NumPy Reference
Release 1.17.0

Written by the NumPy community

July 26, 2019

CONTENTS

1 Array objects 3
1.1 The N-dimensional array (Nndarray) . . . « v v v v v v i i e e e e e e e e e e e e e 3
1.2 Scalars e e e e e e 51
1.3 Datatypeobjects (ALYDE) . « v v v v v i i i e e e e e e e e e 67
L4 Indexing i i e e e e e e e e e e e e e 84
1.5 Tterating OVer AITAyS v v v v vt e 92
1.6 Standard array subclasses e e 104
1.7 Masked arrays L e e 215
1.8 The Array Interface 369
1.9 Datetimes and Timedeltas e 374
2 Constants 383
3 Universal functions (ufunc) 391
3.1 Broadcasting e e e e e 391
3.2 Output type determinationl e e e e 392
3.3 Useofinternal buffers e 392
34 Errorhandling L e e e e e e e e 393
3.5 CastingRules o . o 0 e e e e e e e e 395
3.6 Overriding Ufuncbehavior e 397
37 UfUnC ..o e e e e e 397
3.8 Availableufuncs 410
4 Routines 415
4.1 Array creation TOULINES o v vttt it e e e e e e e e e e e e 415
4.2 Array manipulation routines L e e e e e e e 451
43 Binary operations it e 491
4.4 String Operations v v i e 500
4.5 C-Types Foreign Function Interface (numpy .ctypeslib) 545
4.6 Datetime Support Functions L 547
47 Datatype roUtiNes o v vttt e e e e e e e e e e e e e e e 553
4.8 Optionally Scipy-accelerated routines (numpy.dual) v v v v v v vt e e e e 568
4.9 Mathematical functions with automatic domain (numpy .emath) 569
4.10 Floating pointerror handling L 570
4.11 Discrete Fourier Transform (numpy . ££t) o . o o o o 574
4.12 Financial functions e e e 596
4.13 Functional programming L e e e e e e e e e e e e 605
4.14 NumPy-specific help functions. e e e e 612
415 IndexXin@ TOULINES v v v v v e 615
4.16 Inputand output L L e e e e e e e e e e e e e e 654

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29

Linear algebra (numpy . 1inalg) . . . v v v i v i it e e e e e e e e e e e e e e e e
Logic functions o o i e e e e e e e e e e e e e
Mathematical functions oL L e e e e e e e e e e
Matrix library (numpy .mat1ib) L o e e e e e
Miscellaneous TOULINeS v v v v v e
Padding Arrays e
Polynomials e e e e e e e e e e
Random sampling (numpy . random) it e e e e e e e e e e
SELTOUtiNeS o v it e e e e e e e e e
Sorting, searching, and counting L. oL o e e e e e
SEatiStCS . v o v v o e
Test Support (NUMPY . £ESTING) « v v v v v v e
Window functions L e e e

Packaging (numpy .distutils)

5.1
5.2
53

Modules in numpy . distutils v i e e e e e e e e e e e e e e e e
Building Installable C libraries 0 i e e e e e
Conversion of .srcfiles e e

NumPy Distutils - Users Guide

6.1
6.2
6.3
6.4
6.5

SciPy structure e e e e e e e e e
Requirements for SciPy packages L oo
The setup.pyfile e e e e e
The __ init_ .pyfile e e e e
Extra features in NumPy Distutils e

NumPy C-API

7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8
7.9

Python Types and C-Structures o ittt e e e e e e
System configuration e e e e e e e e e e e e e e e e e
Data Type APL e e e e
Array APL . . . e e e
Array Iterator API oL
UFunc APT o e e
Generalized Universal Function APT
NumPy core libraries o e e e e e e e e e e
C APIDeprecations o v vt it i e e e e e e e e

NumPy internals

8.1
8.2
8.3
8.4

NumPy C Code Explanations i v i i i it e e e e e e e e e e e e
Memory ALgnment oo e e e e e e e e e e e e e
Internal organization of numpy arrays oo e e e e e e e e
Multidimensional Array Indexing Order Issues

NumPy and SWIG

9.1

Testing the numpy.i Typemaps o o i e e e e

10 Acknowledgements

Bibliography

Python Module Index

Index

NumPy Reference, Release 1.17.0

Release 1.17
Date July 26, 2019

This reference manual details functions, modules, and objects included in NumPy, describing what they are and what
they do. For learning how to use NumPy, see also user.

CONTENTS 1

NumPy Reference, Release 1.17.0

2 CONTENTS

CHAPTER
ONE

ARRAY OBJECTS

NumPy provides an N-dimensional array type, the ndarray, which describes a collection of “items” of the same type.
The items can be indexed using for example N integers.

All ndarrays are homogenous: every item takes up the same size block of memory, and all blocks are interpreted in
exactly the same way. How each item in the array is to be interpreted is specified by a separate data-type object, one
of which is associated with every array. In addition to basic types (integers, floats, efc.), the data type objects can also
represent data structures.

An item extracted from an array, e.g., by indexing, is represented by a Python object whose type is one of the array
scalar types built in NumPy. The array scalars allow easy manipulation of also more complicated arrangements of
data.

-

{ gad | |
,.| data-type J = array

W,

header TL ‘ ‘

ndarray

Fig. 1: Figure Conceptual diagram showing the relationship between the three fundamental objects used to describe
the data in an array: 1) the ndarray itself, 2) the data-type object that describes the layout of a single fixed-size element
of the array, 3) the array-scalar Python object that is returned when a single element of the array is accessed.

1.1 The N-dimensional array (ndarray)

An ndarray is a (usually fixed-size) multidimensional container of items of the same type and size. The number of
dimensions and items in an array is defined by its shape, which is a tuple of N non-negative integers that specify
the sizes of each dimension. The type of items in the array is specified by a separate data-type object (dtype), one of
which is associated with each ndarray.

As with other container objects in Python, the contents of an ndarray can be accessed and modified by indexing or
slicing the array (using, for example, N integers), and via the methods and attributes of the ndarray.

https://docs.python.org/dev/library/stdtypes.html#tuple

NumPy Reference, Release 1.17.0

Different ndarrays can share the same data, so that changes made in one ndarray may be visible in another. That
is, an ndarray can be a “view” to another ndarray, and the data it is referring to is taken care of by the “base” ndarray.
ndarrays can also be views to memory owned by Python st rings or objects implementing the buffer or array
interfaces.

Example

A 2-dimensional array of size 2 x 3, composed of 4-byte integer elements:

>>> x = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
>>> type (x)

<type 'numpy.ndarray'>

>>> x.shape

(2, 3)

>>> x.dtype

dtype ('int32")

The array can be indexed using Python container-like syntax:

>>> # The element of x in the #secondx* row, *thirdx column, namely, 6.
>>> x[1, 2]

For example slicing can produce views of the array:

>>> y = x[:,1]

>>> y

array ([2, 5])

>>> y[0] = 9 # this also changes the corresponding element in x
>>> y

array ([9, 5])
>>> x
array ([[1, 9, 3]

1.1.1 Constructing arrays

New arrays can be constructed using the routines detailed in Array creation routines, and also by using the low-level
ndarray constructor:

ndarray(shape[, dtype, buffer, offset, ...]) An array object represents a multidimensional, homo-
geneous array of fixed-size items.

class numpy.ndarray (shape, dtype=float, buffer=None, offset=0, strides=None, order=None)
An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type
object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory,
whether it is an integer, a floating point number, or something else, etc.)

Arrays should be constructed using array, zeros or empty (refer to the See Also section below). The
parameters given here refer to a low-level method (ndarray(. ..)) for instantiating an array.

For more information, refer to the numpy module and examine the methods and attributes of an array.
Parameters

(for the __new__ method; see Notes below)

4 Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.17.0

shape [tuple of ints] Shape of created array.

dtype [data-type, optional] Any object that can be interpreted as a numpy data type.
buffer [object exposing buffer interface, optional] Used to fill the array with data.
offset [int, optional] Offset of array data in buffer.

strides [tuple of ints, optional] Strides of data in memory.

order [{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

array Construct an array.
zeros Create an array, each element of which is zero.
empty Create an array, but leave its allocated memory unchanged (i.e., it contains “garbage”).

dtype Create a data-type.

Notes

There are two modes of creating an array using ___new___
1. If buffer is None, then only shape, dt ype, and order are used.
2. If buffer is an object exposing the buffer interface, then all keywords are interpreted.

No__init__ method is needed because the array is fully initialized after the __new___ method.

Examples

These examples illustrate the low-level ndarray constructor. Refer to the See Also section above for easier
ways of constructing an ndarray.

First mode, buffer is None:

>>> np.ndarray (shape=(2,2),
array ([[0.0e+000, 0.0e+000]
[nan, 2.5e-323]

dtype=float, order='F")
random

1)

Second mode:

>>> np.ndarray((2,), buffer=np.array([1l,2,3]),
offset=np.int_ () .itemsize,

c. dtype=int) # offset = l+itemsize, i.e. skip first element
array ([2, 3])

Attributes
T [ndarray] The transposed array.
data [buffer] Python buffer object pointing to the start of the array’s data.
dtype [dtype object] Data-type of the array’s elements.
flags [dict] Information about the memory layout of the array.
flat [numpy.flatiter object] A 1-D iterator over the array.

imag [ndarray] The imaginary part of the array.

1.1. The N-dimensional array (ndarray) 5

NumPy Reference, Release 1.17.0

real [ndarray] The real part of the array.

size [int] Number of elements in the array.

itemsize [int] Length of one array element in bytes.

nbytes [int] Total bytes consumed by the elements of the array.

ndim [int] Number of array dimensions.

shape [tuple of ints] Tuple of array dimensions.

strides [tuple of ints] Tuple of bytes to step in each dimension when traversing an array.

ctypes [ctypes object] An object to simplify the interaction of the array with the ctypes mod-

ule.

base [ndarray] Base object if memory is from some other object.

Methods

all1([axis, out, keepdims])

Returns True if all elements evaluate to True.

any([axis, out, keepdims])

Returns True if any of the elements of a evaluate to
True.

argmax([axis, out])

Return indices of the maximum values along the
given axis.

argmin([axis, out])

Return indices of the minimum values along the
given axis of a.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtypel, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap([inplace])

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a
set of choices.

c11p([min, max, out])

Return an array whose values are limited to [min,
max].

compress(condition[, axis, out])

Return selected slices of this array along given axis.

conij() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along
the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the
given axis.

diagonal([offset, axisl, axis2])

Return specified diagonals.

dot(b[, out])

Dot product of two arrays.

dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
f111(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimen-

sion.

get field(dtype[, offset])

Returns a field of the given array as a certain type.

1item(*args)

Copy an element of an array to a standard Python
scalar and return it.

Continued on next page

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 2 — continued from previous page

itemset(*args)

Insert scalar into an array (scalar is cast to array’s
dtype, if possible)

max([axis, out, keepdims, initial, where])

Return the maximum along a given axis.

mean([axis, dtype, out, keepdims])

Returns the average of the array elements along
given axis.

min([axis, out, keepdims, initial, where])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a
different byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way
that the value of the element in kth position is in the
position it would be in a sorted array.

prod([axis, dtype, out, keepdims, initial, ...])

Return the product of the array elements over the
given axis

ptp([axis, out, keepdims])

Peak to peak (maximum - minimum) value along a
given axis.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in in-
dices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given
number of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted
in a to maintain order.

set field(val, dtypel, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, (WRITE-
BACKIFCOPY and UPDATEIFCOPY), respec-
tively.

sort([axis, kind, order])

Sort an array in-place.

squeeze([axis])

Remove single-dimensional entries from the shape
of a.

std([axis, dtype, out, ddof, keepdims])

Returns the standard deviation of the array elements
along given axis.

sum([axis, dtype, out, keepdims, initial, where])

Return the sum of the array elements over the given
axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 in-
terchanged.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

tobytes([order])

Construct Python bytes containing the raw data bytes
in the array.

tofile(fid], sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as an a.ndim-levels deep nested
list of Python scalars.

tostring([order])

Construct Python bytes containing the raw data bytes
in the array.

t race([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

Continued on next page

1.1. The N-dimensional array (ndarray)

NumPy Reference, Release 1.17.0

Table 2 — continued from previous page

transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along
given axis.
view([dtype, type]) New view of array with the same data.
method

ndarray.all (axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy . al1 for full documentation.

See also:
numpy.all equivalent function

method

ndarray .any (axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy . any for full documentation.

See also:
numpy.any equivalent function

method

ndarray.argmax (axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy . argmax for full documentation.

See also:
numpy.argmax equivalent function

method

ndarray .argmin (axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy . argmin for detailed documentation.

See also:
numpy.argmin equivalent function

method

ndarray.argpartition (kth, axis=-1, kind="introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.
New in version 1.8.0.

See also:

numpy.argpartition equivalent function

8 Chapter 1

. Array objects

NumPy Reference, Release 1.17.0

method

ndarray.argsort (axis=-1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See also:
numpy.argsort equivalent function

method

ndarray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dt ype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype (t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

. The N-dimensional array (ndarray) 9

NumPy Reference, Release 1.17.0

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the
string dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. 2.57)

>>> x.astype (int)
array ([1, 2, 21])

method

ndarray .byteswap (inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-

ally swapped in-place.

Parameters

inplace [bool, optional] If True, swap bytes in-place, default is False.

Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1l, 256, 8755], dtype=np.intl6)
>>> list (map (hex, A))

['"Ox1', '0x100', '0x2233']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=intl6)

>>> list (map (hex, A))

['0x100', 'Ox1', '0x3322'"]

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap ()
Traceback (most recent call last):

UnicodeDecodeError:

method

ndarray.choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy . choose for full documentation.

See also:
numpy . choose equivalent function

method

10

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ndarray.eclip (min=None, max=None, out=None, **kwargs)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy . c11p for full documentation.

See also:
numpy.clip equivalent function

method

ndarray.compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy. compress for full documentation.

See also:
numpy . compress equivalent function

method

ndarray.conj ()
Complex-conjugate all elements.

Refer to numpy . con jugate for full documentation.

See also:
numpy . conjugate equivalent function

method

ndarray.conjugate ()
Return the complex conjugate, element-wise.

Refer to numpy . con jugate for full documentation.

See also:
numpy . conjugate equivalent function

method

ndarray.copy (order="C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘’K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy .
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy, numpy.copyto

. The N-dimensional array (ndarray) 11

NumPy Reference, Release 1.17.0

Examples

’>>> x = np.array([[1,2,3],[4,5,6]], order='F")

TR

’>>> x.£111(0)

>>> x
array ([[0, 0, 0],
[0, 0, O11)

>>> v
array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags['C_CONTIGUOUS']
True

method

ndarray .cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.

See also:
numpy . cumprod equivalent function

method

ndarray.cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy . cumsum for full documentation.

See also:
numpy . cumsum equivalent function

method

ndarray.diagonal (offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:
numpy.diagonal equivalent function

method

ndarray.dot (b, out=None)
Dot product of two arrays.

Refer to numpy . dot for full documentation.

12 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also:

numpy . dot equivalent function

Examples

>>> a = np.eye(2)

>>> b = np.ones((2, 2)) *= 2

>>> a.dot (b)

array ([[2., 2.1,
(2., 2.11)

This array method can be conveniently chained:

>>> a.dot (b) .dot (b)
array ([[8., 8.1,
(8., 8.11)

method

ndarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
method

ndarray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None
method

ndarray.£ill (value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 2])
>>> a.fi111 (0)

>>> g

array ([0, 01])

>>> a = np.empty(2)

>>> a.fill (1)

>>> a

array ([1., 1.1)

1.1. The N-dimensional array (ndarray) 13

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

method

ndarray.flatten (order="C’)

Return a copy of the array collapsed into one dimension.
Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]11)
>>> a.flatten()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 41)

method

ndarray.getfield (dtype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([l.+1.3]%2)
>>> x[1, 1] = 2 + 4.3
>>> x
array ([[1.+1.7, 0.+0.71,
[0.+0.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

14

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> x.getfield (np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

ndarray.item (*args)

Copy an element of an array to a standard Python scalar and return it.
Parameters
*args [Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples
>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 6],
[1, 3, 61,
(1, 0, 111
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

ndarray.itemset (*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

1.1.

The N-dimensional array (ndarray)

NumPy Reference, Release 1.17.0

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-
guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, 1 t emset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 6],

(1, 3, 6],

(1, 0, 111)
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)
>>> x
array ([[2, 2, 6],

(1, 0, 6],

(1, 0, 911)

method

ndarray .max (axis=None, out=None, keepdims=False, initial=<no value>, where=True)
Return the maximum along a given axis.

Refer to numpy . amax for full documentation.

See also:
numpy . amax equivalent function

method

ndarray .mean (axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy . mean for full documentation.

See also:
numpy .mean equivalent function

method

16 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ndarray.min (axis=None, out=None, keepdims=False, initial=<no value>, where=True)
Return the minimum along a given axis.

Refer to numpy . amin for full documentation.

