``` python In [137]: grouped.std() Out[137]: C D A bar 0.181231 1.366330 foo 0.912265 0.884785 ``` What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed arguments and invokes the function with any arguments on each group (in the above example, the ``std`` function). The results are then combined together much in the style of ``agg`` and ``transform`` (it actually uses ``apply`` to infer the gluing, documented next). This enables some operations to be carried out rather succinctly: ``` python In [138]: tsdf = pd.DataFrame(np.random.randn(1000, 3), .....: index=pd.date_range('1/1/2000', periods=1000), .....: columns=['A', 'B', 'C']) .....: In [139]: tsdf.iloc[::2] = np.nan In [140]: grouped = tsdf.groupby(lambda x: x.year) In [141]: grouped.fillna(method='pad') Out[141]: A B C 2000-01-01 NaN NaN NaN 2000-01-02 -0.353501 -0.080957 -0.876864 2000-01-03 -0.353501 -0.080957 -0.876864 2000-01-04 0.050976 0.044273 -0.559849 2000-01-05 0.050976 0.044273 -0.559849 ... ... ... ... 2002-09-22 0.005011 0.053897 -1.026922 2002-09-23 0.005011 0.053897 -1.026922 2002-09-24 -0.456542 -1.849051 1.559856 2002-09-25 -0.456542 -1.849051 1.559856 2002-09-26 1.123162 0.354660 1.128135 [1000 rows x 3 columns] ``` In this example, we chopped the collection of time series into yearly chunks then independently called [fillna](missing_data.html#missing-data-fillna) on the groups. The ``nlargest`` and ``nsmallest`` methods work on ``Series`` style groupbys: ``` python In [142]: s = pd.Series([9, 8, 7, 5, 19, 1, 4.2, 3.3]) In [143]: g = pd.Series(list('abababab')) In [144]: gb = s.groupby(g) In [145]: gb.nlargest(3) Out[145]: a 4 19.0 0 9.0 2 7.0 b 1 8.0 3 5.0 7 3.3 dtype: float64 In [146]: gb.nsmallest(3) Out[146]: a 6 4.2 2 7.0 0 9.0 b 5 1.0 7 3.3 3 5.0 dtype: float64 ``` ## Flexible ``apply`` Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply want GroupBy to infer how to combine the results. For these, use the ``apply`` function, which can be substituted for both ``aggregate`` and ``transform`` in many standard use cases. However, ``apply`` can handle some exceptional use cases, for example: ``` python In [147]: df Out[147]: A B C D 0 foo one -0.575247 1.346061 1 bar one 0.254161 1.511763 2 foo two -1.143704 1.627081 3 bar three 0.215897 -0.990582 4 foo two 1.193555 -0.441652 5 bar two -0.077118 1.211526 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580 In [148]: grouped = df.groupby('A') # could also just call .describe() In [149]: grouped['C'].apply(lambda x: x.describe()) Out[149]: A bar count 3.000000 mean 0.130980 std 0.181231 min -0.077118 25% 0.069390 ... foo min -1.143704 25% -0.862495 50% -0.575247 75% -0.408530 max 1.193555 Name: C, Length: 16, dtype: float64 ``` The dimension of the returned result can also change: ``` python In [150]: grouped = df.groupby('A')['C'] In [151]: def f(group): .....: return pd.DataFrame({'original': group, .....: 'demeaned': group - group.mean()}) .....: In [152]: grouped.apply(f) Out[152]: original demeaned 0 -0.575247 -0.215962 1 0.254161 0.123181 2 -1.143704 -0.784420 3 0.215897 0.084917 4 1.193555 1.552839 5 -0.077118 -0.208098 6 -0.408530 -0.049245 7 -0.862495 -0.503211 ``` ``apply`` on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame: ``` python In [153]: def f(x): .....: return pd.Series([x, x ** 2], index=['x', 'x^2']) .....: In [154]: s = pd.Series(np.random.rand(5)) In [155]: s Out[155]: 0 0.321438 1 0.493496 2 0.139505 3 0.910103 4 0.194158 dtype: float64 In [156]: s.apply(f) Out[156]: x x^2 0 0.321438 0.103323 1 0.493496 0.243538 2 0.139505 0.019462 3 0.910103 0.828287 4 0.194158 0.037697 ``` ::: tip Note ``apply`` can act as a reducer, transformer, *or* filter function, depending on exactly what is passed to it. So depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in the output as well as set the indices. ::: ## Other useful features ### Automatic exclusion of “nuisance” columns Again consider the example DataFrame we’ve been looking at: ``` python In [157]: df Out[157]: A B C D 0 foo one -0.575247 1.346061 1 bar one 0.254161 1.511763 2 foo two -1.143704 1.627081 3 bar three 0.215897 -0.990582 4 foo two 1.193555 -0.441652 5 bar two -0.077118 1.211526 6 foo one -0.408530 0.268520 7 foo three -0.862495 0.024580 ``` Suppose we wish to compute the standard deviation grouped by the ``A`` column. There is a slight problem, namely that we don’t care about the data in column ``B``. We refer to this as a “nuisance” column. If the passed aggregation function can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not pose any problems: ``` python In [158]: df.groupby('A').std() Out[158]: C D A bar 0.181231 1.366330 foo 0.912265 0.884785 ``` Note that ``df.groupby('A').colname.std().