# Working with missing data In this section, we will discuss missing (also referred to as NA) values in pandas. ::: tip Note The choice of using ``NaN`` internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, ``scikits.timeseries``. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas. ::: See the [cookbook](cookbook.html#cookbook-missing-data) for some advanced strategies. ## Values considered “missing” As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While ``NaN`` is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python ``None`` will arise and we wish to also consider that “missing” or “not available” or “NA”. ::: tip Note If you want to consider ``inf`` and ``-inf`` to be “NA” in computations, you can set ``pandas.options.mode.use_inf_as_na = True``. ::: ``` python In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'], ...: columns=['one', 'two', 'three']) ...: In [2]: df['four'] = 'bar' In [3]: df['five'] = df['one'] > 0 In [4]: df Out[4]: one two three four five a 0.469112 -0.282863 -1.509059 bar True c -1.135632 1.212112 -0.173215 bar False e 0.119209 -1.044236 -0.861849 bar True f -2.104569 -0.494929 1.071804 bar False h 0.721555 -0.706771 -1.039575 bar True In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']) In [6]: df2 Out[6]: one two three four five a 0.469112 -0.282863 -1.509059 bar True b NaN NaN NaN NaN NaN c -1.135632 1.212112 -0.173215 bar False d NaN NaN NaN NaN NaN e 0.119209 -1.044236 -0.861849 bar True f -2.104569 -0.494929 1.071804 bar False g NaN NaN NaN NaN NaN h 0.721555 -0.706771 -1.039575 bar True ``` To make detecting missing values easier (and across different array dtypes), pandas provides the [``isna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.isna.html#pandas.isna) and [``notna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.notna.html#pandas.notna) functions, which are also methods on Series and DataFrame objects: ``` python In [7]: df2['one'] Out[7]: a 0.469112 b NaN c -1.135632 d NaN e 0.119209 f -2.104569 g NaN h 0.721555 Name: one, dtype: float64 In [8]: pd.isna(df2['one']) Out[8]: a False b True c False d True e False f False g True h False Name: one, dtype: bool In [9]: df2['four'].notna() Out[9]: a True b False c True d False e True f True g False h True Name: four, dtype: bool In [10]: df2.isna() Out[10]: one two three four five a False False False False False b True True True True True c False False False False False d True True True True True e False False False False False f False False False False False g True True True True True h False False False False False ``` ::: danger Warning One has to be mindful that in Python (and NumPy), the ``nan's`` don’t compare equal, but ``None's`` **do**. Note that pandas/NumPy uses the fact that ``np.nan != np.nan``, and treats ``None`` like ``np.nan``. ``` python In [11]: None == None # noqa: E711 Out[11]: True In [12]: np.nan == np.nan Out[12]: False ``` So as compared to above, a scalar equality comparison versus a ``None/np.nan`` doesn’t provide useful information. ``` python In [13]: df2['one'] == np.nan Out[13]: a False b False c False d False e False f False g False h False Name: one, dtype: bool ``` ::: ### Integer dtypes and missing data Because ``NaN`` is a float, a column of integers with even one missing values is cast to floating-point dtype (see [Support for integer NA](gotchas.html#gotchas-intna) for more). Pandas provides a nullable integer array, which can be used by explicitly requesting the dtype: ``` python In [14]: pd.Series([1, 2, np.nan, 4], dtype=pd.Int64Dtype()) Out[14]: 0 1 1 2 2 NaN 3 4 dtype: Int64 ``` Alternatively, the string alias ``dtype='Int64'`` (note the capital ``"I"``) can be used. See [Nullable integer data type](integer_na.html#integer-na) for more. ### Datetimes