See also:
numpy.amin equivalent function

method

ndarray.newbyteorder (new_order="S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

* ‘S’ - swap dtype from current to opposite endian
e {‘<’, ‘L’} - little endian

* {*>’, ‘B’} - big endian

e {*=’, ‘N’} - native order

e {‘I’, ‘T"} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-
insensitive check on the first letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr [array] New array object with the dtype reflecting given change to the byte order.
method

ndarray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

See also:
numpy.nonzero equivalent function

method

ndarray.partition (kth, axis=-1, kind="introselect’, order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters

1.1. The N-dimensional array (ndarray) 17

NumPy Reference, Release 1.17.0

kth [int or sequence of ints] Element index to partition by. The kth element value will be
in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When «a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.
argpartition Indirect partition.

sort Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
>>> a
array ([1, 2, 3, 41)

method

ndarray .prod (axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
Return the product of the array elements over the given axis

Refer to numpy . prod for full documentation.

See also:
numpy . prod equivalent function

method

ndarray.ptp (axis=None, out=None, keepdims=False)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy . ptp for full documentation.

See also:

18 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

numpy . ptp equivalent function

method

ndarray.put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall n in indices.

Refer to numpy . put for full documentation.

See also:
numpy . put equivalent function

method

ndarray.ravel ([order])
Return a flattened array.

Refer to numpy . ravel for full documentation.

See also:

numpy . ravel equivalent function

ndarray. flat aflatiterator on the array.

method

ndarray.repeat (repeats, axis=None)
Repeat elements of an array.

Refer to numpy . repeat for full documentation.

See also:
numpy . repeat equivalent function

method

ndarray.reshape (shape, order="C’)

Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.

See also:

numpy . reshape equivalent function

Notes

Unlike the free function numpy . reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to

a.reshape ((10, 11)).
method

ndarray.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

1.1.

The N-dimensional array (ndarray)

19

NumPy Reference, Release 1.17.0

refcheck [bool, optional] If False, reference count will not be checked. Default is True.
Returns

None
Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array ([[0, 11, [2, 3]], order='C'")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array ([[0, 1], [2, 3]], order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 11, [2, 311)

>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

array ([[0, 1, 2]

Referencing an array prevents resizing. . .

20

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> ¢ = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array ([[0]])
>>> C
array ([[0]])
method

ndarray.round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

See also:
numpy . around equivalent function

method

ndarray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

See also:
numpy . searchsorted equivalent function

method

ndarray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.
Parameters
val [object] Value to be placed in field.
dtype [dtype object] Data-type of the field in which to place val.
offset [int, optional] The number of bytes into the field at which to place val.
Returns
None
See also:

getfield

1.1.

The N-dimensional array (ndarray)

21

NumPy Reference, Release 1.17.0

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,
(0., 1., 0.1,
[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield (np.int32)
array ([[3, 3, 31,
(3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])
>>> x.setfield(np.eye(3), np.int32)

>>> x
array ([[1., 0., 0.1,
[0., 1., 0.1,
(0., 0., 1.11)

method

ndarray.setflags (write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters
write [bool, optional] Describes whether or not a can be written to.
align [bool, optional] Describes whether or not « is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);
UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

22

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples
>>> y = np.array([[3, 1, 71,
(z, 0, 01,
(8, 5, 911)
>>> y
array ([[3, 1, 71,
(2, o0, 01,
(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

ndarray.sort (axis=-1, kind=None, order=None)
Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The de-
fault is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers
and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0.: The ‘stable’ option was added.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy . sort Return a sorted copy of an array.
argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

1.1.

The N-dimensional array (ndarray)

NumPy Reference, Release 1.17.0

searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 47,
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,
(1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)1, dtype=[('x', 'S1"), ('yv', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x"', 'S1"'), ('y', '<i8")])
method

ndarray . squeeze (axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.

See also:
numpy . squeeze equivalent function

method

ndarray.std (axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy . std for full documentation.

See also:
numpy . std equivalent function

method

ndarray . sum (axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
Return the sum of the array elements over the given axis.

Refer to numpy . sum for full documentation.

See also:

24 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

numpy . sum equivalent function

method

ndarray.swapaxes (axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:

numpy . swapaxes equivalent function

method

ndarray.take (indices, axis=None, out=None, mode="raise’)

Return an array formed from the elements of a at the given indices.
Refer to numpy . t ake for full documentation.

See also:

numpy . take equivalent function

method

ndarray.tobytes (order="C’)

Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C* or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.
Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array ([[0, 11, [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C'") == x.tobytes()

True

>>> x.tobytes ('F'")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

ndarray.tofile (fid, sep="", format="%s")

Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

1.1.

The N-dimensional array (ndarray) 25

NumPy Reference, Release 1.17.0

Parameters
fid [file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

sep [str] Separator between array items for text output. If “”” (empty), a binary file is written,
equivalentto file.write (a.tobytes ()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support £ileno () (e.g., ByteslO).

method

ndarray.tolist ()

Return the array as an a . ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the it em function.

If a.ndimis O, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none
Returns

y [object, or list of object, or list of list of object, or ...] The possibly nested list of array
elements.

Notes

The array may be recreated via a = np.array(a.tolist ()), although this may sometimes lose
precision.

Examples

For a 1D array, a.tolist () is almost the same as 1ist (a):

>>> a = np.array([1l, 2])
>>> list (a)

(1, 2]

>>> a.tolist ()

(1, 2]

However, for a 2D array, tolist applies recursively:

26

Chapter 1. Array objects

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

>>> a = np.array([[1, 2], [3, 411)
>>> list (a)

larray ([1, 2]), array([3, 41)]
>>> a.tolist ()

(11, 21, [3, 41]

The base case for this recursion is a 0D array:

>>> a = np.array (1)
>>> list (a)
Traceback (most recent call last):

TypeError: iteration over a 0-d array
>>> a.tolist ()
1

method

ndarray.tostring (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.
Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array ([[0, 1], [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

ndarray .trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy . t race for full documentation.

See also:
numpy . trace equivalent function

method

1.1.

The N-dimensional array (ndarray) 27

NumPy Reference, Release 1.17.0

ndarray.transpose (*axes)

Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-
D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves
this, as does a/:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if

axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose () .shape
(i[n-11, i[n-21, ... if[11, i[0]).
Parameters

axes [None, tuple of ints, or n ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

ndarray.reshape Give a new shape to an array without changing its data.

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> a

array ([[1, 21,

[3, 411)
>>> a.transpose ()
array ([[1, 31,

(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,

(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,

(2, 411)

method

ndarray .var (axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy . var for full documentation.

See also:
numpy.var equivalent function

method

28

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ndarray.view (dfype=None, type=None)

New view of array with the same data.
Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the t ype parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> Xv.mean

>>> x = np.array([(l, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2
[3, 4
(

1,
11, dtype=int8)
0)

array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)], dtype=[('a', 'il"), ('b', 'il')])

1.1. The N-dimensional array (ndarray) 29

NumPy Reference, Release 1.17.0

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3]1,[4,5,6]], dtype=np.intl6)

>>> y = x[:, 0:2]
>>> y
array ([[1, 2],
[4, 5]], dtype=intl6)
>>> y.view (dtype=[('width', np.intl6), ('length', np.intl6)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the array must be C-

—contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl6), ('length', np.intl6)])
array ([[(1, 2)],
[(4, 5)]11, dtype=[('width', '<i2'), ('length', '<i2')])

1.1.2 Indexing arrays

Arrays can be indexed using an extended Python slicing syntax, array [selection]. Similar syntax is also used
for accessing fields in a structured data type.

See also:

Array Indexing.

1.1.3 Internal memory layout of an ndarray

An instance of class ndarray consists of a contiguous one-dimensional segment of computer memory (owned by
the array, or by some other object), combined with an indexing scheme that maps N integers into the location of an
item in the block. The ranges in which the indices can vary is specified by the shape of the array. How many bytes
each item takes and how the bytes are interpreted is defined by the data-type object associated with the array.

A segment of memory is inherently 1-dimensional, and there are many different schemes for arranging the items of
an N-dimensional array in a 1-dimensional block. NumPy is flexible, and ndarray objects can accommodate any
strided indexing scheme. In a strided scheme, the N-dimensional index (ng,n1,...,nn_1) corresponds to the offset
(in bytes):

N—-1
Noffset = § SNk
k=0

from the beginning of the memory block associated with the array. Here, sj, are integers which specify the st rides
of the array. The column-major order (used, for example, in the Fortran language and in Matlab) and row-major order

30 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(used in C) schemes are just specific kinds of strided scheme, and correspond to memory that can be addressed by the
strides:

k—1 N-1
seelumn — jtemsize H d;, sV = itemsize H d;.
3=0 j=k+1

where d; = self.shape[j].

Both the C and Fortran orders are contiguous, i.e., single-segment, memory layouts, in which every part of the memory
block can be accessed by some combination of the indices.

While a C-style and Fortran-style contiguous array, which has the corresponding flags set, can be addressed with the
above strides, the actual strides may be different. This can happen in two cases:

1. If self.shape[k] == 1 then for any legal index index [k] == 0. This means that in the formula for
the offset ny = 0 and thus sgn; = 0 and the value of sj, = self.strides[k] is arbitrary.

2. If an array has no elements (self.size == 0) there is no legal index and the strides are never used. Any
array with no elements may be considered C-style and Fortran-style contiguous.

Point 1. means that self and self.squeeze () always have the same contiguity and aligned flags value. This
also means that even a high dimensional array could be C-style and Fortran-style contiguous at the same time.

An array is considered aligned if the memory offsets for all elements and the base offset itself is a multiple of
self.itemsize. Understanding memory-alignment leads to better performance on most hardware.

Note: Points (1) and (2) are not yet applied by default. Beginning with NumPy 1.8.0, they are applied consistently
only if the environment variable NPY_RELAXED_STRIDES_CHECKING=1 was defined when NumPy was built.
Eventually this will become the default.

You can check whether this option was enabled when your NumPy was built by looking at the value of np.
ones ((10,1), order='C').flags.f_contiguous. If this is True, then your NumPy has relaxed strides
checking enabled.

Warning: It does not generally hold that sel1f.strides[-1] == self.itemsize for C-style contiguous
arrays or self.strides[0] == self.itemsize for Fortran-style contiguous arrays is true.

Data in new ndarrays is in the row-major (C) order, unless otherwise specified, but, for example, basic array slicing
often produces views in a different scheme.

Note: Several algorithms in NumPy work on arbitrarily strided arrays. However, some algorithms require single-
segment arrays. When an irregularly strided array is passed in to such algorithms, a copy is automatically made.

1.1.4 Array attributes

Array attributes reflect information that is intrinsic to the array itself. Generally, accessing an array through its at-
tributes allows you to get and sometimes set intrinsic properties of the array without creating a new array. The exposed
attributes are the core parts of an array and only some of them can be reset meaningfully without creating a new array.
Information on each attribute is given below.

1.1. The N-dimensional array (ndarray) 31

https://docs.python.org/dev/glossary.html#term-contiguous

NumPy Reference, Release 1.17.0

Memory layout

The following attributes contain information about the memory layout of the array:

ndarray.flags Information about the memory layout of the array.

ndarray.shape Tuple of array dimensions.

ndarray.strides Tuple of bytes to step in each dimension when travers-
ing an array.

ndarray.ndim Number of array dimensions.

ndarray.data Python buffer object pointing to the start of the array’s
data.

ndarray.size Number of elements in the array.

ndarray.itemsize Length of one array element in bytes.

ndarray.nbytes Total bytes consumed by the elements of the array.

ndarray.base Base object if memory is from some other object.

attribute

ndarray.flags

Information about the memory layout of the array.

Notes
The f1ags object can be accessed dictionary-like (asina.flags ['WRITEABLE']), or by using lowercased
attribute names (as in a. flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

UPDATEIFCOPY can only be set False.
WRITEBACKIFCOPY can only be set False.

ALIGNED can only be set True if the data is truly aligned.

L]

WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides [dim] may be arbitrary if arr.
shape [dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1]
== self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes
C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.
OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making
it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time,
but a view of a writeable array may be subsequently locked while the base array remains

32

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that already
reference it, so under that circumstance it is possible to alter the contents of a locked array
via a previously created writeable view onto it.) Attempting to change a non-writeable array
raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will
be updated with the contents of this array.

UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some
other array. When this array is deallocated, the base array will be updated with the contents
of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.
attribute

ndarray.shape
Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape the
array in-place by assigning a tuple of array dimensions to it. As with numpy . reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions.
Reshaping an array in-place will fail if a copy is required.

See also:

numpy . reshape similar function

ndarray.reshape similar method

Examples

>>> x = np.array([1l, 2, 3, 41)
>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))
>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> y

array([[0., 0., 0., 0., 0., 0., 0., 0.1,
r o., 0., 0., 0., 0., 0., 0., 0.7,
r o., 0., 0., 0., 0., 0., 0., 0.1D1)

>>> y.shape = (3, 6)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2] .shape = (-1,)

(continues on next page)

1.1. The N-dimensional array (ndarray) 33

NumPy Reference, Release 1.17.0

(continued from previous page)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: incompatible shape for a non-contiguous array

attribute

ndarray.strides

Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (1 [0], i[1], ..., i[n]) inanarrayais:

offset = sum(np.array(i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See also:
numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange (2+«3%4), (2,3,4))
>>> y
o, 1, 2, 3
4, 5, 6, 7
8, 9, 10, 11
2, 13, 14, 15
6, 17, 18, 197,
[20, 21, 22, 23111)
>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides = np.array((l1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange (5«6+«7%x8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides

(32, 4, 224, 1344)

>>> i = np.array([3,5,2,21])

>>> offset = sum(i * X.strides)

(continues on next page)

34

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> x[3,5,2,2]

813

>>> offset / x.itemsize
813

attribute

ndarray.ndim
Number of array dimensions.

Examples

>>>

b

= np.array([1l, 2, 3])

>>> .ndim

X

>>> = np.zeros((2, 3, 4))

>>> y.ndim

<

attribute

ndarray.data
Python buffer object pointing to the start of the array’s data.

attribute

ndarray.size
Number of elements in the array.

Equal to np.prod (a.shape), i.e., the product of the array’s dimensions.
Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of
obtaining the same value (like the suggested np.prod (a.shape), which returns an instance of np. int_),
and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl28)
>>> x.size

30

>>> np.prod(x.shape)

30

attribute

ndarray.itemsize
Length of one array element in bytes.

1.1. The N-dimensional array (ndarray) 35

NumPy Reference, Release 1.17.0

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize

8

>>> x = np.array([1,2,3], dtype=np.complexl1l28)
>>> x.itemsize

16

attribute

ndarray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl128)
>>> x.nbytes

480

>>> np.prod(x.shape) * x.itemsize

480

attribute

ndarray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

Data type

See also:

Data type objects

The data type object associated with the array can be found in the dt ype attribute:

36 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ndarray.dtype Data-type of the array’s elements.

attribute

ndarray.dtype
Data-type of the array’s elements.

Parameters
None
Returns
d [numpy dtype object]
See also:

numpy .dtype

Examples

>>> X

array ([[0, 11,
(2, 311)

>>> x.dtype

dtype ('int32")

>>> type (x.dtype)
<type 'numpy.dtype'>

Other attributes

ndarray.T The transposed array.

ndarray.real The real part of the array.

ndarray.imag The imaginary part of the array.

ndarray.flat A 1-D iterator over the array.

ndarray.ctypes An object to simplify the interaction of the array with

the ctypes module.

attribute

ndarray.T
The transposed array.

Same as self.transpose ().

See also:

transpose

Examples

>>> x = np.array([[1.,2.],[3.,4.11)
>>> X

array ([[1., 2.1,

(continues on next page)

1.1. The N-dimensional array (ndarray) 37

NumPy Reference, Release 1.17.0

(continued from previous page)

[3., 4.11)

>>> x.T
array ([[1., 3.1,
[2., 4.11)
>>> x = np.array([1l.,2.,3.,4.])
>>> x
array ([1., 2., 3., 4.7)
>>> x.T

array ([1., 2., 3., 4.1)

attribute

ndarray.real

The real part of the array.

See also:

numpy . real equivalent function

Examples

>>> x = np.sqrt ([1+03, 0+131)

>>> x.real

array ([1. , 0.707106787)
>>> x.real.dtype

dtype ('float64"')

attribute

ndarray.imag

The imaginary part of the array.

Examples

>>> x = np.sqgrt ([1+03, 0+17])

>>> x.imag

array ([O. , 0.70710678])
>>> x.imag.dtype

dtype ('float64")

attribute

ndarray.flat

A 1-D iterator over the array.

Thisis a numpy. f1atiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See also:
flatten Return a copy of the array collapsed into one dimension.

flatiter

38

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples
>>> x = np.arange(l, 7).reshape(2, 3)
>>> x
array ([[1, 2, 31,
[4, 5, 6]1)
>>> x.flat[3]
4
>>> x.T
array ([[1, 4],
(2, 51,
[3, 611)
>>> x.T.flat[3]
5

>>> type(x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array ([[3, 3, 31,
[3, 3, 311)
>>> x.flat[[1,4]] = 1; x
array ([[3, 1, 31,
[3, 1, 311)
attribute

ndarray.ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None
Returns
¢ [Python object] Possessing attributes data, shape, strides, etc.
See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

_ctypes.data
A pointer to the memory area of the array as a Python integer. This memory area may contain data that
is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags
and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_['data'][0].

1.1. The N-dimensional array (ndarray) 39

NumPy Reference, Release 1.17.0

Note that unlike data_as, a reference will not be kept to the array: code like ctypes.c_void_p ((a
+ b) .ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + b) .
ctypes.data_as (ctypes.c_void_p)

_ctypes.shape
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding
to dtype ('p') on this platform. This base-type could be ctypes.c_int, ctypes.c_long, or
ctypes.c_longlong depending on the platform. The c_intp type is defined accordingly in numpy .
ctypeslib. The ctypes array contains the shape of the underlying array.

_ctypes.strides
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape
attribute. This ctypes array contains the strides information from the underlying array. This strides in-
formation is important for showing how many bytes must be jumped to get to the next element in the
array.

_ctypes.data_as (self, obj)
Return the data pointer cast to a particular c-types object. For example, calling self.
_as_parameter_ is equivalent to self.data_as (ctypes.c_void_p). Perhaps you want
to use the data as a pointer to a ctypes array of floating-point data: self.data_as (ctypes.
POINTER (ctypes.c_double)).

The returned pointer will keep a reference to the array.

_ctypes.shape_as (self, obj)
Return the shape tuple as an array of some other c-types type. For example: self.
shape_as (ctypes.c_short).

_ctypes.strides_as (self, obj)
Return the strides tuple as an array of some other c-types type. For example: self.
strides_as (ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the
as_parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 17,
(2, 311
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long)) .contents
c_long (0)
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at O0xOlFFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01lFCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

40

Chapter 1. Array objects

https://docs.python.org/dev/library/ctypes.html#ctypes.c_int
https://docs.python.org/dev/library/ctypes.html#ctypes.c_long
https://docs.python.org/dev/library/ctypes.html#ctypes.c_longlong

NumPy Reference, Release 1.17.0

Array interface

See also:

The Array Interface.

array_interface

Python-side of the array interface

__array_struct___

C-side of the array interface

ctypes foreign function interface

ndarray.ctypes

An object to simplify the interaction of the array with
the ctypes module.

1.1.5 Array methods

An ndarray object has many methods which operate on or with the array in some fashion, typically returning an
array result. These methods are briefly explained below. (Each method’s docstring has a more complete description.)

For the following methods there are also corresponding functions in numpy: all, any, argmax, argmin,
argpartition, argsort, choose, clip, compress, copy, cumprod, cumsum, diagonal, imag,

max, mean, min, nonzero, partition, prod, ptp, put, ravel, real, repeat, reshape, round,
searchsorted, sort, squeeze, std, sum, swapaxes, take, trace, transpose, var.

Array conversion

ndarray.item(*args)

Copy an element of an array to a standard Python scalar
and return it.

ndarray.tolist()

Return the array as an a.ndim-levels deep nested list
of Python scalars.

ndarray.itemset(*args)

Insert scalar into an array (scalar is cast to array’s dtype,
if possible)

ndarray.tostring([order])

Construct Python bytes containing the raw data bytes in
the array.

ndarray.tobytes([order])

Construct Python bytes containing the raw data bytes in
the array.

ndarray.tofile(fid], sep, format])

Write array to a file as text or binary (default).

ndarray . dump(file)

Dump a pickle of the array to the specified file.

ndarray.dumps()

Returns the pickle of the array as a string.

ndarray.astype(dtypel, order, casting, ...])

Copy of the array, cast to a specified type.

ndarray.byteswap([inplace])

Swap the bytes of the array elements

ndarray.copy([order])

Return a copy of the array.

ndarray.view([dtype, type])

New view of array with the same data.

ndarray.get field(dtypel[, offset])

Returns a field of the given array as a certain type.

ndarray.setflags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, (WRITE-
BACKIFCOPY and UPDATEIFCOPY), respectively.

ndarray. fill(value)

Fill the array with a scalar value.

1.1. The N-dimensional array (ndarray)

41

NumPy Reference, Release 1.17.0

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted

as an n-tuple.

ndarray.reshape(shape[, order])

Returns an array containing the same data with a new
shape.

ndarray. resize(new_shape[, refcheck])

Change shape and size of array in-place.

ndarray.transpose(*axes)

Returns a view of the array with axes transposed.

ndarray.swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 inter-
changed.

ndarray. flatten([order])

Return a copy of the array collapsed into one dimension.

ndarray . ravel([order])

Return a flattened array.

ndarray.squeeze([axis])

Remove single-dimensional entries from the shape of a.

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

ndarray . take(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

ndarray . put(indices, values[, mode])

Seta.flat[n] = values[n] for all n in indices.

ndarray. repeat(repeats[, axis])

Repeat elements of an array.

ndarray.choose(choices[, out, mode])

Use an index array to construct a new array from a set
of choices.

ndarray.sort([axis, kind, order])

Sort an array in-place.

ndarray.argsort([axis, kind, order])

Returns the indices that would sort this array.

ndarray.partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way that
the value of the element in kth position is in the position
it would be in a sorted array.

ndarray.argpartition(kth], axis, kind, order])

Returns the indices that would partition this array.

ndarray.searchsorted(v|, side, sorter])

Find indices where elements of v should be inserted in
a to maintain order.

ndarray.nonzero()

Return the indices of the elements that are non-zero.

ndarray.compress(condition[, axis, out])

Return selected slices of this array along given axis.

ndarray.diagonal([offset, axisl, axis2])

Return specified diagonals.

Calculation

Many of these methods take an argument named axis. In such cases,

o If axis is None (the default), the array is treated as a 1-D array and the operation is performed over the entire
array. This behavior is also the default if self is a O-dimensional array or array scalar. (An array scalar is
an instance of the types/classes float32, float64, etc., whereas a O-dimensional array is an ndarray instance

containing precisely one array scalar.)

e If axis is an integer, then the operation is done over the given axis (for each 1-D subarray that can be created

along the given axis).

Example of the axis argument

42

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

A 3-dimensional array of size 3 x 3 x 3, summed over each of its three axes

10, 1
4 131
. 16,
14 191
22,
25,
>>> x.sum(axis=0)
array ([[27, 30, 3371,

[36, 39, 427,

[45, 48, 5111)
>>> # for sum, axis is the first keyword,
>>> # specifying only its value
>>> x.sum(0), x.sum(l), x.sum(2)
(array ([[27, 30,
39,
48,
’ 121
’ 39/
66,
, 12,
’ 39/
’ 66/

so we may omit 1it,

The parameter dfype specifies the data type over which a reduction operation (like summing) should take place. The
default reduce data type is the same as the data type of self. To avoid overflow, it can be useful to perform the reduction
using a larger data type.

For several methods, an optional out argument can also be provided and the result will be placed into the output array
given. The out argument must be an ndarray and have the same number of elements. It can have a different data
type in which case casting will be performed.

ndarray.max([axis, out, keepdims, initial, ...]) Return the maximum along a given axis.

ndarray.argmax([axis, out]) Return indices of the maximum values along the given
axis.

ndarray.min([axis, out, keepdims, initial, ...]) Return the minimum along a given axis.

ndarray.argmin([axis, out]) Return indices of the minimum values along the given
axis of a.

ndarray.ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a
given axis.

ndarray.clip([min, max, out]) Return an array whose values are limited to [min,
max].

ndarray.conj() Complex-conjugate all elements.

ndarray . round([decimals, out]) Return a with each element rounded to the given number
of decimals.

ndarray.trace([offset, axisl, axis2, dtype, out]) Return the sum along diagonals of the array.

ndarray. sum([axis, dtype, out, keepdimes, ...]) Return the sum of the array elements over the given axis.

ndarray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.

Continued on next page

1.1. The N-dimensional array (ndarray)

43

NumPy Reference, Release 1.17.0

Table 10 — continued from previous page

ndarray.mean([axis, dtype, out, keepdims])

Returns the average of the array elements along given
axis.

ndarray.var([axis, dtype, out, ddof, keepdims])

Returns the variance of the array elements, along given
axis.

ndarray. std([axis, dtype, out, ddof, keepdims])

Returns the standard deviation of the array elements
along given axis.

ndarray.prod([axis, dtype, out, keepdims, ...])

Return the product of the array elements over the given
axis

ndarray.cumprod([axis, dtype, out])

Return the cumulative product of the elements along the
given axis.

ndarray.all([axis, out, keepdims])

Returns True if all elements evaluate to True.

ndarray.any([axis, out, keepdims])

Returns True if any of the elements of a evaluate to True.

1.1.6 Arithmetic, matrix multiplication, and comparison operations

Arithmetic and comparison operations on ndarrays are defined as element-wise operations, and generally yield

ndarray objects as results.

Each of the arithmetic operations (+, —, *, /, //, %, divmod (), % or pow (), <<, >>, &, ~, |, ~) and the
comparisons (==, <, >, <=, >=, =) is equivalent to the corresponding universal function (or ufunc for short) in
NumPy. For more information, see the section on Universal Functions.

Comparison operators:

ndarray._ 1t__ (self, value, /)

Return self<value.

ndarray.__le__ (self, value, /)

Return self<=value.

ndarray._ _gt__ (self, value, /)

Return self>value.

ndarray.__ge__ (self, value, /)

Return self>=value.

ndarray._ _eq _ (self, value, /)

Return self==value.

ndarray.__ne__ (self, value, /)

Return self!=value.

attribute

ndarray.__1t__ (self, value,/)
Return self<value.

attribute

ndarray.__le__ (self,value,/)
Return self<=value.

attribute

ndarray.__gt__ (self,value,/)
Return self>value.

attribute

ndarray.__ge__ (self,value,/)
Return self>=value.

attribute

ndarray.__eq _ (self,value,/)
Return self==value.

attribute

44

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ndarray.__ne__ (self,value,/)

Return self!=value.

Truth value of an array (bool):

ndarray.__ _bool__ (self,/)

self =0

attribute

ndarray.__bool__ (self,/)
self I=0

Note: Truth-value testing of an array invokes ndarray.__bool

, which raises an error if the number of elements

in the array is larger than 1, because the truth value of such arrays is ambiguous. Use .any () and .all () instead
to be clear about what is meant in such cases. (If the number of elements is 0, the array evaluates to False.)

Unary operations:

ndarray.__neqg__ (self,/) -self
ndarray.__ _pos__ (self,/) +self
ndarray.__abs__(self)

ndarray.__invert__(self, /) ~self

attribute

ndarray.__neg__ (self,/)
-self

attribute

ndarray.__pos__ (self,/)
+self

attribute
ndarray.__abs__ (self)
attribute

ndarray.__invert__ (self,/)
~self

Arithmetic:

ndarray.___add__ (self, value, /)

Return self+value.

ndarray.__ sub__ (self, value, /)

Return self-value.

ndarray.__mul__ (self, value, /)

Return self*value.

ndarray._ truediv__ (self, value, /)

Return self/value.

ndarray.___floordiv__ (self, value,/)

Return self//value.

ndarray.__mod__ (self, value, /)

Return self%value.

ndarray.__divmod__ (self, value, /)

Return divmod(self, value).

ndarray.__ pow__ (self, value[, mod])

Return pow(self, value, mod).

ndarray.__1shift__(self, value, /)

Return self<<value.

ndarray.__ rshift__ (self, value, /)

Return self>>value.

ndarray.__and__ (self, value, /)

Return self&value.

Continued on next page

1.1. The N-dimensional array (ndarray)

45

NumPy Reference, Release 1.17.0

Table 14 — continued from previous page

ndarray.__or__ (self, value, /)

Return selflvalue.

ndarray.__ xor__ (self, value, /)

Return self*value.

attribute

ndarray.__add__ (self, value,/)
Return self+value.

attribute

ndarray.__sub__ (self, value, /)
Return self-value.

attribute

ndarray.__mul__ (self, value,/)
Return self*value.

attribute

ndarray.__truediv___ (self, value,/)
Return self/value.

attribute

ndarray._ floordiv__ (self, value,/)
Return self//value.

attribute

ndarray.__mod__ (self, value,/)
Return self%value.

attribute

ndarray.__divmod___ (self, value,/)
Return divmod(self, value).

attribute

ndarray.__pow___(self, value, mod=None, /)

Return pow(self, value, mod).
attribute

ndarray._ lshift__ (self, value,/)
Return self<<value.

attribute

ndarray.__rshift__ (self, value,/)
Return self>>value.

attribute

ndarray.__and___ (self, value, /)
Return self&value.

attribute

ndarray.__or__ (self,value,/)
Return selflvalue.

attribute

46

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ndarray.__xor___ (self, value,/)

Return self*value.

Note:

* Any third argument to pow is silently ignored, as the underlying ufunc takes only two arguments.

* The three division operators are all defined; div is active by default, t ruediv is active when ___future___

division is in effect.

* Because ndarray is a built-in type (written in C), the __r{op}___ special methods are not directly defined.

e The functions called to implement many arithmetic special methods for arrays can be modified using

array_ufunc__.

Arithmetic, in-place:

ndarray.__iadd__ (self, value, /)

Return self+=value.

ndarray._ _isub__ (self, value, /)

Return self-=value.

ndarray.___imul__ (self, value, /)

Return self*=value.

ndarray._ itruediv__ (self, value, /)

Return self/=value.

ndarray.__ifloordiv__ (self, value,/)

Return self//=value.

ndarray._ _imod__ (self, value, /)

Return self%=value.

ndarray.__ipow__ (self, value, /)

Return self**=value.

ndarray._ _ilshift__ (self, value, /)

Return self<<=value.

ndarray.__irshift__ (self, value, /)

Return self>>=value.

ndarray._ _iand__ (self, value, /)

Return self&=value.

ndarray.__ior__ (self, value, /)

Return selfl=value.

ndarray._ _ixor__ (self, value, /)

Return self*=value.

attribute

ndarray.__iadd__ (self, value,/)
Return self+=value.

attribute

ndarray.__isub__ (self, value,/)
Return self-=value.

attribute

ndarray.__imul__ (self, value,/)
Return self*=value.

attribute

ndarray.__itruediv__ (self, value,/)
Return self/=value.

attribute

ndarray.__ifloordiv___ (self, value,/)
Return self//=value.

attribute

ndarray.__imod___ (self, value,/)
Return self%=value.

1.1. The N-dimensional array (ndarray)

47

https://docs.python.org/dev/library/functions.html#pow
https://docs.python.org/dev/library/__future__.html#module-__future__

NumPy Reference, Release 1.17.0

attribute

ndarray.__ipow__ (self, value,/)
Return self**=value.

attribute

ndarray.__ilshift__ (self, value,/)
Return self<<=value.

attribute

ndarray.__irshift__ (self, value,/)
Return self>>=value.

attribute

ndarray.__iand__ (self, value,/)
Return self&=value.

attribute

ndarray.__dior__ (self, value,/)
Return selfl=value.

attribute

ndarray.__ixor___ (self, value,/)
Return self*=value.

Warning: In place operations will perform the calculation using the precision decided by the data type of the
two operands, but will silently downcast the result (if necessary) so it can fit back into the array. Therefore, for
mixed precision calculations, A {op}= B can be different than A = A {op} B. For example, suppose a =
ones ((3,3)). Then, a += 37is different than a = a + 37: while they both perform the same computa-
tion, a += 3 casts the result to fit back in a, whereas a = a + 37 re-binds the name a to the result.

Matrix Multiplication:

ndarray.__matmul__ (self, value, /) Return self@value.

attribute

ndarray._ _matmul__ (self, value,/)
Return self@value.

Note: Matrix operators @ and @= were introduced in Python 3.5 following PEP465. NumPy 1.10.0 has a preliminary
implementation of @ for testing purposes. Further documentation can be found in the matmul documentation.

1.1.7 Special methods

For standard library functions:

ndarray._ _copy_ () Used if copy . copy is called on an array.

ndarray.__ _deepcopy._ () Used if copy . deepcopy is called on an array.

Continued on next page

48 Chapter 1. Array objects

mailto:self@value
mailto:self@value
https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.17.0

Table 17 — continued from previous page

ndarray.__reduce__() For pickling.
ndarray.__ _setstate__ (state,/) For unpickling.
method

ndarray._ _copy__ ()
Used if copy . copy is called on an array. Returns a copy of the array.

Equivalent to a. copy (order="K").
method

ndarray.__deepcopy__ ()
Used if copy . deepcopy is called on an array.

method

ndarray._ reduce_ ()
For pickling.

method

ndarray.__setstate__ (state,/)
For unpickling.