`` is more efficient than ``df.groupby('A').std().colname``, so if the result of an aggregation function is only interesting over one column (here ``colname``), it may be filtered *before* applying the aggregation function. ::: tip Note Any object column, also if it contains numerical values such as ``Decimal`` objects, is considered as a “nuisance” columns. They are excluded from aggregate functions automatically in groupby. If you do wish to include decimal or object columns in an aggregation with other non-nuisance data types, you must do so explicitly. ::: ``` python In [159]: from decimal import Decimal In [160]: df_dec = pd.DataFrame( .....: {'id': [1, 2, 1, 2], .....: 'int_column': [1, 2, 3, 4], .....: 'dec_column': [Decimal('0.50'), Decimal('0.15'), .....: Decimal('0.25'), Decimal('0.40')] .....: } .....: ) .....: # Decimal columns can be sum'd explicitly by themselves... In [161]: df_dec.groupby(['id'])[['dec_column']].sum() Out[161]: dec_column id 1 0.75 2 0.55 # ...but cannot be combined with standard data types or they will be excluded In [162]: df_dec.groupby(['id'])[['int_column', 'dec_column']].sum() Out[162]: int_column id 1 4 2 6 # Use .agg function to aggregate over standard and "nuisance" data types # at the same time In [163]: df_dec.groupby(['id']).agg({'int_column': 'sum', 'dec_column': 'sum'}) Out[163]: int_column dec_column id 1 4 0.75 2 6 0.55 ``` ### Handling of (un)observed Categorical values When using a ``Categorical`` grouper (as a single grouper, or as part of multiple groupers), the ``observed`` keyword controls whether to return a cartesian product of all possible groupers values (``observed=False``) or only those that are observed groupers (``observed=True``). Show all values: ``` python In [164]: pd.Series([1, 1, 1]).groupby(pd.Categorical(['a', 'a', 'a'], .....: categories=['a', 'b']), .....: observed=False).count() .....: Out[164]: a 3 b 0 dtype: int64 ``` Show only the observed values: ``` python In [165]: pd.Series([1, 1, 1]).groupby(pd.Categorical(['a', 'a', 'a'], .....: categories=['a', 'b']), .....: observed=True).count() .....: Out[165]: a 3 dtype: int64 ``` The returned dtype of the grouped will *always* include *all* of the categories that were grouped. ``` python In [166]: s = pd.Series([1, 1, 1]).groupby(pd.Categorical(['a', 'a', 'a'], .....: categories=['a', 'b']), .....: observed=False).count() .....: In [167]: s.index.dtype Out[167]: CategoricalDtype(categories=['a', 'b'], ordered=False) ``` ### NA and NaT group handling If there are any NaN or NaT values in the grouping key, these will be automatically excluded. In other words, there will never be an “NA group” or “NaT group”. This was not the case in older versions of pandas, but users were generally discarding the NA group anyway (and supporting it was an implementation headache). ### Grouping with ordered factors Categorical variables represented as instance of pandas’s ``Categorical`` class can be used as group keys. If so, the order of the levels will be preserved: ``` python In [168]: data = pd.Series(np.random.randn(100)) In [169]: factor = pd.qcut(data, [0, .25, .5, .75, 1.]) In [170]: data.groupby(factor).mean() Out[170]: (-2.645, -0.523] -1.362896 (-0.523, 0.0296] -0.260266 (0.0296, 0.654] 0.361802 (0.654, 2.21] 1.073801 dtype: float64 ``` ### Grouping with a grouper specification You may need to specify a bit more data to properly group. You can use the ``pd.Grouper`` to provide this local control. ``` python In [171]: import datetime In [172]: df = pd.DataFrame({'Branch': 'A A A A A A A B'.split(), .....: 'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(), .....: 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], .....: 'Date': [ .....: datetime.datetime(2013, 1, 1, 13, 0), .....: datetime.datetime(2013, 1, 1, 13, 5), .....: datetime.datetime(2013, 10, 1, 20, 0), .....: datetime.datetime(2013, 10, 2, 10, 0), .....: datetime.datetime(2013, 10, 1, 20, 0), .....: datetime.datetime(2013, 10, 2, 10, 0), .....: datetime.datetime(2013, 12, 2, 12, 0), .....: datetime.datetime(2013, 12, 2, 14, 0)] .....: }) .....: In [173]: df Out[173]: Branch Buyer Quantity Date 0 A Carl 1 2013-01-01 13:00:00 1 A Mark 3 2013-01-01 13:05:00 2 A Carl 5 2013-10-01 20:00:00 3 A Carl 1 2013-10-02 10:00:00 4 A Joe 8 2013-10-01 20:00:00 5 A Joe 1 2013-10-02 10:00:00 6 A Joe 9 2013-12-02 12:00:00 7 B Carl 3 2013-12-02 14:00:00 ``` Groupby a specific column with the desired frequency. This is like resampling. ``` python In [174]: df.groupby([pd.Grouper(freq='1M', key='Date'), 'Buyer']).sum() Out[174]: Quantity Date Buyer 2013-01-31 Carl 1 Mark 3 2013-10-31 Carl 6 Joe 9 2013-12-31 Carl 3 Joe 9 ``` You have an ambiguous specification in that you have a named index and a column that could be potential groupers. ``` python In [175]: df = df.set_index('Date') In [176]: df['Date'] = df.index + pd.offsets.MonthEnd(2) In [177]: df.groupby([pd.Grouper(freq='6M', key='Date'), 'Buyer']).sum() Out[177]: Quantity Date Buyer 2013-02-28 Carl 1 Mark 3 2014-02-28 Carl 9 Joe 18 In [178]: df.groupby([pd.Grouper(freq='6M', level='Date'), 'Buyer']).sum() Out[178]: Quantity Date Buyer 2013-01-31 Carl 1 Mark 3 2014-01-31 Carl 9 Joe 18 ``` ### Taking the first rows of each group Just like for a DataFrame or Series you can call head and tail on a groupby: ``` python In [179]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) In [180]: df Out[180]: A B 0 1 2 1 1 4 2 5 6 In [181]: g = df.groupby('A') In [182]: g.head(1) Out[182]: A B 0 1 2 2 5 6 In [183]: g.tail(1) Out[183]: A B 1 1 4 2 5 6 ``` This shows the first or last n rows from each group. ### Taking the nth row of each group To select from a DataFrame or Series the nth item, use ``nth()``. This is a reduction method, and will return a single row (or no row) per group if you pass an int for n: ``` python In [184]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) In [185]: g = df.groupby('A') In [186]: g.nth(0) Out[186]: B A 1 NaN 5 6.0 In [187]: g.nth(-1) Out[187]: B A 1 4.0 5 6.0 In [188]: g.nth(1) Out[188]: B A 1 4.0 ``` If you want to select the nth not-null item, use the ``dropna`` kwarg. For a DataFrame this should be either ``'any'`` or ``'all'`` just like you would pass to dropna: ``` python # nth(0) is the same as g.first() In [189]: g.nth(0, dropna='any') Out[189]: B A 1 4.0 5 6.0 In [190]: g.first() Out[190]: B A 1 4.0 5 6.0 # nth(-1) is the same as g.last() In [191]: g.nth(-1, dropna='any') # NaNs denote group exhausted when using dropna Out[191]: B A 1 4.0 5 6.0 In [192]: g.last() Out[192]: B A 1 4.0 5 6.0 In [193]: g.B.nth(0, dropna='all') Out[193]: A 1 4.0 5 6.0 Name: B, dtype: float64 ``` As with other methods, passing ``as_index=False``, will achieve a filtration, which returns the grouped row. ``` python In [194]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) In [195]: g = df.groupby('A', as_index=False) In [196]: g.nth(0) Out[196]: A B 0 1 NaN 2 5 6.0 In [197]: g.nth(-1) Out[197]: A B 1 1 4.0 2 5 6.0 ``` You can also select multiple rows from each group by specifying multiple nth values as a list of ints. ``` python In [198]: business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B') In [199]: df = pd.DataFrame(1, index=business_dates, columns=['a', 'b']) # get the first, 4th, and last date index for each month In [200]: df.groupby([df.index.year, df.index.month]).nth([0, 3, -1]) Out[200]: a b 2014 4 1 1 4 1 1 4 1 1 5 1 1 5 1 1 5 1 1 6 1 1 6 1 1 6 1 1 ``` ### Enumerate group items To see the order in which each row appears within its group, use the ``cumcount`` method: ``` python In [201]: dfg = pd.DataFrame(list('aaabba'), columns=['A']) In [202]: dfg Out[202]: A 0 a 1 a 2 a 3 b 4 b 5 a In [203]: dfg.groupby('A').cumcount() Out[203]: 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 In [204]: dfg.groupby('A').cumcount(ascending=False) Out[204]: 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 ``` ### Enumerate groups *New in version 0.20.2.* To see the ordering of the groups (as opposed to the order of rows within a group given by ``cumcount``) you can use ``ngroup()``. Note that the numbers given to the groups match the order in which the groups would be seen when iterating over the groupby object, not the order they are first observed. ``` python In [205]: dfg = pd.DataFrame(list('aaabba'), columns=['A']) In [206]: dfg Out[206]: A 0 a 1 a 2 a 3 b 4 b 5 a In [207]: dfg.groupby('A').ngroup() Out[207]: 0 0 1 0 2 0 3 1 4 1 5 0 dtype: int64 In [208]: dfg.groupby('A').ngroup(ascending=False) Out[208]: 0 1 1 1 2 1 3 0 4 0 5 1 dtype: int64 ``` ### Plotting Groupby also works with some plotting methods. For example, suppose we suspect that some features in a DataFrame may differ by group, in this case, the values in column 1 where the group is “B” are 3 higher on average. ``` python In [209]: np.random.seed(1234) In [210]: df = pd.DataFrame(np.random.randn(50, 2)) In [211]: df['g'] = np.random.choice(['A', 'B'], size=50) In [212]: df.loc[df['g'] == 'B', 1] += 3 ``` We can easily visualize this with a boxplot: ``` python In [213]: df.groupby('g').boxplot() Out[213]: A AxesSubplot(0.1,0.15;0.363636x0.75) B AxesSubplot(0.536364,0.15;0.363636x0.75) dtype: object ``` ![groupby_boxplot](https://static.pypandas.cn/public/static/images/groupby_boxplot.png) The result of calling ``boxplot`` is a dictionary whose keys are the values of our grouping column ``g`` (“A” and “B”). The values of the resulting dictionary can be controlled by the ``return_type`` keyword of ``boxplot``. See the [visualization documentation](visualization.html#visualization-box) for more. ::: danger Warning For historical reasons, ``df.groupby("g").boxplot()`` is not equivalent to ``df.boxplot(by="g")``. See [here](visualization.html#visualization-box-return) for an explanation. ::: ### Piping function calls *New in version 0.21.0.* Similar to the functionality provided by ``DataFrame`` and ``Series``, functions that take ``GroupBy`` objects can be chained together using a ``pipe`` method to allow for a cleaner, more readable syntax. To read about ``.pipe`` in general terms, see [here](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-pipe). Combining ``.groupby`` and ``.pipe`` is often useful when you need to reuse GroupBy objects. As an example, imagine having a DataFrame with columns for stores, products, revenue and quantity sold. We’d like to do a groupwise calculation of *prices* (i.e. revenue/quantity) per store and per product. We could do this in a multi-step operation, but expressing it in terms of piping can make the code more readable. First we set the data: ``` python In [214]: n = 1000 In [215]: df = pd.DataFrame({'Store': np.random.choice(['Store_1', 'Store_2'], n), .....: 'Product': np.random.choice(['Product_1', .....: 'Product_2'], n), .....: 'Revenue': (np.random.random(n) * 50 + 10).round(2), .....: 'Quantity': np.random.randint(1, 10, size=n)}) .....: In [216]: df.head(2) Out[216]: Store Product Revenue Quantity 0 Store_2 Product_1 26.12 1 1 Store_2 Product_1 28.86 1 ``` Now, to find prices per store/product, we can simply do: ``` python In [217]: (df.groupby(['Store', 'Product']) .....: .pipe(lambda grp: grp.Revenue.sum() / grp.Quantity.sum()) .....: .unstack().round(2)) .....: Out[217]: Product Product_1 Product_2 Store Store_1 6.82 7.05 Store_2 6.30 6.64 ``` Piping can also be expressive when you want to deliver a grouped object to some arbitrary function, for example: ``` python In [218]: def mean(groupby): .....: return groupby.mean() .....: In [219]: df.groupby(['Store', 'Product']).pipe(mean) Out[219]: Revenue Quantity Store Product Store_1 Product_1 34.622727 5.075758 Product_2 35.482815 5.029630 Store_2 Product_1 32.972837 5.237589 Product_2 34.684360 5.224000 ``` where ``mean`` takes a GroupBy object and finds the mean of the Revenue and Quantity columns respectively for each Store-Product combination. The ``mean`` function