For datetime64[ns] types, ``NaT`` represents missing values. This is a pseudo-native sentinel value that can be represented by NumPy in a singular dtype (datetime64[ns]). pandas objects provide compatibility between ``NaT`` and ``NaN``. ``` python In [15]: df2 = df.copy() In [16]: df2['timestamp'] = pd.Timestamp('20120101') In [17]: df2 Out[17]: one two three four five timestamp a 0.469112 -0.282863 -1.509059 bar True 2012-01-01 c -1.135632 1.212112 -0.173215 bar False 2012-01-01 e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 h 0.721555 -0.706771 -1.039575 bar True 2012-01-01 In [18]: df2.loc[['a', 'c', 'h'], ['one', 'timestamp']] = np.nan In [19]: df2 Out[19]: one two three four five timestamp a NaN -0.282863 -1.509059 bar True NaT c NaN 1.212112 -0.173215 bar False NaT e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 h NaN -0.706771 -1.039575 bar True NaT In [20]: df2.dtypes.value_counts() Out[20]: float64 3 bool 1 datetime64[ns] 1 object 1 dtype: int64 ``` ### Inserting missing data You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype. For example, numeric containers will always use ``NaN`` regardless of the missing value type chosen: ``` python In [21]: s = pd.Series([1, 2, 3]) In [22]: s.loc[0] = None In [23]: s Out[23]: 0 NaN 1 2.0 2 3.0 dtype: float64 ``` Likewise, datetime containers will always use ``NaT``. For object containers, pandas will use the value given: ``` python In [24]: s = pd.Series(["a", "b", "c"]) In [25]: s.loc[0] = None In [26]: s.loc[1] = np.nan In [27]: s Out[27]: 0 None 1 NaN 2 c dtype: object ``` ### Calculations with missing data Missing values propagate naturally through arithmetic operations between pandas objects. ``` python In [28]: a Out[28]: one two a NaN -0.282863 c NaN 1.212112 e 0.119209 -1.044236 f -2.104569 -0.494929 h -2.104569 -0.706771 In [29]: b Out[29]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575 In [30]: a + b Out[30]: one three two a NaN NaN -0.565727 c NaN NaN 2.424224 e 0.238417 NaN -2.088472 f -4.209138 NaN -0.989859 h NaN NaN -1.413542 ``` The descriptive statistics and computational methods discussed in the [data structure overview](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-stats) (and listed [here](https://pandas.pydata.org/pandas-docs/stable/reference/series.html#api-series-stats) and [here](https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#api-dataframe-stats)) are all written to account for missing data. For example: - When summing data, NA (missing) values will be treated as zero. - If the data are all NA, the result will be 0. - Cumulative methods like [``cumsum()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.cumsum.html#pandas.DataFrame.cumsum) and [``cumprod()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.cumprod.html#pandas.DataFrame.cumprod) ignore NA values by default, but preserve them in the resulting arrays. To override this behaviour and include NA values, use ``skipna=False``. ``` python In [31]: df Out[31]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575 In [32]: df['one'].sum() Out[32]: -1.9853605075978744 In [33]: df.mean(1) Out[33]: a -0.895961 c 0.519449 e -0.595625 f -0.509232 h -0.873173 dtype: float64 In [34]: df.cumsum() Out[34]: one two three a NaN -0.282863 -1.509059 c NaN 0.929249 -1.682273 e 0.119209 -0.114987 -2.544122 f -1.985361 -0.609917 -1.472318 h NaN -1.316688 -2.511893 In [35]: df.cumsum(skipna=False) Out[35]: one two three a NaN -0.282863 -1.509059 c NaN 0.929249 -1.682273 e NaN -0.114987 -2.544122 f NaN -0.609917 -1.472318 h NaN -1.316688 -2.511893 ``` ## Sum/prod of empties/nans ::: danger Warning This behavior is now standard as of v0.22.0 and is consistent with the default in ``numpy``; previously sum/prod of all-NA or empty Series/DataFrames would