# Sparse data structures ::: tip Note ``SparseSeries`` and ``SparseDataFrame`` have been deprecated. Their purpose is served equally well by a [``Series``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series) or [``DataFrame``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame) with sparse values. See [Migrating](#sparse-migration) for tips on migrating. ::: Pandas provides data structures for efficiently storing sparse data. These are not necessarily sparse in the typical “mostly 0”. Rather, you can view these objects as being “compressed” where any data matching a specific value (``NaN`` / missing value, though any value can be chosen, including 0) is omitted. The compressed values are not actually stored in the array. ``` python In [1]: arr = np.random.randn(10) In [2]: arr[2:-2] = np.nan In [3]: ts = pd.Series(pd.SparseArray(arr)) In [4]: ts Out[4]: 0 0.469112 1 -0.282863 2 NaN 3 NaN 4 NaN 5 NaN 6 NaN 7 NaN 8 -0.861849 9 -2.104569 dtype: Sparse[float64, nan] ``` Notice the dtype, ``Sparse[float64, nan]``. The ``nan`` means that elements in the array that are ``nan`` aren’t actually stored, only the non-``nan`` elements are. Those non-``nan`` elements have a ``float64`` dtype. The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA ``DataFrame``: ``` python In [5]: df = pd.DataFrame(np.random.randn(10000, 4)) In [6]: df.iloc[:9998] = np.nan In [7]: sdf = df.astype(pd.SparseDtype("float", np.nan)) In [8]: sdf.head() Out[8]: 0 1 2 3 0 NaN NaN NaN NaN 1 NaN NaN NaN NaN 2 NaN NaN NaN NaN 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN In [9]: sdf.dtypes Out[9]: 0 Sparse[float64, nan] 1 Sparse[float64, nan] 2 Sparse[float64, nan] 3 Sparse[float64, nan] dtype: object In [10]: sdf.sparse.density Out[10]: 0.0002 ``` As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. ``` python In [11]: 'dense : {:0.2f} bytes'.format(df.memory_usage().sum() / 1e3) Out[11]: 'dense : 320.13 bytes' In [12]: 'sparse: {:0.2f} bytes'.format(sdf.memory_usage().sum() / 1e3) Out[12]: 'sparse: 0.22 bytes' ``` Functionally, their behavior should be nearly identical to their dense counterparts. ## SparseArray [``SparseArray``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.SparseArray.html#pandas.SparseArray) is a [``ExtensionArray``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray) for storing an array of sparse values (see [dtypes](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#basics-dtypes) for more on extension arrays). It is a 1-dimensional ndarray-like object storing only values distinct from the ``fill_value``: ``` python In [13]: arr = np.random.randn(10) In [14]: arr[2:5] = np.nan In [15]: arr[7:8] = np.nan In [16]: sparr = pd.SparseArray(arr) In [17]: sparr Out[17]: [-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.14529711373305043, nan, 0.6060271905134522, 1.3342113401317768] Fill: nan IntIndex Indices: array([0, 1, 5, 6, 8, 9], dtype=int32) ``` A sparse array can be converted to a regular (dense) ndarray with ``numpy.asarray()`` ``` python In [18]: np.asarray(sparr) Out[18]: array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453, nan, 0.606 , 1.3342]) ``` ## SparseDtype The ``SparseArray.dtype`` property stores two pieces of information 1. The dtype of the non-sparse values 1. The scalar fill value ``` python In [19]: sparr.dtype Out[19]: Sparse[float64, nan] ``` A [``SparseDtype``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.SparseDtype.html#pandas.SparseDtype) may be constructed by passing each of these ``` python In [20]: pd.SparseDtype(np.dtype('datetime64[ns]')) Out[20]: Sparse[datetime64[ns], NaT] ``` The default fill value for a given NumPy dtype is the “missing” value for that dtype, though it may be overridden. ``` python In [21]: pd.SparseDtype(np.dtype('datetime64[ns]'), ....: fill_value=pd.Timestamp('2017-01-01')) ....: Out[21]: Sparse[datetime64[ns], 2017-01-01 00:00:00] ``` Finally, the string alias ``'Sparse[dtype]'`` may be used to specify a sparse dtype in many places ``` python In [22]: pd.array([1, 0, 0, 2], dtype='Sparse[int]') Out[22]: [1, 0, 0, 2] Fill: 0 IntIndex Indices: array([0, 3], dtype=int32) ``` ## Sparse accessor *New in version 0.24.0.* Pandas provides a ``.sparse`` accessor, similar to ``.str`` for string data, ``.cat`` for categorical data, and ``.dt`` for datetime-like data. This namespace provides attributes and methods that are specific to sparse data. ``` python In [23]: s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]") In [24]: s.sparse.density Out[24]: 0.5 In [25]: s.sparse.fill_value Out[25]: 0 ``` This accessor is available only on data with ``SparseDtype``, and on the [``Series``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series) class itself for creating a Series with sparse data from a scipy COO matrix with. *New in version 0.25.0.