can be any function that takes in a GroupBy object; the ``.pipe`` will pass the GroupBy object as a parameter into the function you specify. ## Examples ### Regrouping by factor Regroup columns of a DataFrame according to their sum, and sum the aggregated ones. ``` python In [220]: df = pd.DataFrame({'a': [1, 0, 0], 'b': [0, 1, 0], .....: 'c': [1, 0, 0], 'd': [2, 3, 4]}) .....: In [221]: df Out[221]: a b c d 0 1 0 1 2 1 0 1 0 3 2 0 0 0 4 In [222]: df.groupby(df.sum(), axis=1).sum() Out[222]: 1 9 0 2 2 1 1 3 2 0 4 ``` ### Multi-column factorization By using ``ngroup()``, we can extract information about the groups in a way similar to [``factorize()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.factorize.html#pandas.factorize) (as described further in the [reshaping API](reshaping.html#reshaping-factorize)) but which applies naturally to multiple columns of mixed type and different sources. This can be useful as an intermediate categorical-like step in processing, when the relationships between the group rows are more important than their content, or as input to an algorithm which only accepts the integer encoding. (For more information about support in pandas for full categorical data, see the [Categorical introduction](categorical.html#categorical) and the [API documentation](https://pandas.pydata.org/pandas-docs/stable/reference/arrays.html#api-arrays-categorical).) ``` python In [223]: dfg = pd.DataFrame({"A": [1, 1, 2, 3, 2], "B": list("aaaba")}) In [224]: dfg Out[224]: A B 0 1 a 1 1 a 2 2 a 3 3 b 4 2 a In [225]: dfg.groupby(["A", "B"]).ngroup() Out[225]: 0 0 1 0 2 1 3 2 4 1 dtype: int64 In [226]: dfg.groupby(["A", [0, 0, 0, 1, 1]]).ngroup() Out[226]: 0 0 1 0 2 1 3 3 4 2 dtype: int64 ``` ### Groupby by indexer to ‘resample’ data Resampling produces new hypothetical samples (resamples) from already existing observed data or from a model that generates data. These new samples are similar to the pre-existing samples. In order to resample to work on indices that are non-datetimelike, the following procedure can be utilized. In the following examples, **df.index // 5** returns a binary array which is used to determine what gets selected for the groupby operation. ::: tip Note The below example shows how we can downsample by consolidation of samples into fewer samples. Here by using **df.index // 5**, we are aggregating the samples in bins. By applying **std()** function, we aggregate the information contained in many samples into a small subset of values which is their standard deviation thereby reducing the number of samples. ::: ``` python In [227]: df = pd.DataFrame(np.random.randn(10, 2)) In [228]: df Out[228]: 0 1 0 -0.793893 0.321153 1 0.342250 1.618906 2 -0.975807 1.918201 3 -0.810847 -1.405919 4 -1.977759 0.461659 5 0.730057 -1.316938 6 -0.751328 0.528290 7 -0.257759 -1.081009 8 0.505895 -1.701948 9 -1.006349 0.020208 In [229]: df.index // 5 Out[229]: Int64Index([0, 0, 0, 0, 0, 1, 1, 1, 1, 1], dtype='int64') In [230]: df.groupby(df.index // 5).std() Out[230]: 0 1 0 0.823647 1.312912 1 0.760109 0.942941 ``` ### Returning a Series to propagate names Group DataFrame columns, compute a set of metrics and return a named Series. The Series name is used as the name for the column index. This is especially useful in conjunction with reshaping operations such as stacking in which the column index name will be used as the name of the inserted column: ``` python In [231]: df = pd.DataFrame({'a': [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], .....: 'b': [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], .....: 'c': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], .....: 'd': [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1]}) .....: In [232]: def compute_metrics(x): .....: result = {'b_sum': x['b'].sum(), 'c_mean': x['c'].mean()} .....: return pd.Series(result, name='metrics') .....: In [233]: result = df.groupby('a').apply(compute_metrics) In [234]: result Out[234]: metrics b_sum c_mean a 0 2.0 0.5 1 2.0 0.5 2 2.0 0.5 In [235]: result.stack() Out[235]: a metrics 0 b_sum 2.0 c_mean 0.5 1 b_sum 2.0 c_mean 0.5 2 b_sum 2.0 c_mean 0.5 dtype: float64 ```