{ "cells": [ { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "import networkx as nx\n", "G = nx.Graph()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "G.add_nodes_from([1,2,3])\n", "G.add_edge(3,4)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1, 2, 3, 4]\n", "[(3, 4)]\n" ] } ], "source": [ "print(G.nodes())\n", "print(G.edges())" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ ":3: UserWarning: Matplotlib is currently using ps, which is a non-GUI backend, so cannot show the figure.\n", " plt.show()\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "nx.draw(G)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1, 2, 0.125)\n", "(2, 1, 0.125)\n", "(3, 4, 0.375)\n", "(4, 3, 0.375)\n" ] } ], "source": [ "FG = nx.Graph()\n", "FG.add_weighted_edges_from([(1, 2, 0.125), (1, 3, 0.75), (2, 4, 1.2), (3, 4, 0.375)])\n", "for n, nbrs in FG.adj.items():\n", " for nbr, eattr in nbrs.items():\n", " wt = eattr['weight']\n", " if wt < 0.5: print(f\"({n}, {nbr}, {wt:.3})\")" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1, 2, 0.125)\n", "(3, 4, 0.375)\n" ] } ], "source": [ "for (u, v, wt) in FG.edges.data('weight'):\n", " if wt < 0.5:\n", " print(f\"({u}, {v}, {wt:.3})\")" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ItemsView(AdjacencyView({1: {2: {'weight': 0.5}}, 2: {}, 3: {1: {'weight': 0.75}}}))\n", "[3]\n", "[2]\n" ] } ], "source": [ "DG = nx.DiGraph()\n", "DG.add_weighted_edges_from([(1, 2, 0.5), (3, 1, 0.75)])\n", "DG.out_degree(1, weight='weight')\n", "print(DG.adj.items())\n", "print(list(DG.predecessors(1)))\n", "print(list(DG.successors(1)))" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0 1 0 1 0 0 1 1 0 0]\n", " [1 0 1 1 1 1 0 1 0 1]\n", " [0 1 0 0 1 1 1 1 0 1]\n", " [0 0 1 0 0 0 0 1 1 1]\n", " [1 0 0 1 1 1 0 1 1 1]\n", " [0 0 0 0 0 0 0 0 1 1]\n", " [0 0 1 0 0 0 1 1 1 1]\n", " [1 0 1 0 0 1 1 0 0 0]\n", " [1 1 1 1 1 0 1 0 0 0]\n", " [1 1 1 0 0 0 0 0 0 1]]\n" ] } ], "source": [ "import numpy as np\n", "a = np.random.randint(0, 2, size=(10, 10))\n", "print(a)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [], "source": [ "D = nx.DiGraph(a)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0., 1., 0., 1., 0., 0., 1., 1., 0., 0.],\n", " [1., 0., 1., 1., 1., 1., 0., 1., 0., 1.],\n", " [0., 1., 0., 0., 1., 1., 1., 1., 0., 1.],\n", " [0., 0., 1., 0., 0., 0., 0., 1., 1., 1.],\n", " [1., 0., 0., 1., 1., 1., 0., 1., 1., 1.],\n", " [0., 0., 0., 0., 0., 0., 0., 0., 1., 1.],\n", " [0., 0., 1., 0., 0., 0., 1., 1., 1., 1.],\n", " [1., 0., 1., 0., 0., 1., 1., 0., 0., 0.],\n", " [1., 1., 1., 1., 1., 0., 1., 0., 0., 0.],\n", " [1., 1., 1., 0., 0., 0., 0., 0., 0., 1.]])" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "D.nodes()\n", "D.edges()\n", "nx.to_numpy_array(D)" ] } ], "metadata": { "interpreter": { "hash": "5ef0042cb263260037aa2928643ae94e240dd3afaec7872ebebe4f07619ddd0c" }, "kernelspec": { "display_name": "Python 3.8.8 ('ml')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }