# 注释变换 此示例显示如何使用不同的坐标系进行注释。 有关注释功能的完整概述,另请参阅[注释教程](https://matplotlib.org/tutorials/text/annotations.html)。 ```python import numpy as np import matplotlib.pyplot as plt x = np.arange(0, 10, 0.005) y = np.exp(-x/2.) * np.sin(2*np.pi*x) fig, ax = plt.subplots() ax.plot(x, y) ax.set_xlim(0, 10) ax.set_ylim(-1, 1) xdata, ydata = 5, 0 xdisplay, ydisplay = ax.transData.transform_point((xdata, ydata)) bbox = dict(boxstyle="round", fc="0.8") arrowprops = dict( arrowstyle = "->", connectionstyle = "angle,angleA=0,angleB=90,rad=10") offset = 72 ax.annotate('data = (%.1f, %.1f)'%(xdata, ydata), (xdata, ydata), xytext=(-2*offset, offset), textcoords='offset points', bbox=bbox, arrowprops=arrowprops) disp = ax.annotate('display = (%.1f, %.1f)'%(xdisplay, ydisplay), (xdisplay, ydisplay), xytext=(0.5*offset, -offset), xycoords='figure pixels', textcoords='offset points', bbox=bbox, arrowprops=arrowprops) plt.show() ``` ![注释变换示例](https://matplotlib.org/_images/sphx_glr_annotate_transform_001.png) ## 参考 此示例中显示了以下函数,方法,类和模块的使用: ```python import matplotlib matplotlib.transforms.Transform.transform_point matplotlib.axes.Axes.annotate matplotlib.pyplot.annotate ``` ## 下载这个示例 - [下载python源码: annotate_transform.py](https://matplotlib.org/_downloads/annotate_transform.py) - [下载Jupyter notebook: annotate_transform.ipynb](https://matplotlib.org/_downloads/annotate_transform.ipynb)