The state argument must be a sequence that contains the following elements:
Parameters
version [int] optional pickle version. If omitted defaults to 0.
shape [tuple]
dtype [data-type]
isFortran [bool]
rawdata [string or list] a binary string with the data (or a list if ‘a’ is an object array)

Basic customization:

ndarray.__new__(*args, **kwargs) Create and return a new object.

ndarray._ _array_ () Returns either a new reference to self if dtype is not
given or a new array of provided data type if dtype is
different from the current dtype of the array.

ndarray.__array_wrap__ ()

method

ndarray.__new__ (*args, **kwargs)
Create and return a new object. See help(type) for accurate signature.

method

ndarray.__array__ ()
Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is
different from the current dtype of the array.

method
ndarray.__array _wrap_ ()

Container customization: (see /ndexing)

1.1. The N-dimensional array (ndarray) 49

https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.17.0

ndarray.__len__ (self,/) Return len(self).

ndarray.__getitem _(self, key, /) Return selffkey].

ndarray.__setitem__(self, key, value, /) Set self[key] to value.

ndarray.___contains__ (self, key, /) Return key in self.
attribute

ndarray.__len__ (self,/)
Return len(self).

attribute

ndarray.__getitem__ (self, key,/)
Return self[key].

attribute

ndarray.__setitem__ (self, key, value, /)
Set self[key] to value.

attribute

ndarray.__contains__ (self, key,/)
Return key in self.

Conversion; the operations int, float and complex. . They work only on arrays that have one element in them
and return the appropriate scalar.

ndarray._ _int__ (self)
ndarray.__ float__ (self)
ndarray._ _complex__ ()

attribute

ndarray.__int__ (self)
attribute
ndarray.__float__ (self)
method
ndarray.__complex__ ()

String representations:

ndarray.__ str__ (self,/) Return str(self).
ndarray.__repr__ (self,/) Return repr(self).
attribute

ndarray.__str__ (self,/)
Return str(self).

attribute

ndarray.__repr__ (self,/)
Return repr(self).

50 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

1.2 Scalars

Python defines only one type of a particular data class (there is only one integer type, one floating-point type, etc.).
This can be convenient in applications that don’t need to be concerned with all the ways data can be represented in a
computer. For scientific computing, however, more control is often needed.

In NumPy, there are 24 new fundamental Python types to describe different types of scalars. These type descriptors
are mostly based on the types available in the C language that CPython is written in, with several additional types
compatible with Python’s types.

Array scalars have the same attributes and methods as ndarrays.' This allows one to treat items of an array partly
on the same footing as arrays, smoothing out rough edges that result when mixing scalar and array operations.

Array scalars live in a hierarchy (see the Figure below) of data types. They can be detected using the hierarchy:
For example, isinstance (val, np.generic) will return True if val is an array scalar object. Alternatively,
what kind of array scalar is present can be determined using other members of the data type hierarchy. Thus, for
example isinstance (val, np.complexfloating) will return True if val is a complex valued type, while
isinstance (val, np.flexible) will return true if val is one of the flexible itemsize array types (string,
unicode, void).

1.2.1 Built-in scalar types

The built-in scalar types are shown below. Along with their (mostly) C-derived names, the integer, float, and complex
data-types are also available using a bit-width convention so that an array of the right size can always be ensured (e.g.
int8, float64, complex128). Two aliases (intp and uintp) pointing to the integer type that is sufficiently
large to hold a C pointer are also provided. The C-like names are associated with character codes, which are shown in
the table. Use of the character codes, however, is discouraged.

Some of the scalar types are essentially equivalent to fundamental Python types and therefore inherit from them as
well as from the generic array scalar type:

Array scalar type | Related Python type
int_ IntType (Python 2 only)
float_ FloatType

complex_ ComplexType

bytes_ BytesType

unicode_ UnicodeType

The bool_ data type is very similar to the Python BooleanType but does not inherit from it because Python’s
BooleanType does not allow itself to be inherited from, and on the C-level the size of the actual bool data is not the
same as a Python Boolean scalar.

Warning: The bool_ type is not a subclass of the int_ type (the bool_ is not even a number type). This is
different than Python’s default implementation of boo1 as a sub-class of int.

Warning: The int_ type does not inherit from the int built-in under Python 3, because type int is no longer
a fixed-width integer type.

! However, array scalars are immutable, so none of the array scalar attributes are settable.

1.2. Scalars 51

https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#int

NumPy Reference, Release 1.17.0

¥ ¥ IR 2 \

bool_ object_ ' number : | flexible :

ﬁ integer j r inexact j + characte void

isignedintegﬁ iunsignedintege;r flnatingé iccmple:-:ﬂcatind str_
;I —-I _] unicode |
> byte ™ ubyte | half

> short — ushort | I single > csingle

> intc - uintc P float > complex;

N Ly it L3/ tongfioat — clongfloat

—» longlong — ulonglong

Fig. 2: Figure: Hierarchy of type objects representing the array data types. Not shown are the two integer types intp
and uintp which just point to the integer type that holds a pointer for the platform. All the number types can be
obtained using bit-width names as well.

52 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Tip: The default data type in NumPy is f1loat_.

In the tables below, plat form? means that the type may not be available on all platforms. Compatibility with
different C or Python types is indicated: two types are compatible if their data is of the same size and interpreted in

the same way.

Booleans:

Integers:

Unsigned integers:

Floating-point numbers:

Type Remarks Character code
bool_ | compatible: Python bool | '?2"'
bool8 | 8 bits
byte compatible: C char 'b'
short compatible: C short 'h!
intc compatible: C int it
int_ compatible: Python int 'l
longlong | compatible: C long long 'q'
intp large enough to fit a pointer | 'p'
int8 8 bits
intl6 16 bits
int32 32 bits
int64 64 bits
ubyte compatible: C unsigned char | 'B'
ushort compatible: C unsigned short | "H'
uintc compatible: C unsigned int T
uint compatible: Python int 'L
ulonglong | compatible: C long long Q'
uintp large enough to fit a pointer 'p!
uint8 8 bits
uintlé6 16 bits
uint32 32 bits
uinted 64 bits
half 'e!
single compatible: C float "£!
double compatible: C double
float_ compatible: Python float | 'd’
longfloat | compatible: C long float | 'g'
floatlé6 16 bits
float32 32 bits
float64 64 bits
float96 96 bits, platform?
floatl28 128 bits, platform?

1.2. Scalars

53

NumPy Reference, Release 1.17.0

Complex floating-point numbers:

Any Python object:

csingle 'F!
complex_ compatible: Python complex | 'D'
clongfloat 'G'
complex64 two 32-bit floats

complex128 | two 64-bit floats

complex192 | two 96-bit floats, platform?
complex256 | two 128-bit floats, platform?

object_ \ any Python object \ 0’ ‘

Note: The data actually stored in object arrays (i.e., arrays having dtype object_) are references to Python objects,
not the objects themselves. Hence, object arrays behave more like usual Python 11 st s, in the sense that their contents
need not be of the same Python type.

The object type is also special because an array containing object_ items does not return an object_ object on
item access, but instead returns the actual object that the array item refers to.

The following data types are flexible: they have no predefined size and the data they describe can be of different length
in different arrays. (In the character codes # is an integer denoting how many elements the data type consists of.)

bytes_ compatible: Python bytes 'S#!

unicode_ | compatible: Python unicode/str | 'U#"'

void

vv#l

Warning: See Note on string types.

Numeric Compatibility: If you used old typecode characters in your Numeric code (which was never recom-
mended), you will need to change some of them to the new characters. In particular, the needed changes are c
-> S1,b -> B,1 -> b,s -> h,w -> H,andu -> I.Thesechanges make the type character convention
more consistent with other Python modules such as the st ruct module.

1.2.2 Attributes

The array scalar objects have an array priority of NPY SCALAR PRIORITY (-1,000,000.0). They also do
not (yet) have a ct ypes attribute. Otherwise, they share the same attributes as arrays:

generic.flags

integer value of flags

generic.shape

tuple of array dimensions

generic.strides

tuple of bytes steps in each dimension

generic.ndim

number of array dimensions

generic.data

pointer to start of data

generic.size

number of elements in the gentype

generic.itemsize

length of one element in bytes

Continued on next page

54

Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/struct.html#module-struct

NumPy Reference, Release 1.17.0

Table 22 — continued from previous page

generic.base

base object

generic.dtype

get array data-descriptor

generic.real

real part of scalar

generic.imag

imaginary part of scalar

generic.flat

a 1-d view of scalar

generic.T

transpose

generic.__array_interface___ Array protocol: Python side

generic.__array struct___ Array protocol: struct

generic.__array _priority_ Array priority.

generic.__array wrap_ () sc.__array_wrap__(obj) return scalar from array
attribute

generic.flags
integer value of flags

attribute

generic.shape
tuple of array dimensions

attribute

generic.strides
tuple of bytes steps in each dimension

attribute

generic.ndim
number of array dimensions

attribute

generic.data
pointer to start of data

attribute

generic.size
number of elements in the gentype

attribute

generic.itemsize
length of one element in bytes

attribute

generic.base
base object

attribute

generic.dtype
get array data-descriptor

attribute

generic.real
real part of scalar

attribute

1.2. Scalars

55

NumPy Reference, Release 1.17.0

generic.imag
imaginary part of scalar

attribute

generic.flat
a 1-d view of scalar

attribute

generic.T

transpose
attribute
generic.__array_ interface_

Array protocol: Python side
attribute

generic.__array_struct_
Atrray protocol: struct

attribute

generic.__array_priority_
Array priority.

method

generic.__array wrap__ ()
sc.__array_wrap__(obj) return scalar from array

1.2.3 Indexing

See also:

Indexing, Data type objects (dtype)

Array scalars can be indexed like O-dimensional arrays: if x is an array scalar,
e x[()] returns a copy of array scalar
e x[...] returns a O-dimensional ndarray

* x['field-name'] returns the array scalar in the field field-name. (x can have fields, for example, when it
corresponds to a structured data type.)

1.2.4 Methods

Array scalars have exactly the same methods as arrays. The default behavior of these methods is to internally convert
the scalar to an equivalent O-dimensional array and to call the corresponding array method. In addition, math operations
on array scalars are defined so that the same hardware flags are set and used to interpret the results as for ufunc, so that
the error state used for ufuncs also carries over to the math on array scalars.

The exceptions to the above rules are given below:

generic Base class for numpy scalar types.
generic.__array_ () sc.__array__(dtype) return O-dim array from scalar with
specified dtype

Continued on next page

56 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 23 — continued

from previous page

generic.__array wrap_ ()

sc.__array_wrap__(obj) return scalar from array

generic.squeeze()

Not implemented (virtual attribute)

generic.byteswap()

Not implemented (virtual attribute)

generic.__reduce__ ()

Helper for pickle.

generic.___setstate_ ()

generic.setflags()

Not implemented (virtual attribute)

class numpy.generic
Base class for numpy scalar types.

Class from which most (all?) numpy scalar types are derived. For consistency, exposes the same API as
ndarray, despite many consequent attributes being either “get-only,” or completely irrelevant. This is the
class from which it is strongly suggested users should derive custom scalar types.

Attributes
T transpose
base base object
data pointer to start of data
dtype get array data-descriptor
flags integer value of flags
flat al-d view of scalar
imag imaginary part of scalar
itemsize length of one element in bytes
nbytes length of item in bytes
ndim number of array dimensions
real real part of scalar
shape tuple of array dimensions

size number of elements in the gentype

strides tuple of bytes steps in each dimension

Methods
all() Not implemented (virtual attribute)
any() Not implemented (virtual attribute)
argmax() Not implemented (virtual attribute)
argmin() Not implemented (virtual attribute)
argsort() Not implemented (virtual attribute)
astype() Not implemented (virtual attribute)
byteswap() Not implemented (virtual attribute)
choose() Not implemented (virtual attribute)
c1ip() Not implemented (virtual attribute)
compress() Not implemented (virtual attribute)
conjugate() Not implemented (virtual attribute)
copy() Not implemented (virtual attribute)

Continued on next page

1.2. Scalars

57

NumPy Reference, Release 1.17.0

Table 24 — continued from previous page

cumprod()

Not implemented (virtual attribute)

cumsum()

Not implemented (virtual attribute)

diagonal()

Not implemented (virtual attribute)

dump()

Not implemented (virtual attribute)

dumps()

Not implemented (virtual attribute)

F111()

Not implemented (virtual attribute)

flatten()

Not implemented (virtual attribute)

getfield()

Not implemented (virtual attribute)

item()

Not implemented (virtual attribute)

itemset()

Not implemented (virtual attribute)

max()

Not implemented (virtual attribute)

mean()

Not implemented (virtual attribute)

min()

Not implemented (virtual attribute)

newbyteorder([new_order])

Return a new dt ype with a different byte order.

nonzero()

Not implemented (virtual attribute)

prod()

Not implemented (virtual attribute)

ptpe()

Not implemented (virtual attribute)

put()

Not implemented (virtual attribute)

ravel()

Not implemented (virtual attribute)

repeat()

Not implemented (virtual attribute)

reshape()

Not implemented (virtual attribute)

resize()

Not implemented (virtual attribute)

round()

Not implemented (virtual attribute)

searchsorted()

Not implemented (virtual attribute)

setfield()

Not implemented (virtual attribute)

setflags()

Not implemented (virtual attribute)

sort()

Not implemented (virtual attribute)

squeeze()

Not implemented (virtual attribute)

std()

Not implemented (virtual attribute)

sum()

Not implemented (virtual attribute)

swapaxes()

Not implemented (virtual attribute)

take()

Not implemented (virtual attribute)

torile()

Not implemented (virtual attribute)

tolist()

Not implemented (virtual attribute)

tostring()

Not implemented (virtual attribute)

trace()

Not implemented (virtual attribute)

transpose()

Not implemented (virtual attribute)

var()

Not implemented (virtual attribute)

view()

Not implemented (virtual attribute)

method

generic.all ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

generic.any ()

Not implemented (virtual attribute)

58

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APL

See also the corresponding attribute of the derived class of interest.
method

generic.argmax ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.argmin ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.argsort ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.astype ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.byteswap ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.choose ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

1.2. Scalars 59

NumPy Reference, Release 1.17.0

generic.eclip ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.compress ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.conjugate ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.copy ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.cumprod /()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.cumsum /()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.diagonal ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL.

See also the corresponding attribute of the derived class of interest.

60 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

method

generic.dump ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.dumps ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.f£fill ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.flatten()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.getfield ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.item()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.itemset ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

1.2. Scalars 61

NumPy Reference, Release 1.17.0

See also the corresponding attribute of the derived class of interest.
method

generic.max ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.mean ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.min ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.newbyteorder (new_order="S’)
Return a new dt ype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.
The new_order code can be any from the following:

e ‘S’ - swap dtype from current to opposite endian

e {*<’, 'L’} - little endian

e {*>’, ‘B’} - big endian

e {‘=’, ‘N’} - native order

{1, T’} - ignore (no change to byte order)

Parameters

new_order [str, optional] Byte order to force; a value from the byte order specifications
above. The default value (‘S’) results in swapping the current byte order. The code does
a case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns

new_dtype [dtype] New dt ype object with the given change to the byte order.

method

62

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

generic.nonzero ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.prod ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.ptp()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.put ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.ravel ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.repeat ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.reshape ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APIL.

See also the corresponding attribute of the derived class of interest.

1.2. Scalars 63

NumPy Reference, Release 1.17.0

method

generic.resize ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.round()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.searchsorted ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.setfield()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.setflags ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.sort ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.squeeze ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

64 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also the corresponding attribute of the derived class of interest.
method

generic.std()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.sum/()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.swapaxes ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.take ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.tofile ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.tolist ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.tostring ()
Not implemented (virtual attribute)

1.2. Scalars 65

NumPy Reference, Release 1.17.0

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APL

See also the corresponding attribute of the derived class of interest.
method

generic.trace()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.transpose ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.var ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

generic.view ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

conj
tobytes

method

generic.__array ()
sc.__array__(dtype) return O-dim array from scalar with specified dtype

method

generic.__reduce__ ()
Helper for pickle.

method

generic.__setstate_ ()

66 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

1.2.5 Defining new types

There are two ways to effectively define a new array scalar type (apart from composing structured types dtypes from
the built-in scalar types): One way is to simply subclass the ndarray and overwrite the methods of interest. This
will work to a degree, but internally certain behaviors are fixed by the data type of the array. To fully customize the
data type of an array you need to define a new data-type, and register it with NumPy. Such new types can only be
defined in C, using the NumPy C-API.

1.3 Data type objects (dtype)

A data type object (an instance of numpy . dt ype class) describes how the bytes in the fixed-size block of memory
corresponding to an array item should be interpreted. It describes the following aspects of the data:

1. Type of the data (integer, float, Python object, etc.)

2. Size of the data (how many bytes is in e.g. the integer)
3. Byte order of the data (little-endian or big-endian)
4

. If the data type is structured data type, an aggregate of other data types, (e.g., describing an array item consisting
of an integer and a float),

1. what are the names of the “fields” of the structure, by which they can be accessed,
2. what is the data-type of each field, and
3. which part of the memory block each field takes.

5. If the data type is a sub-array, what is its shape and data type.

To describe the type of scalar data, there are several built-in scalar types in NumPy for various precision of integers,
floating-point numbers, efc. An item extracted from an array, e.g., by indexing, will be a Python object whose type is
the scalar type associated with the data type of the array.