* A ``.sparse`` accessor has been added for [``DataFrame``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame) as well. See [Sparse accessor](https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#api-frame-sparse) for more. ## Sparse calculation You can apply NumPy [ufuncs](https://docs.scipy.org/doc/numpy/reference/ufuncs.html) to ``SparseArray`` and get a ``SparseArray`` as a result. ``` python In [26]: arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan]) In [27]: np.abs(arr) Out[27]: [1.0, nan, nan, 2.0, nan] Fill: nan IntIndex Indices: array([0, 3], dtype=int32) ``` The *ufunc* is also applied to ``fill_value``. This is needed to get the correct dense result. ``` python In [28]: arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1) In [29]: np.abs(arr) Out[29]: [1.0, 1, 1, 2.0, 1] Fill: 1 IntIndex Indices: array([0, 3], dtype=int32) In [30]: np.abs(arr).to_dense() Out[30]: array([1., 1., 1., 2., 1.]) ``` ## Migrating In older versions of pandas, the ``SparseSeries`` and ``SparseDataFrame`` classes (documented below) were the preferred way to work with sparse data. With the advent of extension arrays, these subclasses are no longer needed. Their purpose is better served by using a regular Series or DataFrame with sparse values instead. ::: tip Note There’s no performance or memory penalty to using a Series or DataFrame with sparse values, rather than a SparseSeries or SparseDataFrame. ::: This section provides some guidance on migrating your code to the new style. As a reminder, you can use the python warnings module to control warnings. But we recommend modifying your code, rather than ignoring the warning. **Construction** From an array-like, use the regular [``Series``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series) or [``DataFrame``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame) constructors with [``SparseArray``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.SparseArray.html#pandas.SparseArray) values. ``` python # Previous way >>> pd.SparseDataFrame({"A": [0, 1]}) ``` ``` python # New way In [31]: pd.DataFrame({"A": pd.SparseArray([0, 1])}) Out[31]: A 0 0 1 1 ``` From a SciPy sparse matrix, use [``DataFrame.sparse.from_spmatrix()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sparse.from_spmatrix.html#pandas.DataFrame.sparse.from_spmatrix), ``` python # Previous way >>> from scipy import sparse >>> mat = sparse.eye(3) >>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C']) ``` ``` python # New way In [32]: from scipy import sparse In [33]: mat = sparse.eye(3) In [34]: df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C']) In [35]: df.dtypes Out[35]: A Sparse[float64, 0.0] B Sparse[float64, 0.0] C Sparse[float64, 0.0] dtype: object ``` **Conversion** From sparse to dense, use the ``.sparse`` accessors ``` python In [36]: df.sparse.to_dense() Out[36]: A B C 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 In [37]: df.sparse.to_coo() Out[37]: <3x3 sparse matrix of type '' with 3 stored elements in COOrdinate format> ``` From dense to sparse, use [``DataFrame.astype()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.astype.html#pandas.DataFrame.astype) with a [``SparseDtype``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.SparseDtype.html#pandas.SparseDtype). ``` python In [38]: dense = pd.DataFrame({"A": [1, 0, 0, 1]}) In [39]: dtype = pd.SparseDtype(int, fill_value=0) In [40]: dense.astype(dtype) Out[40]: A 0 1 1 0 2 0 3 1 ``` **Sparse Properties** Sparse-specific properties, like ``density``, are available on the ``.sparse`` accessor. ``` python In [41]: df.sparse.density Out[41]: 0.3333333333333333 ``` **General differences** In a ``SparseDataFrame``, *all* columns were sparse. A [``DataFrame``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame) can have a mixture of sparse and dense columns. As a consequence, assigning new columns to a ``DataFrame`` with sparse values will not automatically convert the input to be sparse. ``` python # Previous Way >>> df = pd.SparseDataFrame({"A": [0, 1]}) >>> df['B'] = [0, 0] # implicitly becomes Sparse >>> df['B'].dtype Sparse[int64, nan] ``` Instead, you’ll need to ensure that the values being assigned are sparse ``` python In [42]: df = pd.DataFrame({"A": pd.SparseArray([0, 1])}) In [43]: df['B'] = [0, 0] # remains dense In [44]: df['B'].dtype Out[44]: dtype('int64') In [45]: df['B'] = pd.SparseArray([0, 0]) In [46]: df['B'].dtype Out[46]: Sparse[int64, 0] ``` The ``SparseDataFrame.default_kind`` and ``SparseDataFrame.default_fill_value`` attributes have no replacement. ## Interaction with scipy.sparse Use [``DataFrame.sparse.from_spmatrix()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sparse.from_spmatrix.html#pandas.DataFrame.sparse.from_spmatrix) to create a ``DataFrame`` with sparse values from a sparse matrix. *New in version 0.25.0.