# 使用多个数据集演示直方图(hist)函数 绘制具有多个样本集的直方图并演示: - 使用带有多个样本集的图例 - 堆积图 - 没有填充的步进曲线 - 不同样本量的数据集 选择不同的存储量和大小会显著影响直方图的形状。Astropy文档有很多关于如何选择这些参数的部分: http://docs.astropy.org/en/stable/visualization/histogram.html ![多个数据集演示直方图](https://matplotlib.org/_images/sphx_glr_histogram_multihist_001.png) ```python import numpy as np import matplotlib.pyplot as plt np.random.seed(19680801) n_bins = 10 x = np.random.randn(1000, 3) fig, axes = plt.subplots(nrows=2, ncols=2) ax0, ax1, ax2, ax3 = axes.flatten() colors = ['red', 'tan', 'lime'] ax0.hist(x, n_bins, density=True, histtype='bar', color=colors, label=colors) ax0.legend(prop={'size': 10}) ax0.set_title('bars with legend') ax1.hist(x, n_bins, density=True, histtype='bar', stacked=True) ax1.set_title('stacked bar') ax2.hist(x, n_bins, histtype='step', stacked=True, fill=False) ax2.set_title('stack step (unfilled)') # Make a multiple-histogram of data-sets with different length. x_multi = [np.random.randn(n) for n in [10000, 5000, 2000]] ax3.hist(x_multi, n_bins, histtype='bar') ax3.set_title('different sample sizes') fig.tight_layout() plt.show() ``` ## 下载这个示例 - [下载python源码: histogram_multihist.py](https://matplotlib.org/_downloads/histogram_multihist.py) - [下载Jupyter notebook: histogram_multihist.ipynb](https://matplotlib.org/_downloads/histogram_multihist.ipynb)