Note that the scalar types are not dt ype objects, even though they can be used in place of one whenever a data type
specification is needed in NumPy.

Structured data types are formed by creating a data type whose field contain other data types. Each field has a name by
which it can be accessed. The parent data type should be of sufficient size to contain all its fields; the parent is nearly
always based on the void type which allows an arbitrary item size. Structured data types may also contain nested
structured sub-array data types in their fields.

Finally, a data type can describe items that are themselves arrays of items of another data type. These sub-arrays must,
however, be of a fixed size.

If an array is created using a data-type describing a sub-array, the dimensions of the sub-array are appended to the
shape of the array when the array is created. Sub-arrays in a field of a structured type behave differently, see Field
Access.

Sub-arrays always have a C-contiguous memory layout.

Example

A simple data type containing a 32-bit big-endian integer: (see Specifying and constructing data types for details on
construction)

>>> dt = np.dtype('>1i4")
>>> dt.byteorder
|>|

(continues on next page)

1.3. Data type objects (dtype) 67

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> dt.itemsize

4

>>> dt.name

'int32"

>>> dt.type is np.int32
True

The corresponding array scalar type is int 32.

Example

A structured data type containing a 16-character string (in field ‘name’) and a sub-array of two 64-bit floating-point
number (in field ‘grades’):

>>> dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))1])
>>> dt ['name']

dtype ('|Ul6")

>>> dt['grades']

dtype (('floated', (2,)))

Items of an array of this data type are wrapped in an array scalar type that also has two fields:

>>> x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
>>> x[1]

('"John', [6.0, 7.01])

>>> x[1] ['grades']

array ([6., 7.1)

>>> type(x[1])

<type 'numpy.void'>

>>> type(x[1]['grades'])

<type 'numpy.ndarray'>

1.3.1 Specifying and constructing data types

Whenever a data-type is required in a NumPy function or method, either a dt ype object or something that can be
converted to one can be supplied. Such conversions are done by the dt ype constructor:

dt ype(obj[, align, copy]) Create a data type object.

class numpy.dtype (obj, align=False, copy=False)
Create a data type object.

A numpy array is homogeneous, and contains elements described by a dtype object. A dtype object can be
constructed from different combinations of fundamental numeric types.

Parameters
obj Object to be converted to a data type object.

align [bool, optional] Add padding to the fields to match what a C compiler would output for a
similar C-struct. Can be True only if 0bj is a dictionary or a comma-separated string. If a
struct dtype is being created, this also sets a sticky alignment flag i salignedstruct.

68 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

copy [bool, optional] Make a new copy of the data-type object. If False, the result may just
be a reference to a built-in data-type object.

See also:
result_type

Examples

Using array-scalar type:

>>> np.dtype (np.intl6)
dtype ('intl6')

Structured type, one field name ‘f1’, containing int16:

>>> np.dtype([('f1l', np.intl6)])
dtype ([("f1', '<i2")])

Structured type, one field named ‘f1°, in itself containing a structured type with one field:

>>> np.dtype ([('"f1', [('f1', np.intl6)]1)])
dtype ([("f1', [('f1', '<i2")])1])

Structured type, two fields: the first field contains an unsigned int, the second an int32:

>>> np.dtype([('f1l', np.uint6d4), ('f2', np.int32)])
dtype ([("f1', '<u8'), ('f2', '<i4d")])

Using array-protocol type strings:

>>> np.dtype ([('a', "£8"), ('b', 'S10')])
dtype ([('a', '<£f8"), ('b', 'S10")])

Using comma-separated field formats. The shape is (2,3):

>>> np.dtype("i4, (2,3)f8")
dtype ([('f0', '<id'"), ('f1', '<f8', (2, 3))1)

Using tuples. int is a fixed type, 3 the field’s shape. void is a flexible type, here of size 10:

>>> np.dtype([('hello', (np.int64,3)), ('world',np.void, 10)])
dtype ([('hello', '<i8', (3,)), ('world', 'V1i0')])

Subdivide int16 into 2 int8’s, called x and y. 0 and 1 are the offsets in bytes:

>>> np.dtype ((np.intl6, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype ((numpy.intle, [('x', 'il'"), ('y', 'il'")1]))

Using dictionaries. Two fields named ‘gender’ and ‘age’:

>>> np.dtype ({ 'names':['gender', 'age'], 'formats':['Sl',np.uint8]})
dtype ([('gender', 'S1'"), ('age', 'ul')l)

Offsets in bytes, here 0 and 25:

>>> np.dtype ({'surname': ('S25',0), 'age': (np.uint8,25)})

dtype ([('surname', 'S25'), ('age', 'ul'")])

1.3. Data type objects (dtype)

69

NumPy Reference, Release 1.17.0

Attributes
alignment The required alignment (bytes) of this data-type according to the compiler.

base Returns dtype for the base element of the subarrays, regardless of their dimension or
shape.

byteorder A character indicating the byte-order of this data-type object.
char A unique character code for each of the 21 different built-in types.
descr __array_interface__ description of the data-type.

fields Dictionary of named fields defined for this data type, or None.
flags Bit-flags describing how this data type is to be interpreted.

hasobject Boolean indicating whether this dtype contains any reference-counted objects in
any fields or sub-dtypes.

isalignedstruct Boolean indicating whether the dtype is a struct which maintains field
alignment.

isbuiltin Integer indicating how this dtype relates to the built-in dtypes.

isnative Boolean indicating whether the byte order of this dtype is native to the platform.
itemsize The element size of this data-type object.

kind A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.
metadata

name A bit-width name for this data-type.

names Ordered list of field names, or None if there are no fields.

ndim Number of dimensions of the sub-array if this data type describes a sub-array, and 0
otherwise.

num A unique number for each of the 21 different built-in types.
shape Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.
str The array-protocol typestring of this data-type object.

subdtype Tuple (item_dtype, shape) if this dt ype describes a sub-array, and None
otherwise.

type The type object used to instantiate a scalar of this data-type.

Methods

newbyteorder([new_order]) Return a new dtype with a different byte order.

method

dtype .newbyteorder (new_order="S’)
Return a new dtype with a different byte order.

Changes are also made in all fields and sub-arrays of the data type.
Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications

70 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

below. The default value (‘S’) results in swapping the current byte order. new_order codes
can be any of:

* ‘S’ - swap dtype from current to opposite endian
e {‘<’, ‘I'} - little endian

* {*>’, ‘B’} - big endian

e {*=", ‘N’} - native order

e {‘I", I’} - ignore (no change to byte order)

The code does a case-insensitive check on the first letter of new_order for these alterna-
tives. For example, any of ‘>’ or ‘B’ or ‘b’ or ‘brian’ are valid to specify big-endian.

Returns
new_dtype [dtype] New dtype object with the given change to the byte order.

Notes

Changes are also made in all fields and sub-arrays of the data type.

Examples

>>> import sys

>>> sys_1is_le = sys.byteorder == 'little'

>>> native_code = sys_is_le and '<' or '>'

>>> swapped_code = sys_is_le and '>' or '<'

>>> native_dt = np.dtype(native_code+'i2")

>>> swapped_dt = np.dtype (swapped_code+'i2")

>>> native_dt.newbyteorder ('S') == swapped_dt
True

>>> native_dt.newbyteorder () == swapped_dt

True

>>> native_dt == swapped_dt.newbyteorder ('S")

True

>>> native_dt == swapped_dt.newbyteorder('=")

True

>>> native_dt == swapped_dt.newbyteorder ('N")

True

>>> native_dt == native_dt.newbyteorder('|")

True

>>> np.dtype('<i2') == native_dt.newbyteorder ('<")
True

>>> np.dtype('<i2') == native_dt.newbyteorder ('L")
True

>>> np.dtype('>12') == native_dt.newbyteorder ('>")
True

>>> np.dtype('>1i2') == native_dt.newbyteorder ('B'")
True

What can be converted to a data-type object is described below:
dtype object
Used as-is.

None

1.3. Data type objects (dtype) 71

NumPy Reference, Release 1.17.0

The default data type: float_.
Array-scalar types

The 24 built-in array scalar type objects all convert to an associated data-type object. This is true for their
sub-classes as well.

Note that not all data-type information can be supplied with a type-object: for example, flexible
data-types have a default iremsize of 0, and require an explicitly given size to be useful.

Example

>>> dt = np.dtype (np.int32) # 32-bit integer
>>> dt = np.dtype (np.complex128) # 128-bit complex floating-point number

Generic types

The generic hierarchical type objects convert to corresponding type objects according to the associations:

number, inexact, floating | float
complexfloating cfloat
integer, signedinteger int_
unsignedinteger uint
character string
generic, flexible void

Built-in Python types

Several python types are equivalent to a corresponding array scalar when used to generate a dt ype object:

int int_

bool bool__

float float__

complex | cfloat

bytes bytes_

str bytes_ (Python2) or unicode_ (Python3)
unicode unicode__

buffer void

(all others) | object_

Note that st r refers to either null terminated bytes or unicode strings depending on the Python version.
In code targeting both Python 2 and 3 np . unicode_ should be used as a dtype for strings. See Note on
string types.

Example

>>> dt = np.dtype (float) # Python-compatible floating-point number
>>> dt = np.dtype (int) # Python—-compatible integer

>>> dt = np.dtype (object) # Python object

Types with . dtype

Any type object with a dt ype attribute: The attribute will be accessed and used directly. The attribute
must return something that is convertible into a dtype object.

72 Chapter 1. Array objects

https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#int
https://docs.python.org/dev/library/functions.html#bool
https://docs.python.org/dev/library/functions.html#float
https://docs.python.org/dev/library/functions.html#complex
https://docs.python.org/dev/library/stdtypes.html#bytes
https://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.17.0

Several kinds of strings can be converted. Recognized strings can be prepended with '>"' (big-endian), '<"' (little-
endian), or '=" (hardware-native, the default), to specify the byte order.

One-character strings

Each built-in data-type has a character code (the updated Numeric typecodes), that uniquely identifies it.

Example

>>> dt np.dtype('b') # byte, native byte order

>>> dt np.dtype ('>H') # big-endian unsigned short

>>> dt np.dtype('<f') # little-endian single-precision float
>>> dt np.dtype('d") # double-precision floating-point number

Array-protocol type strings (see The Array Interface)

The first character specifies the kind of data and the remaining characters specify the number of bytes
per item, except for Unicode, where it is interpreted as the number of characters. The item size must
correspond to an existing type, or an error will be raised. The supported kinds are

't boolean

'b! (signed) byte

'B' unsigned byte

'it (signed) integer

'u' unsigned integer

'f floating-point

'c! complex-floating point

'm' timedelta

™! datetime

o’ (Python) objects

'S', 'a' | zero-terminated bytes (not recommended)

'U! Unicode string

'v! raw data (void)
Example
>>> dt np.dtype('i4d") # 32-bit signed integer
>>> dt np.dtype('£f8") # 64-bit floating-point number
>>> dt np.dtype('clé') # 128-bit complex floating-point number
>>> dt np.dtype('a25') # 25-length zero-terminated bytes
>>> dt np.dtype ('U25") # 25-character string
Note on string types

For backward compatibility with Python 2 the S and a typestrings remain zero-terminated bytes and np .
string_ continues to map to np .bytes_. To use actual strings in Python 3 use U or np.unicode_.
For signed bytes that do not need zero-termination b or 11 can be used.

String with comma-separated fields

A short-hand notation for specifying the format of a structured data type is a comma-separated string of
basic formats.

1.3. Data type objects (dtype)

73

NumPy Reference, Release 1.17.0

A basic format in this context is an optional shape specifier followed by an array-protocol type string.
Parenthesis are required on the shape if it has more than one dimension. NumPy allows a modification
on the format in that any string that can uniquely identify the type can be used to specify the data-type
in a field. The generated data-type fields are named '£0', '£1"', ..., '£<N-1>" where N (>1) is the
number of comma-separated basic formats in the string. If the optional shape specifier is provided, then
the data-type for the corresponding field describes a sub-array.

Example
* field named £0 containing a 32-bit integer
* field named f£1 containing a 2 x 3 sub-array of 64-bit floating-point numbers

¢ field named £2 containing a 32-bit floating-point number

>>> dt = np.dtype("i4, (2,3)f8, f4")

* field named £0 containing a 3-character string
* field named f1 containing a sub-array of shape (3,) containing 64-bit unsigned integers

* field named £2 containing a 3 x 4 sub-array containing 10-character strings

>>> dt = np.dtype("a3, 3u8, (3,4)al0")

Type strings
Any string in numpy . sctypeDict.keys():

Example
>>> dt = np.dtype('uint32") # 32-bit unsigned integer
>>> dt = np.dtype('Float64') # 64-bit floating—-point number

(flexible_dtype, itemsize)

The first argument must be an object that is converted to a zero-sized flexible data-type object, the second
argument is an integer providing the desired itemsize.

Example
>>> dt = np.dtype ((np.void, 10)) # 10-byte wide data block
>>> dt = np.dtype(('U', 10)) # 10-character unicode string

(fixed_dtype, shape)

The first argument is any object that can be converted into a fixed-size data-type object. The second
argument is the desired shape of this type. If the shape parameter is 1, then the data-type object is
equivalent to fixed dtype. If shape is a tuple, then the new dtype defines a sub-array of the given shape.

Example

74 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> dt = np.dtype ((np.int32, (2,2))) # 2 x 2 integer sub—-array

>>> dt = np.dtype(('UL10", 1)) # 10-character string

>>> dt = np.dtype(('i4, (2,3)f8, f£4', (2,3))) # 2 x 3 structured sub-array
[(field_name, field_dtype, field_shape), ...]

obj should be a list of fields where each field is described by a tuple of length 2 or 3. (Equivalent to the
descriteminthe _array interface_ _ attribute.)

The first element, field_name, is the field name (if this is ' ' then a standard field name, 'f#', is as-
signed). The field name may also be a 2-tuple of strings where the first string is either a “title” (which
may be any string or unicode string) or meta-data for the field which can be any object, and the second
string is the “name” which must be a valid Python identifier.

The second element, field_dtype, can be anything that can be interpreted as a data-type.

The optional third element field_shape contains the shape if this field represents an array of the data-type
in the second element. Note that a 3-tuple with a third argument equal to 1 is equivalent to a 2-tuple.

This style does not accept align in the dtype constructor as it is assumed that all of the memory is
accounted for by the array interface description.

Example

Data-type with fields big (big-endian 32-bit integer) and 1itt le (little-endian 32-bit integer):

’>>> dt = np.dtype([('big', '>i4'), ('little', '<id')]) ‘

Data-type with fields R, G, B, A, each being an unsigned 8-bit integer:

’>>> dt = np.dtype([('R', 'ul"), ('G','ul"), ('B','ul"), ('A"','ul")]) ‘
{'names"': ey 'formats': . 'offsets': C ey 'titles': ey
'itemsize': ...

This style has two required and three optional keys. The names and formats keys are required. Their
respective values are equal-length lists with the field names and the field formats. The field names must
be strings and the field formats can be any object accepted by dt ype constructor.

When the optional keys offsets and titles are provided, their values must each be lists of the same length
as the names and formats lists. The offsets value is a list of byte offsets (limited to ct ypes.c_int) for
each field, while the titles value is a list of titles for each field (None can be used if no title is desired
for that field). The titles can be any string or unicode object and will add another entry to the
fields dictionary keyed by the title and referencing the same field tuple which will contain the title as an
additional tuple member.

The itemsize key allows the total size of the dtype to be set, and must be an integer large enough so all the
fields are within the dtype. If the dtype being constructed is aligned, the itemsize must also be divisible
by the struct alignment. Total dtype itemsize is limited to ct ypes.c_int.

Example

Data type with fields r, g, b, a, each being an 8-bit unsigned integer:

>>> dt = np.dtype({'names': ['r','g','b"','a'],
'formats': [uint8, uint8, uint8, uint8]})

1.3. Data type objects (dtype) 75

https://docs.python.org/dev/library/ctypes.html#ctypes.c_int
https://docs.python.org/dev/library/ctypes.html#ctypes.c_int

NumPy Reference, Release 1.17.0

Data type with fields r and b (with the given titles), both being 8-bit unsigned integers, the first at byte
position 0 from the start of the field and the second at position 2:

>>> dt = np.dtype({'names': ['r','b'], 'formats': ['ul', 'ul'l,
'offsets': [0, 21,
'titles': ['Red pixel', 'Blue pixel']})
{'fieldl"': ey 'field2': ey e}

This usage is discouraged, because it is ambiguous with the other dict-based construction method. If you
have a field called ‘names’ and a field called ‘formats’ there will be a conflict.

This style allows passing in the fields attribute of a data-type object.

obj should contain string or unicode keys that refer to (data-type, offset) or (data-type,
offset, title) tuples.

Example

Data type containing field col1 (10-character string at byte position 0), col2 (32-bit float at byte posi-
tion 10), and co13 (integers at byte position 14):

>>> dt = np.dtype({'coll': ('U10', 0), 'col2': (float32, 10),
'col3': (int, 14)})

(base_dtype, new_dtype)

In NumPy 1.7 and later, this form allows base_dtype to be interpreted as a structured dtype. Arrays
created with this dtype will have underlying dtype base_dtype but will have fields and flags taken from
new_dtype. This is useful for creating custom structured dtypes, as done in record arrays.