return NaN. See [v0.22.0 whatsnew](https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.22.0.html#whatsnew-0220) for more. ::: The sum of an empty or all-NA Series or column of a DataFrame is 0. ``` python In [36]: pd.Series([np.nan]).sum() Out[36]: 0.0 In [37]: pd.Series([]).sum() Out[37]: 0.0 ``` The product of an empty or all-NA Series or column of a DataFrame is 1. ``` python In [38]: pd.Series([np.nan]).prod() Out[38]: 1.0 In [39]: pd.Series([]).prod() Out[39]: 1.0 ``` ## NA values in GroupBy NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example: ``` python In [40]: df Out[40]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575 In [41]: df.groupby('one').mean() Out[41]: two three one -2.104569 -0.494929 1.071804 0.119209 -1.044236 -0.861849 ``` See the groupby section [here](groupby.html#groupby-missing) for more information. ### Cleaning / filling missing data pandas objects are equipped with various data manipulation methods for dealing with missing data. ## Filling missing values: fillna [``fillna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html#pandas.DataFrame.fillna) can “fill in” NA values with non-NA data in a couple of ways, which we illustrate: **Replace NA with a scalar value** ``` python In [42]: df2 Out[42]: one two three four five timestamp a NaN -0.282863 -1.509059 bar True NaT c NaN 1.212112 -0.173215 bar False NaT e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 h NaN -0.706771 -1.039575 bar True NaT In [43]: df2.fillna(0) Out[43]: one two three four five timestamp a 0.000000 -0.282863 -1.509059 bar True 0 c 0.000000 1.212112 -0.173215 bar False 0 e 0.119209 -1.044236 -0.861849 bar True 2012-01-01 00:00:00 f -2.104569 -0.494929 1.071804 bar False 2012-01-01 00:00:00 h 0.000000 -0.706771 -1.039575 bar True 0 In [44]: df2['one'].fillna('missing') Out[44]: a missing c missing e 0.119209 f -2.10457 h missing Name: one, dtype: object ``` **Fill gaps forward or backward** Using the same filling arguments as [reindexing](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-reindexing), we can propagate non-NA values forward or backward: ``` python In [45]: df Out[45]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h NaN -0.706771 -1.039575 In [46]: df.fillna(method='pad') Out[46]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e 0.119209 -1.044236 -0.861849 f -2.104569 -0.494929 1.071804 h -2.104569 -0.706771 -1.039575 ``` **Limit the amount of filling** If we only want consecutive gaps filled up to a certain number of data points, we can use the *limit* keyword: ``` python In [47]: df Out[47]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e NaN NaN NaN f NaN NaN NaN h NaN -0.706771 -1.039575 In [48]: df.fillna(method='pad', limit=1) Out[48]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e NaN 1.212112 -0.173215 f NaN NaN NaN h NaN -0.706771 -1.039575 ``` To remind you, these are the available filling methods: Method | Action ---|--- pad / ffill | Fill values forward bfill / backfill | Fill values backward With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time point. [``ffill()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ffill.html#pandas.DataFrame.ffill) is equivalent to ``fillna(method='ffill')`` and [``bfill()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.bfill.html#pandas.DataFrame.bfill) is equivalent to ``fillna(method='bfill')`` ## Filling with a PandasObject You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column. ``` python In [49]: dff = pd.DataFrame(np.random.randn(10, 3), columns=list('ABC')) In [50]: dff.iloc[3:5, 0] = np.nan In [51]: dff.iloc[4:6, 1] = np.nan In [52]: dff.iloc[5:8, 2] = np.nan In [53]: dff Out[53]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 NaN 0.577046 -1.715002 4 NaN NaN -1.157892 5 -1.344312 NaN NaN 6 -0.109050 1.643563 NaN 7 0.357021 -0.674600 NaN 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960 In [54]: dff.fillna(dff.mean()) Out[54]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 -0.140857 0.577046 -1.715002 4 -0.140857 -0.401419 -1.157892 5 -1.344312 -0.401419 -0.293543 6 -0.109050 1.643563 -0.293543 7 0.357021 -0.674600 -0.293543 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960 In [55]: dff.fillna(dff.mean()['B':'C']) Out[55]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 NaN 0.577046 -1.715002 4 NaN -0.401419 -1.157892 5 -1.344312 -0.401419 -0.293543 6 -0.109050 1.643563 -0.293543 7 0.357021 -0.674600 -0.293543 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960 ``` Same result as above, but is aligning the ‘fill’ value which is a Series in this case. ``` python In [56]: dff.where(pd.notna(dff), dff.mean(), axis='columns') Out[56]: A B C 0 0.271860 -0.424972 0.567020 1 0.276232 -1.087401 -0.673690 2 0.113648 -1.478427 0.524988 3 -0.140857 0.577046 -1.715002 4 -0.140857 -0.401419 -1.157892 5 -1.344312 -0.401419 -0.293543 6 -0.109050 1.643563 -0.293543 7 0.357021 -0.674600 -0.293543 8 -0.968914 -1.294524 0.413738 9 0.276662 -0.472035 -0.013960 ``` ## Dropping axis labels with missing data: dropna You may wish to simply exclude labels from a data set which refer to missing data. To do this, use [``dropna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html#pandas.DataFrame.dropna): ``` python In [57]: df Out[57]: one two three a NaN -0.282863 -1.509059 c NaN 1.212112 -0.173215 e NaN 0.000000 0.000000 f NaN 0.000000 0.000000 h NaN -0.706771 -1.039575 In [58]: df.dropna(axis=0) Out[58]: Empty DataFrame Columns: [one, two, three] Index: [] In [59]: df.dropna(axis=1) Out[59]: two three a -0.282863 -1.509059 c 1.212112 -0.173215 e 0.000000 0.000000 f 0.000000 0.000000 h -0.706771 -1.039575 In [60]: df['one'].dropna() Out[60]: Series([], Name: one, dtype: float64) ``` An equivalent [``dropna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.dropna.html#pandas.Series.dropna) is available for Series. DataFrame.dropna has considerably more options than Series.dropna, which can be examined [in the API](https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#api-dataframe-missing). ## Interpolation *New in version 0.23.0:* The ``limit_area`` keyword argument was added. Both Series and DataFrame objects have [``interpolate()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html#pandas.DataFrame.interpolate) that, by default, performs linear interpolation at missing data points. ``` python In [61]: ts Out[61]: 2000-01-31 0.469112 2000-02-29 NaN 2000-03-31 NaN 2000-04-28 NaN 2000-05-31 NaN ... 2007-12-31 -6.950267 2008-01-31 -7.904475 2008-02-29 -6.441779 2008-03-31 -8.184940 2008-04-30 -9.011531 Freq: BM, Length: 100, dtype: float64 In [62]: ts.count() Out[62]: 66 In [63]: ts.plot() Out[63]: ``` ![series_before_interpolate](https://static.pypandas.cn/public/static/images/series_before_interpolate.png) ``` python In [64]: ts.interpolate() Out[64]: 2000-01-31 0.469112 2000-02-29 0.434469 2000-03-31 0.399826 2000-04-28 0.365184 2000-05-31 0.330541 ... 2007-12-31 -6.950267 2008-01-31 -7.904475 2008-02-29 -6.441779 2008-03-31 -8.184940 2008-04-30 -9.011531 Freq: BM, Length: 100, dtype: float64 In [65]: ts.interpolate().count() Out[65]: 100 In [66]: ts.interpolate().plot() Out[66]: ``` ![series_interpolate](https://static.pypandas.cn/public/static/images/series_interpolate.png) Index aware interpolation is available via the ``method`` keyword: ``` python In [67]: ts2 Out[67]: 2000-01-31 0.469112 2000-02-29 NaN 2002-07-31 -5.785037 2005-01-31 NaN 2008-04-30 -9.011531 dtype: float64 In [68]: ts2.interpolate() Out[68]: 2000-01-31 0.469112 2000-02-29 -2.657962 2002-07-31 -5.785037 2005-01-31 -7.398284 2008-04-30 -9.011531 dtype: float64 In [69]: ts2.interpolate(method='time') Out[69]: 2000-01-31 0.469112 2000-02-29 0.270241 2002-07-31 -5.785037 2005-01-31 -7.190866 2008-04-30 -9.011531 dtype: float64 ``` For a floating-point index, use ``method='values'``: ``` python In [70]: ser Out[70]: 0.0 0.0 1.0 NaN 10.0 10.0 dtype: float64 In [71]: ser.interpolate() Out[71]: 0.0 0.0 1.0 5.0 10.0 10.0 dtype: float64 In [72]: ser.interpolate(method='values') Out[72]: 0.0 0.0 1.0 1.0 10.0 10.0 dtype: float64 ``` You can also interpolate with a DataFrame: ``` python In [73]: df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8], ....: 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]}) ....: In [74]: df Out[74]: A B 0 1.0 0.25 1 2.1 NaN 2 NaN NaN 3 4.7 4.00 4 5.6 12.20 5 6.8 14.40 In [75]: df.interpolate() Out[75]: A B 0 1.0 0.25 1 2.1 1.50 2 3.4 2.75 3 4.7 4.00 4 5.6 12.20 5 6.8 14.40 ``` The ``method`` argument gives access to fancier interpolation methods. If you have [scipy](http://www.scipy.org) installed, you can pass the name of a 1-d interpolation routine to ``method``. You’ll want to consult the full scipy interpolation [documentation](http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation) and reference [guide](http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html) for details. The appropriate interpolation method will depend on the type of data you are working with. - If you are dealing with a time series that is growing at an increasing rate, ``method='quadratic'`` may be appropriate. - If you have values approximating a cumulative distribution function, then ``method='pchip'`` should work well. - To fill missing values with goal of smooth plotting, consider ``method='akima'``. ::: danger Warning These methods require ``scipy``. ::: ``` python In [76]: df.interpolate(method='barycentric') Out[76]: A B 0 1.00 0.250 1 2.10 -7.660 2 3.53 -4.515 3 4.70 4.000 4 5.60 12.200 5 6.80 14.400 In [77]: df.interpolate(method='pchip') Out[77]: A B 0 1.00000 0.250000 1 2.10000 0.672808 2 3.43454 1.928950 3 4.70000 4.000000 4 5.60000 12.200000 5 6.80000 14.400000 In [78]: df.interpolate(method='akima') Out[78]: A B 0 1.000000 0.250000 1 2.100000 -0.873316 2 3.406667 0.320034 3 4.700000 4.000000 4 5.600000 12.200000 5 6.800000 14.400000 ``` When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation: ``` python In [79]: df.interpolate(method='spline', order=2) Out[79]: A B 0 1.000000 0.250000 1 2.100000 -0.428598 2 3.404545 1.206900 3 4.700000 4.000000 4 5.600000 12.200000 5 6.800000 14.400000 In [80]: df.interpolate(method='polynomial', order=2) Out[80]: A B 0 1.000000 0.250000 1 2.100000 -2.703846 2 3.451351 -1.453846 3 4.700000 4.000000 4 5.600000 12.200000 5 6.800000 14.400000 ``` Compare several methods: ``` python In [81]: np.random.seed(2) In [82]: ser = pd.Series(np.arange(1, 10.1, .25) ** 2 + np.random.randn(37)) In [83]: missing = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29]) In [84]: ser[missing] = np.nan In [85]: methods = ['linear', 'quadratic', 'cubic'] In [86]: df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods}) In [87]: df.plot() Out[87]: ``` ![compare_interpolations](https://static.pypandas.cn/public/static/images/compare_interpolations.png) Another use case is interpolation at *new* values. Suppose you have 100 observations from some distribution. And let’s suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ ``reindex`` and ``interpolate`` methods to interpolate at the new values. ``` python In [88]: ser = pd.Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index In [89]: new_index = ser.index | pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) In [90]: interp_s = ser.reindex(new_index).interpolate(method='pchip') In [91]: interp_s[49:51] Out[91]: 49.00 0.471410 49.25 0.476841 49.50 0.481780 49.75 0.485998 50.00 0.489266 50.25 0.491814 50.50 0.493995 50.75 0.495763 51.00 0.497074 dtype: float64 ``` ### Interpolation limits Like other pandas fill methods, [``interpolate()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html#pandas.DataFrame.interpolate) accepts a ``limit`` keyword argument. Use this argument to limit the number of consecutive ``NaN`` values filled since the last valid observation: ``` python In [92]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, ....: np.nan, 13, np.nan, np.nan]) ....: In [93]: ser Out[93]: 0 NaN 1 NaN 2 5.0 3 NaN 4 NaN 5 NaN 6 13.0 7 NaN 8 NaN dtype: float64 # fill all consecutive values in a forward direction In [94]: ser.interpolate() Out[94]: 0 NaN 1 NaN 2 5.0 3 7.0 4 9.0 5 11.0 6 13.0 7 13.0 8 13.0 dtype: float64 # fill one consecutive value in a forward direction In [95]: ser.interpolate(limit=1) Out[95]: 0 NaN 1 NaN 2 5.0 3 7.0 4 NaN 5 NaN 6 13.0 7 13.0 8 NaN dtype: float64 ``` By default, ``NaN`` values are filled in a ``forward`` direction. Use ``limit_direction`` parameter to fill ``backward`` or from ``both`` directions. ``` python # fill one consecutive value backwards In [96]: ser.interpolate(limit=1, limit_direction='backward') Out[96]: 0 NaN 1 5.0 2 5.0 3 NaN 4 NaN 5 11.0 6 13.0 7 NaN 8 NaN dtype: float64 # fill one consecutive value in both directions In [97]: ser.interpolate(limit=1, limit_direction='both') Out[97]: 0 NaN 1 5.0 2 5.0 3 7.0 4 NaN 5 11.0 6 13.0 7 13.0 8 NaN dtype: float64 # fill all consecutive values in both directions In [98]: ser.interpolate(limit_direction='both') Out[98]: 0 5.0 1 5.0 2 5.0 3 7.0 4 9.0 5 11.0 6 13.0 7 13.0 8 13.0 dtype: float64 ``` By default, ``NaN`` values are filled whether they are inside (surrounded by) existing valid values, or outside existing valid values. Introduced in v0.23 the ``limit_area`` parameter restricts filling to either inside or outside values. ``` python # fill one consecutive inside value in both directions In [99]: ser.interpolate(limit_direction='both', limit_area='inside', limit=1) Out[99]: 0 NaN 1 NaN 2 5.0 3 7.0 4 NaN 5 11.0 6 13.0 7 NaN 8 NaN dtype: float64 # fill all consecutive outside values backward In [100]: ser.interpolate(limit_direction='backward', limit_area='outside') Out[100]: 0 5.0 1 5.0 2 5.0 3 NaN 4 NaN 5 NaN 6 13.0 7 NaN 8 NaN dtype: float64 # fill all consecutive outside values in both directions In [101]: ser.interpolate(limit_direction='both', limit_area='outside') Out[101]: 0 5.0 1 5.0 2 5.0 3 NaN 4 NaN 5 NaN 6 13.0 7 13.0 8 13.0 dtype: float64 ``` ## Replacing generic values Often times we want to replace arbitrary values with other values. [``replace()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.replace.html#pandas.Series.replace) in Series and [``replace()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html#pandas.DataFrame.replace) in DataFrame provides an efficient yet flexible way to perform such replacements. For a Series, you can replace a single value or a list of values by another value: ``` python In [102]: ser = pd.Series([0., 1., 2., 3., 4.]) In [103]: ser.replace(0, 5) Out[103]: 0 5.0 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 ``` You can replace a list of values by a list of other values: ``` python In [104]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) Out[104]: 0 4.0 1 3.0 2 2.0 3 1.0 4 0.0 dtype: float64 ``` You can also specify a mapping dict: ``` python In [105]: ser.replace({0: 10, 1: 100}) Out[105]: 0 10.0 1 100.0 2 2.0 3 3.0 4 4.0 dtype: float64 ``` For a DataFrame, you can specify individual values by column: ``` python In [106]: df = pd.DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]}) In [107]: df.replace({'a': 0, 'b': 5}, 100) Out[107]: a b 0 100 100 1 1 6 2 2 7 3 3 8 4 4 9 ``` Instead of replacing with specified values, you can treat all given values as missing and interpolate over them: ``` python In [108]: ser.replace([1, 2, 3], method='pad') Out[108]: 0 0.0 1 0.0 2 0.0 3 0.0 4 4.0 dtype: float64 ``` ## String/regular expression replacement ::: tip Note Python strings prefixed with the ``r`` character such as ``r'hello world'`` are so-called “raw” strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., ``r'\' == '\\'``. You should [read about them](https://docs.python.org/3/reference/lexical_analysis.html#string-literals) if this is unclear. ::: Replace the ‘.’ with ``NaN`` (str -> str): ``` python In [109]: d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', np.nan, 'd']} In [110]: df = pd.DataFrame(d) In [111]: df.replace('.', np.nan) Out[111]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d ``` Now do it with a regular expression that removes surrounding whitespace (regex -> regex): ``` python In [112]: df.replace(r'\s*\.\s*', np.nan, regex=True) Out[112]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d ``` Replace a few different values (list -> list): ``` python In [113]: df.replace(['a', '.'], ['b', np.nan]) Out[113]: a b c 0 0 b b 1 1 b b 2 2 NaN NaN 3 3 NaN d ``` list of regex -> list of regex: ``` python In [114]: df.replace([r'\.', r'(a)'], ['dot', r'\1stuff'], regex=True) Out[114]: a b c 0 0 astuff astuff 1 1 b b 2 2 dot NaN 3 3 dot d ``` Only search in column ``'b'`` (dict -> dict): ``` python In [115]: df.replace({'b': '.'}, {'b': np.nan}) Out[115]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d ``` Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict): ``` python In [116]: df.replace({'b': r'\s*\.\s*'}, {'b': np.nan}, regex=True) Out[116]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d ``` You can pass nested dictionaries of regular expressions that use ``regex=True``: ``` python In [117]: df.replace({'b': {'b': r''}}, regex=True) Out[117]: a b c 0 0 a a 1 1 b 2 2 . NaN 3 3 . d ``` Alternatively, you can pass the nested dictionary like so: ``` python In [118]: df.replace(regex={'b': {r'\s*\.\s*': np.nan}}) Out[118]: a b c 0 0 a a 1 1 b b 2 2 NaN NaN 3 3 NaN d ``` You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well. ``` python In [119]: df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'}, regex=True) Out[119]: a b c 0 0 a a 1 1 b b 2 2 .ty NaN 3 3 .ty d ``` You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex). ``` python In [120]: df.replace([r'\s*\.\s*', r'a|b'], np.nan, regex=True) Out[120]: a b c 0 0 NaN NaN 1 1 NaN NaN 2 2 NaN NaN 3 3 NaN d ``` All of the regular expression examples can also be passed with the ``to_replace`` argument as the ``regex`` argument. In this case the ``value`` argument must be passed explicitly by name or ``regex`` must be a nested dictionary. The previous example, in this case, would then be: ``` python In [121]: df.replace(regex=[r'\s*\.\s*', r'a|b'], value=np.nan) Out[121]: a b c 0 0 NaN NaN 1 1 NaN NaN 2 2 NaN NaN 3 3 NaN d ``` This can be convenient if you do not want to pass ``regex=True`` every time you want to use a regular expression. ::: tip Note Anywhere in the above ``replace`` examples that you see a regular expression a compiled regular expression is valid as well. ::: ## Numeric replacement [``replace()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html#pandas.DataFrame.replace) is similar to [``fillna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html#pandas.DataFrame.fillna). ``` python In [122]: df = pd.DataFrame(np.random.randn(10, 2)) In [123]: df[np.random.rand(df.shape[0]) > 0.5] = 1.5 In [124]: df.replace(1.5, np.nan) Out[124]: 0 1 0 -0.844214 -1.021415 1 0.432396 -0.323580 2 0.423825 0.799180 3 1.262614 0.751965 4 NaN NaN 5 NaN NaN 6 -0.498174 -1.060799 7 0.591667 -0.183257 8 1.019855 -1.482465 9 NaN NaN ``` Replacing more than one value is possible by passing a list. ``` python In [125]: df00 = df.iloc[0, 0] In [126]: df.replace([1.5, df00], [np.nan, 'a']) Out[126]: 0 1 0 a -1.02141 1 0.432396 -0.32358 2 0.423825 0.79918 3 1.26261 0.751965 4 NaN NaN 5 NaN NaN 6 -0.498174 -1.0608 7 0.591667 -0.183257 8 1.01985 -1.48247 9 NaN NaN In [127]: df[1].dtype Out[127]: dtype('float64') ``` You can also operate on the DataFrame in place: ``` python In [128]: df.replace(1.5, np.nan, inplace=True) ``` ::: danger Warning When replacing multiple ``bool`` or ``datetime64`` objects, the first argument to ``replace`` (``to_replace``) must match the type of the value being replaced. For example, ``` python >>> s = pd.Series([True, False, True]) >>> s.replace({'a string': 'new value', True: False}) # raises TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str' ``` will raise a ``TypeError`` because one of the ``dict`` keys is not of the correct type for replacement. However, when replacing a *single* object such as, ``` python In [129]: s = pd.Series([True, False, True]) In [130]: s.replace('a string', 'another string') Out[130]: 0 True 1 False 2 True dtype: bool ``` the original ``NDFrame`` object will be returned untouched. We’re working on unifying this API, but for backwards compatibility reasons we cannot break the latter behavior. See [GH6354](https://github.com/pandas-dev/pandas/issues/6354) for more details. ::: ### Missing data casting rules and indexing While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules”. When a reindexing operation introduces missing data, the Series will be cast according to the rules introduced in the table below. data type | Cast to ---|--- integer | float boolean | object float | no cast object | no cast For example: ``` python In [131]: s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7]) In [132]: s > 0 Out[132]: 0 True 2 True 4 True 6 True 7 True dtype: bool In [133]: (s > 0).dtype Out[133]: dtype('bool') In [134]: crit = (s > 0).reindex(list(range(8))) In [135]: crit Out[135]: 0 True 1 NaN 2 True 3 NaN 4 True 5 NaN 6 True 7 True dtype: object In [136]: crit.dtype Out[136]: dtype('O') ``` Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated: ``` python In [137]: reindexed = s.reindex(list(range(8))).fillna(0) In [138]: reindexed[crit] --------------------------------------------------------------------------- ValueError Traceback (most recent call last) in ----> 1 reindexed[crit] /pandas/pandas/core/series.py in __getitem__(self, key) 1101 key = list(key) 1102 -> 1103 if com.is_bool_indexer(key): 1104 key = check_bool_indexer(self.index, key) 1105 /pandas/pandas/core/common.py in is_bool_indexer(key) 128 if not lib.is_bool_array(key): 129 if isna(key).any(): --> 130 raise ValueError(na_msg) 131 return False 132 return True ValueError: cannot index with vector containing NA / NaN values ``` However, these can be filled in using [``fillna()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html#pandas.DataFrame.fillna) and it will work fine: ``` python In [139]: reindexed[crit.fillna(False)] Out[139]: 0 0.126504 2 0.696198 4 0.697416 6 0.601516 7 0.003659 dtype: float64 In [140]: reindexed[crit.fillna(True)] Out[140]: 0 0.126504 1 0.000000 2 0.696198 3 0.000000 4 0.697416 5 0.000000 6 0.601516 7 0.003659 dtype: float64 ``` Pandas provides a nullable integer dtype, but you must explicitly request it when creating the series or column. Notice that we use a capital “I” in the ``dtype="Int64"``. ``` python In [141]: s = pd.Series([0, 1, np.nan, 3, 4], dtype="Int64") In [142]: s Out[142]: 0 0 1 1 2 NaN 3 3 4 4 dtype: Int64 ``` See [Nullable integer data type](integer_na.html#integer-na) for more.