* ``` python In [47]: from scipy.sparse import csr_matrix In [48]: arr = np.random.random(size=(1000, 5)) In [49]: arr[arr < .9] = 0 In [50]: sp_arr = csr_matrix(arr) In [51]: sp_arr Out[51]: <1000x5 sparse matrix of type '' with 517 stored elements in Compressed Sparse Row format> In [52]: sdf = pd.DataFrame.sparse.from_spmatrix(sp_arr) In [53]: sdf.head() Out[53]: 0 1 2 3 4 0 0.956380 0.0 0.0 0.000000 0.0 1 0.000000 0.0 0.0 0.000000 0.0 2 0.000000 0.0 0.0 0.000000 0.0 3 0.000000 0.0 0.0 0.000000 0.0 4 0.999552 0.0 0.0 0.956153 0.0 In [54]: sdf.dtypes Out[54]: 0 Sparse[float64, 0.0] 1 Sparse[float64, 0.0] 2 Sparse[float64, 0.0] 3 Sparse[float64, 0.0] 4 Sparse[float64, 0.0] dtype: object ``` All sparse formats are supported, but matrices that are not in [``COOrdinate``](https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse) format will be converted, copying data as needed. To convert back to sparse SciPy matrix in COO format, you can use the [``DataFrame.sparse.to_coo()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sparse.to_coo.html#pandas.DataFrame.sparse.to_coo) method: ``` python In [55]: sdf.sparse.to_coo() Out[55]: <1000x5 sparse matrix of type '' with 517 stored elements in COOrdinate format> ``` meth:*Series.sparse.to_coo* is implemented for transforming a ``Series`` with sparse values indexed by a [``MultiIndex``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.MultiIndex.html#pandas.MultiIndex) to a [``scipy.sparse.coo_matrix``](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html#scipy.sparse.coo_matrix). The method requires a ``MultiIndex`` with two or more levels. ``` python In [56]: s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan]) In [57]: s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0), ....: (1, 2, 'a', 1), ....: (1, 1, 'b', 0), ....: (1, 1, 'b', 1), ....: (2, 1, 'b', 0), ....: (2, 1, 'b', 1)], ....: names=['A', 'B', 'C', 'D']) ....: In [58]: s Out[58]: A B C D 1 2 a 0 3.0 1 NaN 1 b 0 1.0 1 3.0 2 1 b 0 NaN 1 NaN dtype: float64 In [59]: ss = s.astype('Sparse') In [60]: ss Out[60]: A B C D 1 2 a 0 3.0 1 NaN 1 b 0 1.0 1 3.0 2 1 b 0 NaN 1 NaN dtype: Sparse[float64, nan] ``` In the example below, we transform the ``Series`` to a sparse representation of a 2-d array by specifying that the first and second ``MultiIndex`` levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation. ``` python In [61]: A, rows, columns = ss.sparse.to_coo(row_levels=['A', 'B'], ....: column_levels=['C', 'D'], ....: sort_labels=True) ....: In [62]: A Out[62]: <3x4 sparse matrix of type '' with 3 stored elements in COOrdinate format> In [63]: A.todense() Out[63]: matrix([[0., 0., 1., 3.], [3., 0., 0., 0.], [0., 0., 0., 0.]]) In [64]: rows Out[64]: [(1, 1), (1, 2), (2, 1)] In [65]: columns Out[65]: [('a', 0), ('a', 1), ('b', 0), ('b', 1)] ``` Specifying different row and column labels (and not sorting them) yields a different sparse matrix: ``` python In [66]: A, rows, columns = ss.sparse.to_coo(row_levels=['A', 'B', 'C'], ....: column_levels=['D'], ....: sort_labels=False) ....: In [67]: A Out[67]: <3x2 sparse matrix of type '' with 3 stored elements in COOrdinate format> In [68]: A.todense() Out[68]: matrix([[3., 0.], [1., 3.], [0., 0.]]) In [69]: rows Out[69]: [(1, 2, 'a'), (1, 1, 'b'), (2, 1, 'b')] In [70]: columns Out[70]: [0, 1] ``` A convenience method [``Series.sparse.from_coo()``](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.sparse.from_coo.html#pandas.Series.sparse.from_coo) is implemented for creating a ``Series`` with sparse values from a ``scipy.sparse.coo_matrix``. ``` python In [71]: from scipy import sparse In [72]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), ....: shape=(3, 4)) ....: In [73]: A Out[73]: <3x4 sparse matrix of type '' with 3 stored elements in COOrdinate format> In [74]: A.todense() Out[74]: matrix([[0., 0., 1., 2.], [3., 0., 0., 0.], [0., 0., 0., 0.]]) ``` The default behaviour (with ``dense_index=False``) simply returns a ``Series`` containing only the non-null entries. ``` python In [75]: ss = pd.Series.sparse.from_coo(A) In [76]: ss Out[76]: 0 2 1.0 3 2.0 1 0 3.0 dtype: Sparse[float64, nan] ``` Specifying ``dense_index=True`` will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to ``dense_index=False``) if the sparse matrix is large (and sparse) enough. ``` python In [77]: ss_dense = pd.Series.sparse.from_coo(A, dense_index=True) In [78]: ss_dense Out[78]: 0 0 NaN 1 NaN 2 1.0 3 2.0 1 0 3.0 1 NaN 2 NaN 3 NaN 2 0 NaN 1 NaN 2 NaN 3 NaN dtype: Sparse[float64, nan] ``` ## Sparse subclasses The ``SparseSeries`` and ``SparseDataFrame`` classes are deprecated. Visit their API pages for usage.