This form also makes it possible to specify struct dtypes with overlapping fields, functioning like the
‘union’ type in C. This usage is discouraged, however, and the union mechanism is preferred.

Both arguments must be convertible to data-type objects with the same total size.

Example

32-bit integer, whose first two bytes are interpreted as an integer via field real, and the following two
bytes via field imag.

’>>> dt = np.dtype((np.int32, {'real': (np.intl6, 0), 'imag': (np.intl6, 2)})

32-bit integer, which is interpreted as consisting of a sub-array of shape (4,) containing 8-bit integers:

’>>> dt = np.dtype((np.int32, (np.int8, 4)))

32-bit integer, containing fields r, g, b, a that interpret the 4 bytes in the integer as four unsigned integers:

’>>> dt = np.dtype(('i4', [('c','ul"), ('g","ul"), ("D",'ul"), ("a','ul")]))

1.3.2 dtype

NumPy data type descriptions are instances of the dt ype class.

76

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Attributes

The type of the data is described by the following dt ype attributes:

dtype. type The type object used to instantiate a scalar of this data-
type.
dtype.kind A character code (one of ‘biufcmMOSUV’) identifying
the general kind of data.
dtype.char A unique character code for each of the 21 different
built-in types.
dtype.num A unique number for each of the 21 different built-in
types.
dtype.str The array-protocol typestring of this data-type object.
attribute
dtype.type
The type object used to instantiate a scalar of this data-type.
attribute
dtype.kind

A character code (one of ‘biufcmMOSUV’) identifying the general kind of data.

b | boolean
i signed integer
u | unsigned integer
f | floating-point
c complex floating-point
m | timedelta
M | datetime
O | object
S | (byte-)string
U | Unicode
V | void

Examples

>>> dt = np.dtype('id")

>>> dt.kind

lil

>>> dt = np.dtype('f8")

>>> dt.kind

Ve

>>> dt = np.dtype([('fieldl', '£f8')1])

>>> dt.kind

Ty

attribute
dtype.char

A unique character code for each of the 21 different built-in types.

1.3. Data type objects (dtype) 77

NumPy Reference, Release 1.17.0

Examples

>>> x = np.dtype (float)
>>> x.char
ldl

attribute

dtype.num
A unique number for each of the 21 different built-in types.

These are roughly ordered from least-to-most precision.

Examples

>>> dt = np.dtype (str)
>>> dt.num
19

>>> dt = np.dtype(float)
>>> dt.num
12

attribute

dtype.str
The array-protocol typestring of this data-type object.

Size of the data is in turn described by:

dtype.name A bit-width name for this data-type.
dtype.itemsize The element size of this data-type object.
attribute

dtype.name
A bit-width name for this data-type.

Un-sized flexible data-type objects do not have this attribute.

Examples

>>> x = np.dtype (float)

>>> x.name

'floate4d'

>>> x = np.dtype([('a', np.int32, 8), ('b', np.float64, 6)])
>>> x.name

'void640'

attribute

dtype.itemsize
The element size of this data-type object.

For 18 of the 21 types this number is fixed by the data-type. For the flexible data-types, this number can be
anything.

78 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> arr = np.array([[1, 21, [3, 411)
>>> arr.dtype

dtype ('int64"')

>>> arr.itemsize

8

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.itemsize

80

Endianness of this data:

dtype.byteorder A character indicating the byte-order of this data-type
object.

attribute

dtype.byteorder
A character indicating the byte-order of this data-type object.

One of:

=" | native
little-endian
big-endian
not applicable

All built-in data-type objects have byteorder either ‘=" or ‘I’.

Examples

>>> dt = np.dtype('i2")
>>> dt.byteorder

>>> # endian is not relevant for 8 bit numbers
>>> np.dtype('il'") .byteorder

l"

>>> # or ASCII strings

>>> np.dtype('S2") .byteorder

l"

>>> # Even 1f specific code is given, and it is native

>>> # '=' is the byteorder

>>> import sys

>>> sys_1is_le = sys.byteorder == 'little'
>>> native_code = sys_is_le and '<' or '>'
>>> swapped_code = sys_is_le and '>' or '<'

>>> dt = np.dtype (native_code + 'i2")
>>> dt.byteorder

>>> # Swapped code shows up as itself
>>> dt = np.dtype (swapped_code + 'i2")

(continues on next page)

1.3. Data type objects (dtype) 79

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> dt.byteorder == swapped_code
True

Information about sub-data-types in a structured data type:

dtype.fields Dictionary of named fields defined for this data type, or
None.
dtype.names Ordered list of field names, or None if there are no
fields.
attribute

dtype.fields
Dictionary of named fields defined for this data type, or None.

The dictionary is indexed by keys that are the names of the fields. Each entry in the dictionary is a tuple fully
describing the field:

(dtype, offset[, title])

Offset is limited to C int, which is signed and usually 32 bits. If present, the optional title can be any object (if
it is a string or unicode then it will also be a key in the fields dictionary, otherwise it’s meta-data). Notice also
that the first two elements of the tuple can be passed directly as arguments to the ndarray.getfield and
ndarray.setfield methods.

See also:

ndarray.getfield, ndarray.setfield

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> print (dt.fields)
{'grades': (dtype(('float64d', (2,))), 16), 'name': (dtype('[|S16"'), 0)}

attribute

dtype.names
Ordered list of field names, or None if there are no fields.

The names are ordered according to increasing byte offset. This can be used, for example, to walk through all
of the named fields in offset order.

Examples

>>> dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.names
("name', 'grades')

For data types that describe sub-arrays:

80 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

dtype. subdtype Tuple (item_dtype, shape) if this dtype de-
scribes a sub-array, and None otherwise.
dtype.shape Shape tuple of the sub-array if this data type describes a

sub-array, and () otherwise.

attribute

dtype.subdtype
Tuple (item_dtype, shape) if this dt ype describes a sub-array, and None otherwise.

The shape is the fixed shape of the sub-array described by this data type, and item_dtype the data type of the
array.

If a field whose dtype object has this attribute is retrieved, then the extra dimensions implied by shape are tacked
on to the end of the retrieved array.

See also:

dtype.base

Examples

>>> x = numpy.dtype('8f")
>>> x.subdtype
(dtype ('float32'), (8,))

>>> x = numpy.dtype('i2")
>>> x.subdtype
>>>

attribute

dtype.shape
Shape tuple of the sub-array if this data type describes a sub-array, and () otherwise.

Examples

>>> dt = np.dtype(('id', 4))
>>> dt.shape
(4,)

>>> dt = np.dtype(('i4', (2, 3)))
>>> dt.shape
(2, 3)

Attributes providing additional information:

dtype.hasobject Boolean indicating whether this dtype contains any
reference-counted objects in any fields or sub-dtypes.

dtype.flags Bit-flags describing how this data type is to be inter-
preted.

dtype.isbuiltin Integer indicating how this dtype relates to the built-in
dtypes.

Continued on next page

1.3. Data type objects (dtype) 81

NumPy Reference, Release 1.17.0

Table 32 — continued from previous page

dtype.

isnative

Boolean indicating whether the byte order of this dtype
is native to the platform.

dtype.descr __array_interface__ description of the data-type.
dtype.alignment The required alignment (bytes) of this data-type accord-
ing to the compiler.
dtype.base Returns dtype for the base element of the subarrays, re-
gardless of their dimension or shape.
attribute

dtype.hasobject
Boolean indicating whether this dtype contains any reference-counted objects in any fields or sub-dtypes.

Recall that what is actually in the ndarray memory representing the Python object is the memory address of that
object (a pointer). Special handling may be required, and this attribute is useful for distinguishing data types
that may contain arbitrary Python objects and data-types that won’t.

attribute

dtype.flags
Bit-flags describing how this data type is to be interpreted.

Bit-masks are in numpy.core.multiarray as the constants ITEM_HASOBJECT, LIST_PICKLE,
ITEM_IS_POINTER, NEEDS_INIT, NEEDS_PYAPI, USE_GETITEM, USE_SETITEM. A full explanation of
these flags is in C-API documentation; they are largely useful for user-defined data-types.

The following example demonstrates that operations on this particular dtype requires Python C-API.

Examples

16

16

>>> x = np.dtype([('a', np.int32, 8),
>>> x.flags

>>> np.core.multiarray.NEEDS_PYAPI

('b', np.floate64, 6)1])

attribute

dtype.isbuiltin
Integer indicating how this dtype relates to the built-in dtypes.

Read-only.

0

if this is a structured array type, with fields

1

if this is a dtype compiled into numpy (such as ints, floats etc)

2 | if the dtype is for a user-defined numpy type A user-defined type uses the numpy C-API machinery to
extend numpy to handle a new array type. See user.user-defined-data-types in the NumPy manual.
Examples
>>> dt np.dtype ('i2")
>>> dt.isbuiltin
1
>>> dt np.dtype ('f8")

(continues on next page)

82

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> dt.isbuiltin

1

>>> dt = np.dtype([('fieldl", '"£f8')1)
>>> dt.isbuiltin

0

attribute

dtype.isnative

Boolean indicating whether the byte order of this dtype is native to the platform.

attribute

dtype.descr

__array_interface__ description of the data-type.

The format is that required by the ‘descr’ key in the __array_interface__ attribute.

Warning: This attribute exists specifically for __array_interface
with np.dtype.

, and is not a datatype description compatible

Examples

>>> x = np.dtype (float)
>>> x.descr

[('", '<f8")]

>>> dt = np.dtype ([('name', np.str_, 16), ('grades', np.float64, (2,))])
>>> dt.descr

[("name', '<Ul6'), ('grades', '<f8', (2,))]

attribute

dtype.alignment

The required alignment (bytes) of this data-type according to the compiler.

More information is available in the C-API section of the manual.

attribute

Examples
>>> x = np.dtype('i4")
>>> x.alignment
4
>>> x = np.dtype (float)
>>> x.alignment
8
dtype .base

Returns dtype for the base element of the subarrays, regardless of their dimension or shape.
See also:

dtype.subdtype

1.3. Data type objects (dtype) 83

NumPy Reference, Release 1.17.0

Examples

>>> x = numpy.dtype('8f")
>>> x.base
dtype ('float32")

>>> x = numpy.dtype('i2")
>>> x.base
dtype ('intl6")

Methods

Data types have the following method for changing the byte order:

dtype.newbyteorder([new_order]) Return a new dtype with a different byte order.

The following methods implement the pickle protocol:

dtype._ reduce_ () Helper for pickle.
dtype.__setstate_ ()

method

dtype._ reduce_ ()
Helper for pickle.

method

dtype._ setstate_ ()

1.4 Indexing

ndarrays can be indexed using the standard Python x [ob7j] syntax, where x is the array and obj the selection.
There are three kinds of indexing available: field access, basic slicing, advanced indexing. Which one occurs depends
on obj.

Note: In Python, x[(expl, exp2, ..., expN)] is equivalentto x[expl, exp2, ..., expN]; the
latter is just syntactic sugar for the former.

1.4.1 Basic Slicing and Indexing

Basic slicing extends Python’s basic concept of slicing to N dimensions. Basic slicing occurs when obj is a slice
object (constructed by start:stop: step notation inside of brackets), an integer, or a tuple of slice objects and
integers. E11ipsis and newaxis objects can be interspersed with these as well.

Deprecated since version 1.15.0: In order to remain backward compatible with a common usage in Numeric, basic
slicing is also initiated if the selection object is any non-ndarray and non-tuple sequence (such as a 11ist) contain-
ing slice objects, the E11ipsis object, or the newaxis object, but not for integer arrays or other embedded
sequences.

84 Chapter 1. Array objects

https://docs.python.org/dev/library/functions.html#slice
https://docs.python.org/dev/library/stdtypes.html#list
https://docs.python.org/dev/library/functions.html#slice

NumPy Reference, Release 1.17.0

The simplest case of indexing with N integers returns an array scalar representing the corresponding item. As in
Python, all indices are zero-based: for the i-th index n;, the valid range is 0 < n; < d; where d; is the i-th element of
the shape of the array. Negative indices are interpreted as counting from the end of the array (i.e., if n; < 0, it means

All arrays generated by basic slicing are always views of the original array.

Note: NumPy slicing creates a view instead of a copy as in the case of builtin Python sequences such as string,
tuple and list. Care must be taken when extracting a small portion from a large array which becomes useless after the
extraction, because the small portion extracted contains a reference to the large original array whose memory will not
be released until all arrays derived from it are garbage-collected. In such cases an explicit copy () is recommended.

The standard rules of sequence slicing apply to basic slicing on a per-dimension basis (including using a step index).
Some useful concepts to remember include:

* The basic slice syntax is i : j: k where i is the starting index, j is the stopping index, and k is the step (k # 0).
This selects the m elements (in the corresponding dimension) with index values i, i + k, ..., i + (m - 1) k where
m = g+ (r # 0) and ¢ and r are the quotient and remainder obtained by dividing j - iby k: j-i =gk + r, so
thati + (m- 1)k <j.

Example

>>> x np.array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)
7:2]
4

3, 51)

>>> x[1:
array ([1

* Negative i and j are interpreted as n + i and n + j where n is the number of elements in the corresponding
dimension. Negative k makes stepping go towards smaller indices.

Example

>>> x[-2:10]

array ([8, 9])

>>> x[-3:3:-1]
array ([7, 6, 5, 41)

* Assume 7 is the number of elements in the dimension being sliced. Then, if i is not given it defaults to O for k >
Oandn - I for k < 0. If j is not given it defaults to n for k > 0 and -n-1 for k < 0. If k is not given it defaults to
1. Note that : : is the same as : and means select all indices along this axis.

Example

>>> x[5:]
[

array ([5, 6, 7, 8, 91)

* If the number of objects in the selection tuple is less than N , then : is assumed for any subsequent dimensions.

Example

1.4. Indexing 85

NumPy Reference, Release 1.17.0

>>> x = np.array ([[[1],[2], [3]1], [[4],[5],([6]111)
>>> x.shape

(2, 3, 1)

>>> x[1:2]

array ([[[4],
(51,
[6111)

* Ellipsis expands to the number of : objects needed for the selection tuple to index all dimensions. In most
cases, this means that length of the expanded selection tuple is x . ndim. There may only be a single ellipsis
present.

Example

>>> x[...,0]

* Each newaxis object in the selection tuple serves to expand the dimensions of the resulting selection by one
unit-length dimension. The added dimension is the position of the newaxi s object in the selection tuple.

Example

>>> x[:,np.newaxis, :, :].shape
(2, 1, 3, 1)

* An integer, i, returns the same values as i : 1 +1 except the dimensionality of the returned object is reduced by 1.
In particular, a selection tuple with the p-th element an integer (and all other entries :) returns the corresponding
sub-array with dimension N - . If N = I then the returned object is an array scalar. These objects are explained
in Scalars.

* If the selection tuple has all entries : except the p-th entry which is a slice object i : j:k, then the returned
array has dimension N formed by concatenating the sub-arrays returned by integer indexing of elements i, i+k,
i+ m-1)k<]j,

* Basic slicing with more than one non-: entry in the slicing tuple, acts like repeated application of slicing using
a single non-: entry, where the non-: entries are successively taken (with all other non-: entries replaced by
:). Thus, x [indl, ..., ind2, :] actslike x [ind1] [..., ind2, :] under basic slicing.

Warning: The above is not true for advanced indexing.

* You may use slicing to set values in the array, but (unlike lists) you can never grow the array. The size of the
value to be setin x [obj] = value must be (broadcastable) to the same shape as x [obJ].

Note: Remember that a slicing tuple can always be constructed as obj and used in the x [obj] notation. Slice objects
can be used in the construction in place of the [start:stop:step] notation. For example, x [1:10:5, : : —=1]
can also be implemented as obj = (slice(1,10,5), slice(None,None,-1)); x[obj] . Thiscan be
useful for constructing generic code that works on arrays of arbitrary dimension.

86 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

numpy .newaxis
The newaxi s object can be used in all slicing operations to create an axis of length one. newaxi s is an alias
for ‘None’, and ‘None’ can be used in place of this with the same result.

1.4.2 Advanced Indexing

Advanced indexing is triggered when the selection object, obj, is a non-tuple sequence object, an ndarray (of data
type integer or bool), or a tuple with at least one sequence object or ndarray (of data type integer or bool). There are
two types of advanced indexing: integer and Boolean.

Advanced indexing always returns a copy of the data (contrast with basic slicing that returns a view).

Warning: The definition of advanced indexing means that x[(1,2, 3),] is fundamentally different than
x[(1,2,3)]. The latter is equivalent to x[1, 2, 3] which will trigger basic selection while the former will
trigger advanced indexing. Be sure to understand why this occurs.

Also recognize that x [[1, 2, 3]] will trigger advanced indexing, whereas due to the deprecated Numeric com-
patibility mentioned above, x [[1, 2, slice (None)]] will trigger basic slicing.

Integer array indexing

Integer array indexing allows selection of arbitrary items in the array based on their N-dimensional index. Each integer
array represents a number of indexes into that dimension.

Purely integer array indexing

When the index consists of as many integer arrays as the array being indexed has dimensions, the indexing is straight
forward, but different from slicing.

Advanced indexes always are broadcast and iterated as one:

result(i_1, ..., i_M] == x[ind_1([4i_1, ..., i_M], ind_2[4i_1, ..., i_M],

., ind N[i_ 1, ..., i_M]]
Note that the result shape is identical to the (broadcast) indexing array shapes ind_1, ..., ind_N.
Example

From each row, a specific element should be selected. The row index is just [0, 1, 2] and the column index
specifies the element to choose for the corresponding row, here [0, 1, 0]. Using both together the task can be
solved using advanced indexing:

>>> x = np.array ([[1, 2], [3, 41, [5, 611)
>>> x[[0, 1, 2], [0, 1, O]]
[1

array (4, 57)

To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function ix_ can help with
this broadcasting. This is best understood with an example.

Example

1.4. Indexing 87

NumPy Reference, Release 1.17.0

From a 4x3 array the corner elements should be selected using advanced indexing. Thus all elements for which the
column is one of [0, 2] and the row is one of [0, 3] need to be selected. To use advanced indexing one needs to
select all elements explicitly. Using the method explained previously one could write:

>>> x = array([[0, 1, 21,
[3, 4, 51,
[6, 7, 81,
[9, 10, 1111)
>>> rows = np.array([[0, 0],
. [3, 311, dtype=np.intp)
>>> columns = np.array([[0, 21,
[0, 211, dtype=np.intp)
>>> x[rows, columns]
array ([[0, 27,
[9, 111])

However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such
asrows[:, np.newaxis] + columns) to simplify this:

>>> rows = np.array ([0, 3], dtype=np.intp)
>>> columns = np.array ([0, 2], dtype=np.intp)
>>> rows[:, np.newaxis]
array ([[0],

[311)
>>> x[rows[:, np.newaxis], columns]
array ([[O, 21,

[9 1111)

This broadcasting can also be achieved using the function i x_:

>>> x[np.ix_(rows, columns)]
array ([[0, 21,
[9, 1111)

Note that without the np . 1x_ call, only the diagonal elements would be selected, as was used in the previous example.
This difference is the most important thing to remember about indexing with multiple advanced indexes.

Combining advanced and basic indexing

When there is at least one slice (:), ellipsis (. . .) or newaxis in the index (or the array has more dimensions than
there are advanced indexes), then the behaviour can be more complicated. It is like concatenating the indexing result
for each advanced index element

In the simplest case, there is only a single advanced index. A single advanced index can for example replace a slice and
the result array will be the same, however, it is a copy and may have a different memory layout. A slice is preferable
when it is possible.

Example

>>> x[1:2, 1
array ([[4, 5
>>> x[1:2, |
array ([[4, 5

88 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

The easiest way to understand the situation may be to think in terms of the result shape. There are two parts to
the indexing operation, the subspace defined by the basic indexing (excluding integers) and the subspace from the
advanced indexing part. Two cases of index combination need to be distinguished:

* The advanced indexes are separated by a slice, E11ipsis or newaxis. For example x[arrl, :,
arr2].

* The advanced indexes are all next to each other. For example x[..., arrl, arr2, :] butnotx[arrl,
:, 1] since 1 is an advanced index in this regard.

In the first case, the dimensions resulting from the advanced indexing operation come first in the result array, and the
subspace dimensions after that. In the second case, the dimensions from the advanced indexing operations are inserted
into the result array at the same spot as they were in the initial array (the latter logic is what makes simple advanced
indexing behave just like slicing).

Example

Suppose x . shape is (10,20,30) and ind is a (2,3,4)-shaped indexing intp array, then result = x[...,ind,

:] has shape (10,2,3,4,30) because the (20,)-shaped subspace has been replaced with a (2,3,4)-shaped broadcasted

indexing subspace. If we let i, j, k loop over the (2,3,4)-shaped subspace then result([...,1,3,%k,:] = x[.
.,ind[1i, J, k1, : 1. This example produces the same result as x. take (ind, axis=-2).

Example

Let x . shape be (10,20,30,40,50) and suppose ind_1 and ind_2 can be broadcast to the shape (2,3,4). Then x [:,
ind_1, ind_2] has shape (10,2,3,4,40,50) because the (20,30)-shaped subspace from X has been replaced with the
(2,3,4) subspace from the indices. However, x [:, ind_1, :, ind_2] has shape (2,3,4,10,30,50) because there is no
unambiguous place to drop in the indexing subspace, thus it is tacked-on to the beginning. It is always possible to use
.transpose () to move the subspace anywhere desired. Note that this example cannot be replicated using take.

Boolean array indexing

This advanced indexing occurs when obj is an array object of Boolean type, such as may be returned from comparison
operators. A single boolean index array is practically identical to x [obj.nonzero ()] where, as described above,
obj.nonzero () returns a tuple (of length ob j. ndim) of integer index arrays showing the True elements of 0bj.
However, it is faster when obj.shape == x.shape.

If obj.ndim == x.ndim, x[obj] returns a 1-dimensional array filled with the elements of x corresponding to
the True values of obj. The search order will be row-major, C-style. If obj has True values at entries that are outside
of the bounds of x, then an index error will be raised. If 0bj is smaller than x it is identical to filling it with False.

Example

A common use case for this is filtering for desired element values. For example one may wish to select all entries from
an array which are not NaN:

>>> x = np.array([[l., 2.], [np.nan, 3.], [np.nan, np.nan]l])
>>> x[~np.isnan (x)]
array ([1., 2., 3.1)

Or wish to add a constant to all negative elements:

1.4. Indexing 89

NumPy Reference, Release 1.17.0

>>> x = np.array([1l., -1., -2., 31])
>>> x[x < 0] += 20

>>> x

array ([1., 19., 18., 3.71)

In general if an index includes a Boolean array, the result will be identical to inserting obj.nonzero () into the
same position and using the integer array indexing mechanism described above. x[ind_1, boolean_array,
ind_2] isequivalentto x[(ind_1,) + boolean_array.nonzero() + (ind_2,)].

If there is only one Boolean array and no integer indexing array present, this is straight forward. Care must only be
taken to make sure that the boolean index has exactly as many dimensions as it is supposed to work with.

Example

From an array, select all rows which sum up to less or equal two:

>>> x = np.array ([[0, 1], [1, 11, [2, 211)

>>> rowsum = x.sum(—1)
>>> x[rowsum <= 2, :]
array ([[0, 17,

[1, 111)

But if rowsum would have two dimensions as well:

>>> rowsum = x.sum(-1, keepdims=True)
>>> rowsum.shape

(3, 1)

>>> x[rowsum <= 2, :] # fails

IndexError: too many indices
>>> x[rowsum <= 2]
array ([0, 1])

The last one giving only the first elements because of the extra dimension. Compare rowsum.nonzero () to
understand this example.

Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with
the obj.nonzero () analogy. The function ix_ also supports boolean arrays and will work without any surprises.

Example

Use boolean indexing to select all rows adding up to an even number. At the same time columns 0 and 2 should be
selected with an advanced integer index. Using the ix_ function this can be done with:

>>> x = array([[0, 1, 21,

[3, 4, 51,

[6, 7, 81,

[9, 10, 1111)
>>> rows = (x.sum(-1) % 2) == 0

>>> rows
array ([False, True, False, Truel])

>>> columns = [0, 2]
>>> x[np.ix_(rows, columns)]
array ([[3, 51,

[9, 1111)

920 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Without the np . 1x__ call or only the diagonal elements would be selected.

Or without np . ix_ (compare the integer array examples):

>>> rows = rows.nonzero () [0]
>>> x[rows[:, np.newaxis], columns]
array ([[3, 51,

[9, 1111)

1.4.3 Detailed notes

These are some detailed notes, which are not of importance for day to day indexing (in no particular order):

e The native NumPy indexing type is intp and may differ from the default integer array type. intp is the
smallest data type sufficient to safely index any array; for advanced indexing it may be faster than other types.

» For advanced assignments, there is in general no guarantee for the iteration order. This means that if an element
is set more than once, it is not possible to predict the final result.

e An empty (tuple) index is a full scalar index into a zero dimensional array. x [()] returns a scalar if x is zero
dimensional and a view otherwise. On the other hand x [. . .] always returns a view.

* If a zero dimensional array is present in the index and it is a full integer index the result will be a scalar and not
a zero dimensional array. (Advanced indexing is not triggered.)

e When an ellipsis (. . .) is present but has no size (i.e. replaces zero :) the result will still always be an array. A
view if no advanced index is present, otherwise a copy.

* the nonzero equivalence for Boolean arrays does not hold for zero dimensional boolean arrays.

* When the result of an advanced indexing operation has no elements but an individual index is out of bounds,
whether or not an IndexError is raised is undefined (e.g. x [[], [123]] with 123 being out of bounds).

* When a casting error occurs during assignment (for example updating a numerical array using a sequence of
strings), the array being assigned to may end up in an unpredictable partially updated state. However, if any
other error (such as an out of bounds index) occurs, the array will remain unchanged.

¢ The memory layout of an advanced indexing result is optimized for each indexing operation and no particular
memory order can be assumed.

* When using a subclass (especially one which manipulates its shape), the default ndarray.__setitem___
behaviour will call __getitem___ for basic indexing but not for advanced indexing. For such a subclass it
may be preferable to call ndarray.__setitem__ with a base class ndarray view on the data. This must be
done if the subclasses __getitem__ does not return views.

1.4.4 Field Access

See also:
Data type objects (dtype), Scalars

If the ndarray objectis a structured array the fields of the array can be accessed by indexing the array with strings,
dictionary-like.

Indexing x [' field-name'] returns a new view to the array, which is of the same shape as x (except when the field
is a sub-array) but of data type x.dtype['field-name'] and contains only the part of the data in the specified
field. Also record array scalars can be “indexed” this way.

1.4. Indexing 91

NumPy Reference, Release 1.17.0

Indexing into a structured array can also be done with a list of field names, e.g. x[['field-namel’,
'field-name2']]. As of NumPy 1.16 this returns a view containing only those fields. In older versions of
numpy it returned a copy. See the user guide section on structured_arrays for more information on multifield indexing.

If the accessed field is a sub-array, the dimensions of the sub-array are appended to the shape of the result.

Example

>>> x = np.zeros((2,2), dtype=[('a', np.int32), ('b', np.float64d, (3,3))])
>>> x['a'].shape

(2, 2)

>>> x['a'].dtype
dtype ('int32")
>>> x['b'].shape
(2, 2, 3, 3)

>>> x['b'].dtype
dtype ('float64")

1.4.5 Flat Iterator indexing

x.flat returns an iterator that will iterate over the entire array (in C-contiguous style with the last index varying
the fastest). This iterator object can also be indexed using basic slicing or advanced indexing as long as the selection
object is not a tuple. This should be clear from the fact that x. f1at is a 1-dimensional view. It can be used for integer
indexing with 1-dimensional C-style-flat indices. The shape of any returned array is therefore the shape of the integer
indexing object.

1.5 Iterating Over Arrays

The iterator object nditer, introduced in NumPy 1.6, provides many flexible ways to visit all the elements of one
or more arrays in a systematic fashion. This page introduces some basic ways to use the object for computations on
arrays in Python, then concludes with how one can accelerate the inner loop in Cython. Since the Python exposure of
nditer is arelatively straightforward mapping of the C array iterator API, these ideas will also provide help working
with array iteration from C or C++.

1.5.1 Single Array Ilteration

The most basic task that can be done with the nditer is to visit every element of an array. Each element is provided
one by one using the standard Python iterator interface.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a):
print (x, end=' ")

012345

An important thing to be aware of for this iteration is that the order is chosen to match the memory layout of the array
instead of using a standard C or Fortran ordering. This is done for access efficiency, reflecting the idea that by default

92 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

one simply wants to visit each element without concern for a particular ordering. We can see this by iterating over the
transpose of our previous array, compared to taking a copy of that transpose in C order.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a.T):
print(x, end=' ")

012345

>>> for x in np.nditer(a.T.copy(order='C")):
print (x, end=" ")

031425

The elements of both a and a.T get traversed in the same order, namely the order they are stored in memory, whereas
the elements of a.T.copy(order="C") get visited in a different order because they have been put into a different memory
layout.

Controlling Iteration Order

There are times when it is important to visit the elements of an array in a specific order, irrespective of the layout of the
elements in memory. The nditer object provides an order parameter to control this aspect of iteration. The default,
having the behavior described above, is order="K’ to keep the existing order. This can be overridden with order="C’
for C order and order="F’ for Fortran order.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, order='F"'"):
print (x, end=' ")

031425
>>> for x in np.nditer(a.T, order='C'):

print (x, end=" ")

031425

Modifying Array Values
By default, the nditer treats the input operand as a read-only object. To be able to modify the array elements, you
must specify either read-write or write-only mode using the ‘readwrite’ or ‘writeonly’ per-operand flags.

The nditer will then yield writeable buffer arrays which you may modify. However, because the nditer must copy this
buffer data back to the original array once iteration is finished, you must signal when the iteration is ended, by one of
two methods. You may either:

* used the nditer as a context manager using the with statement, and the temporary data will be written back when
the context is exited.

« call the iterator’s close method once finished iterating, which will trigger the write-back.

1.5. lterating Over Arrays 93

NumPy Reference, Release 1.17.0

The nditer can no longer be iterated once either close is called or its context is exited.

Example

>>> a = np.arange (6) .reshape (2, 3)

>>> a
array ([[0, 1, 21,
[3, 4, 5]1)
>>> with np.nditer(a, op_flags=['readwrite']) as it:
for x in it:
x[...] = 2 % X
>>> a
array ([[0, 2, 41,
[6, 8, 1011)

Using an External Loop

In all the examples so far, the elements of a are provided by the iterator one at a time, because all the looping logic is
internal to the iterator. While this is simple and convenient, it is not very efficient. A better approach is to move the
one-dimensional innermost loop into your code, external to the iterator. This way, NumPy’s vectorized operations can
be used on larger chunks of the elements being visited.

The nditer will try to provide chunks that are as large as possible to the inner loop. By forcing ‘C’ and ‘F’ order,
we get different external loop sizes. This mode is enabled by specifying an iterator flag.

Observe that with the default of keeping native memory order, the iterator is able to provide a single one-dimensional
chunk, whereas when forcing Fortran order, it has to provide three chunks of two elements each.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, flags=['external loop']):
print (x, end=" ")

[001 2 3 4 5]

>>> for x in np.nditer(a, flags=['external_ loop'], order='F"'):
print (x, end=' ")

[0 3] [1 4] [2 5]

Tracking an Index or Multi-Index

During iteration, you may want to use the index of the current element in a computation. For example, you may want
to visit the elements of an array in memory order, but use a C-order, Fortran-order, or multidimensional index to look
up values in a different array.

The Python iterator protocol doesn’t have a natural way to query these additional values from the iterator, so we
introduce an alternate syntax for iterating with an ndi t er. This syntax explicitly works with the iterator object itself,
so its properties are readily accessible during iteration. With this looping construct, the current value is accessible by

94 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

indexing into the iterator, and the index being tracked is the property index or multi_index depending on what was
requested.

The Python interactive interpreter unfortunately prints out the values of expressions inside the while loop during each
iteration of the loop. We have modified the output in the examples using this looping construct in order to be more
readable.

Example

>>> a = np.arange (6) .reshape (2, 3)

>>> it = np.nditer(a, flags=['f_index'])
>>> while not it.finished:
print (" <gd>" % (it [0], it.index), end='"' ")

it.iternext ()

0 <0> 1 <2> 2 <4> 3 <1> 4 <3> 5 <5>

>>> it = np.nditer(a, flags=['multi_ index'])
>>> while not it.finished:
print (" <%s>" % (it[0], it.multi_index), end=' ")

it.iternext ()

0 <(0, 0)> 1 <(0, 1)> 2 <(0, 2)> 3 <(1, 0)> 4 <(1, 1)> 5 <(1, 2)>

>>> it = np.nditer(a, flags=['multi_index'], op_flags=['writeonly'])
>>> with it:
while not it.finished:
it[0] = it.multi_index[1] - it.multi_index[0]
it.iternext ()

Tracking an index or multi-index is incompatible with using an external loop, because it requires a different index
value per element. If you try to combine these flags, the nditer object will raise an exception

Example
>>> a = np.zeros((2,3))
>>> it = np.nditer(a, flags=['c_index', 'external loop'])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Iterator flag EXTERNAL_LOOP cannot be used if an index or multi-index is_,
—being tracked

Buffering the Array Elements

When forcing an iteration order, we observed that the external loop option may provide the elements in smaller chunks
because the elements can’t be visited in the appropriate order with a constant stride. When writing C code, this is
generally fine, however in pure Python code this can cause a significant reduction in performance.

1.5. lterating Over Arrays 95

NumPy Reference, Release 1.17.0

By enabling buffering mode, the chunks provided by the iterator to the inner loop can be made larger, significantly
reducing the overhead of the Python interpreter. In the example forcing Fortran iteration order, the inner loop gets to
see all the elements in one go when buffering is enabled.

Example

>>> a = np.arange (6) .reshape (2, 3)
>>> for x in np.nditer(a, flags=['external loop'], order='F"'):
print (x, end=' ")

[0 31 [1 4] [2 3]

>>> for x in np.nditer(a, flags=['external loop', 'buffered'], order='F'"):
print(x, end=' ")
[0 3142 5]

Iterating as a Specific Data Type

There are times when it is necessary to treat an array as a different data type than it is stored as. For instance, one
may want to do all computations on 64-bit floats, even if the arrays being manipulated are 32-bit floats. Except when
writing low-level C code, it’s generally better to let the iterator handle the copying or buffering instead of casting the
data type yourself in the inner loop.

There are two mechanisms which allow this to be done, temporary copies and buffering mode. With temporary copies,
a copy of the entire array is made with the new data type, then iteration is done in the copy. Write access is permitted
through a mode which updates the original array after all the iteration is complete. The major drawback of temporary
copies is that the temporary copy may consume a large amount of memory, particularly if the iteration data type has a
larger itemsize than the original one.

Buffering mode mitigates the memory usage issue and is more cache-friendly than making temporary copies. Except
for special cases, where the whole array is needed at once outside the iterator, buffering is recommended over tem-
porary copying. Within NumPy, buffering is used by the ufuncs and other functions to support flexible inputs with
minimal memory overhead.

In our examples, we will treat the input array with a complex data type, so that we can take square roots of negative
numbers. Without enabling copies or buffering mode, the iterator will raise an exception if the data type doesn’t match
precisely.

Example

>>> a = np.arange (6) .reshape(2,3) - 3
>>> for x in np.nditer(a, op_dtypes=['complex128']):
print (np.sqgrt(x), end="' ")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand required copying or buffering, but neither copying nor,
—buffering was enabled

In copying mode, ‘copy’ is specified as a per-operand flag. This is done to provide control in a per-operand fashion.
Buffering mode is specified as an iterator flag.

96 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Example
>>> a = np.arange (6) .reshape(2,3) - 3
>>> for x in np.nditer(a, op_flags=['readonly', 'copy'],
op_dtypes=["'complex128']):
print (np.sqgrt(x), end=' ")

1.732050807579 1.414213562375 15 03 (1+03) (1.41421356237+07)

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['complex128']):
print (np.sqgrt(x), end=' ")

1.732050807579 1.414213562379 19 09 (1+03) (1.41421356237+07)

The iterator uses NumPy’s casting rules to determine whether a specific conversion is permitted. By default, it enforces
‘safe’ casting. This means, for example, that it will raise an exception if you try to treat a 64-bit float array as a 32-bit
float array. In many cases, the rule ‘same_kind’ is the most reasonable rule to use, since it will allow conversion from
64 to 32-bit float, but not from float to int or from complex to float.

Example

>>> a = np.arange (6.)

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32']):
print (x, end="' ")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
—'float32') according to the rule 'safe'

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['float32'],
casting="'same_kind'):
print (x, end="' ")

0.0 1.0 2.0 3.0 4.0 5.0

>>> for x in np.nditer(a, flags=['buffered'], op_dtypes=['int32'], casting='same_kind
(_)'):

print (x, end="' ")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Iterator operand 0 dtype could not be cast from dtype('float64') to dtype(
—'int32') according to the rule 'same_kind'

One thing to watch out for is conversions back to the original data type when using a read-write or write-only operand.
A common case is to implement the inner loop in terms of 64-bit floats, and use ‘same_kind’ casting to allow the other
floating-point types to be processed as well. While in read-only mode, an integer array could be provided, read-write
mode will raise an exception because conversion back to the array would violate the casting rule.

Example

1.5. lterating Over Arrays 97

NumPy Reference, Release 1.17.0

>>> a = np.arange (6)
>>> for x in np.nditer(a, flags=['buffered'], op_flags=['readwrite'],
op_dtypes=['float64'], casting='same_kind"):
x[...] =x/ 2.0

Traceback (most recent call last):

File "<stdin>", line 2, in <module>
TypeError: Iterator requested dtype could not be cast from dtype('float64d') to dtype
—'int64'), the operand 0 dtype, according to the rule 'same_kind'

1.5.2 Broadcasting Array lteration

NumPy has a set of rules for dealing with arrays that have differing shapes which are applied whenever functions take
multiple operands which combine element-wise. This is called broadcasting. The nditer object can apply these
rules for you when you need to write such a function.

As an example, we print out the result of broadcasting a one and a two dimensional array together.

Example

>>> a = np.arange(3)
>>> b = np.arange (6) .reshape (2, 3)
>>> for x, y in np.nditer([a,b]):

print ("4d: % (x,y), end=' ')

0:0 1:1 2:2 0:3 1:4 2:5

When a broadcasting error occurs, the iterator raises an exception which includes the input shapes to help diagnose
the problem.

Example

>>> a = np.arange (2)
>>> b = np.arange (6) .reshape (2, 3)
>>> for x, y in np.nditer([a,b]):
print (" : "% (x,y), end=" ")

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2) (2,3)

Iterator-Allocated Output Arrays

A common case in NumPy functions is to have outputs allocated based on the broadcasting of the input, and addition-
ally have an optional parameter called ‘out’ where the result will be placed when it is provided. The nditer object
provides a convenient idiom that makes it very easy to support this mechanism.

We’ll show how this works by creating a function squa re which squares its input. Let’s start with a minimal function
definition excluding ‘out’ parameter support.

98 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Example

>>> def square(a):
with np.nditer ([a, None]) as it:
for x, y in it:
y[i...] = x*x
return it.operands([1]

>>> square([1,2,3])
array ([1, 4, 91)

By default, the nditer uses the flags ‘allocate’ and ‘writeonly’ for operands that are passed in as None. This means
we were able to provide just the two operands to the iterator, and it handled the rest.

When adding the ‘out’ parameter, we have to explicitly provide those flags, because if someone passes in an array as
‘out’, the iterator will default to ‘readonly’, and our inner loop would fail. The reason ‘readonly’ is the default for input
arrays is to prevent confusion about unintentionally triggering a reduction operation. If the default were ‘readwrite’,
any broadcasting operation would also trigger a reduction, a topic which is covered later in this document.

While we’re at it, let’s also introduce the ‘no_broadcast’ flag, which will prevent the output from being broadcast.
This is important, because we only want one input value for each output. Aggregating more than one input value
is a reduction operation which requires special handling. It would already raise an error because reductions must
be explicitly enabled in an iterator flag, but the error message that results from disabling broadcasting is much more
understandable for end-users. To see how to generalize the square function to a reduction, look at the sum of squares
function in the section about Cython.

For completeness, we’ll also add the ‘external_loop’ and ‘buffered’ flags, as these are what you will typically want for
performance reasons.

Example

>>> def square(a, out=None) :

it = np.nditer([a, out],
flags = ['external_ loop', 'buffered'],
op_flags = [['readonly'],
['writeonly', 'allocate', 'no_broadcast']])
with it:
for x, y in it:

y[l...] = x*x
return it.operands([1]

>>> square([1,2,3])
array ([1, 4, 91)

>>> b = np.zeros ((3,))

>>> square([1,2,3], out=b)
array ([1., 4., 9.1)

>>> Db

array ([1., 4., 9.7)

>>> square (np.arange (6) .reshape (2, 3), out=b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

(continues on next page)

1.5. lterating Over Arrays 99

NumPy Reference, Release 1.17.0

(continued from previous page)

File "<stdin>", line 4, in square
ValueError: non-broadcastable output operand with shape (3) doesn't match the_,
—broadcast shape (2,3)

Outer Product lteration

Any binary operation can be extended to an array operation in an outer product fashion like in outer, and the
nditer object provides a way to accomplish this by explicitly mapping the axes of the operands. It is also possible to
do this with newax i s indexing, but we will show you how to directly use the nditer op_axes parameter to accomplish
this with no intermediate views.

We’ll do a simple outer product, placing the dimensions of the first operand before the dimensions of the second
operand. The op_axes parameter needs one list of axes for each operand, and provides a mapping from the iterator’s
axes to the axes of the operand.

Suppose the first operand is one dimensional and the second operand is two dimensional. The iterator will have three
dimensions, so op_axes will have two 3-element lists. The first list picks out the one axis of the first operand, and is
-1 for the rest of the iterator axes, with a final result of [0, -1, -1]. The second list picks out the two axes of the second
operand, but shouldn’t overlap with the axes picked out in the first operand. Its list is [-1, O, 1]. The output operand
maps onto the iterator axes in the standard manner, so we can provide None instead of constructing another list.

The operation in the inner loop is a straightforward multiplication. Everything to do with the outer product is handled
by the iterator setup.

Example

>>> a = np.arange (3)

>>> b = np.arange (8) .reshape (2, 4)

>>> it = np.nditer([a, b, None], flags=['external_ loop'],

.. op_axes=[[0, -1, -1], [-1, O, 1], None])
>>> with it:
for x, y, z in it:
z[...] = x*xy
result = it.operands[2] # same as z
>>> result
array ([[[

~
~

~
~
o~
~

[

o~
~

~

[

~
~

~

o N O O O
~ 0~

N oY NN O O
~

Sy Jd w O O

[
[
[
[
[

~
[
~
=
o~

Note that once the iterator is closed we can not access operands and must use a reference created inside the context
manager.

Reduction lteration

Whenever a writeable operand has fewer elements than the full iteration space, that operand is undergoing a reduction.
The nditer object requires that any reduction operand be flagged as read-write, and only allows reductions when
‘reduce_ok’ is provided as an iterator flag.

100 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

For a simple example, consider taking the sum of all elements in an array.

Example

>>> a = np.arange (24) .reshape(2,3,4)

>>> b = np.array (0)
>>> with np.nditer([a, b], flags=['reduce_ok', 'external loop'],
op_flags=[['readonly'], ['readwrite']]) as it:
for x,y in it:
yvi...] += x
>>> Db
array (276)
>>> np.sum(a)
276

Things are a little bit more tricky when combining reduction and allocated operands. Before iteration is started, any
reduction operand must be initialized to its starting values. Here’s how we can do this, taking sums along the last axis
of a.

Example

>>> a = np.arange (24) .reshape(2,3,4)

>>> it = np.nditer([a, None], flags=['reduce_ok', 'external loop'],
op_flags=[['readonly'], ['readwrite', 'allocate']],
Ce op_axes=[None, [0,1,-111)

>>> with it:

it.operands[1][...] = 0
for x, y in it:

y[l...] += x
result = it.operands[1]

>>> result

array ([[6, 22, 381,
[54, 70, 86]1)

>>> np.sum(a, axis=2)

array ([[6, 22, 381,
[54, 70, 86]1)

To do buffered reduction requires yet another adjustment during the setup. Normally the iterator construction involves
copying the first buffer of data from the readable arrays into the buffer. Any reduction operand is readable, so it may
be read into a buffer. Unfortunately, initialization of the operand after this buffering operation is complete will not be
reflected in the buffer that the iteration starts with, and garbage results will be produced.

The iterator flag “delay_bufalloc” is there to allow iterator-allocated reduction operands to exist together with buffer-
ing. When this flag is set, the iterator will leave its buffers uninitialized until it receives a reset, after which it will be
ready for regular iteration. Here’s how the previous example looks if we also enable buffering.

Example

>>> a = np.arange (24) .reshape(2,3,4)
>>> it = np.nditer([a, None], flags=['reduce_ok', 'external loop',
'buffered', 'delay_bufalloc'],

(continues on next page)

1.5. lterating Over Arrays 101

NumPy Reference, Release 1.17.0

(continued from previous page)

op_flags=[['readonly'], ['readwrite', 'allocate'll],
. op_axes=[None, [0,1,-111)
>>> with it:

it.operands([1][...] = 0
it.reset ()
for x, y in it:
y[l...] += x
result = it.operands[1]

>>> result
array ([[6, 22, 38],
[54, 70, 86]1])

1.5.3 Putting the Inner Loop in Cython

Those who want really good performance out of their low level operations should strongly consider directly using the
iteration API provided in C, but for those who are not comfortable with C or C++, Cython is a good middle ground with
reasonable performance tradeoffs. For the nditer object, this means letting the iterator take care of broadcasting,
dtype conversion, and buffering, while giving the inner loop to Cython.

For our example, we’ll create a sum of squares function. To start, let’s implement this function in straightforward
Python. We want to support an ‘axis’ parameter similar to the numpy sum function, so we will need to construct a list
for the op_axes parameter. Here’s how this looks.

Example

>>> def axis_to_axeslist (axis, ndim) :
if axis is None:
return [-1] * ndim

else:
if type(axis) is not tuple:
axis = (axis,)
axeslist = [1] % ndim
for i in axis:
axeslist[i] = -1
ax = 0
for i in range (ndim) :
if axeslist[i] != -1:
axeslist[i] = ax
ax += 1

return axeslist

>>> def sum_squares_py(arr, axis=None, out=None) :

axeslist = axis_to_axeslist (axis, arr.ndim)
it = np.nditer([arr, out], flags=['reduce_ok', 'external loop',
'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate']],

op_axes=[None, axeslist],
op_dtypes=['float6d', 'float64d'])
with it:
it.operands([1l][...] = 0
it.reset ()
for x, y in it:

(continues on next page)

102 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

y[l...] += x*x
return it.operands([1]

>>> a = np.arange (6) .reshape (2, 3)
>>> sum_squares_py (a)

array (55.0)
>>> sum_squares_py (a, axis=-1)
array ([5., 50.1)

To Cython-ize this function, we replace the inner loop (y[...] += x*x) with Cython code that’s specialized for
the float64 dtype. With the ‘external_loop’ flag enabled, the arrays provided to the inner loop will always be one-
dimensional, so very little checking needs to be done.

Here’s the listing of sum_squares.pyx:

import numpy as np
cimport numpy as np
cimport cython

def axis_to_axeslist (axis, ndim) :
if axis is None:
return [-1] % ndim
else:
if type(axis) is not tuple:

axis = (axis,)
axeslist = [1] % ndim
for i in axis:
axeslist[i] = -1
ax = 0
for i in range (ndim) :
if axeslist[i] != —-1:
axeslist[i] = ax
ax += 1

return axeslist

@cython.boundscheck (False)
def sum_squares_cy(arr, axis=None, out=None) :
cdef np.ndarray[double] x
cdef np.ndarray[double] y
cdef int size
cdef double value

axeslist = axis_to_axeslist (axis, arr.ndim)
it = np.nditer([arr, out], flags=['reduce ok', 'external loop',
'buffered', 'delay_bufalloc'],
op_flags=[['readonly'], ['readwrite', 'allocate'll,

op_axes=[None, axeslist],
op_dtypes=['float6d', 'float6d'])

with it:
it.operands([1][...] = 0
it.reset ()
for xarr, yarr in it:
X = xarr
y = yarr
size = x.shapel[0]

for i in range(size):

(continues on next page)

1.5. lterating Over Arrays 103

NumPy Reference, Release 1.17.0

(continued from previous page)

value = x[1i]
y[i]l = y[i] + value * value
return it.operands|[1]

On this machine, building the .pyx file into a module looked like the following, but you may have to find some Cython
tutorials to tell you the specifics for your system configuration.:

$ cython sum_squares.pyx
$ gcc —-shared -pthread -fPIC -fwrapv -02 -Wall -I/usr/include/python2.7 —-fno-strict-
—aliasing —-o sum_squares.so sum_squares.c

Running this from the Python interpreter produces the same answers as our native Python/NumPy code did.

Example

>>> from sum_squares import sum_squares_cy
>>> a = np.arange (6) .reshape (2, 3)
>>> sum_squares_cy (a)

array (55.0)
>>> sum_squares_cy (a, axis=-1)
array ([5., 50.1)

Doing a little timing in IPython shows that the reduced overhead and memory allocation of the Cython inner loop is
providing a very nice speedup over both the straightforward Python code and an expression using NumPy’s built-in
sum function.:

>>> a = np.random.rand(1000,1000)

>>> timeit sum_squares_py(a, axis=-1)
10 loops, best of 3: 37.1 ms per loop

>>> timeit np.sum(axa, axis=-1)
10 loops, best of 3: 20.9 ms per loop

>>> timeit sum_squares_cy(a, axis=-1)
100 loops, best of 3: 11.8 ms per loop

>>> np.all (sum_squares_cy(a, axis=-1) == np.sum(axa, axis=-1))
True
>>> np.all (sum_squares_py(a, axis=-1) == np.sum(axa, axis=-1))
True

1.6 Standard array subclasses

Note: Subclassing a numpy .ndarray is possible but if your goal is to create an array with modified behavior, as
do dask arrays for distributed computation and cupy arrays for GPU-based computation, subclassing is discouraged.
Instead, using numpy’s dispatch mechanism is recommended.

The ndarray can be inherited from (in Python or in C) if desired. Therefore, it can form a foundation for many
useful classes. Often whether to sub-class the array object or to simply use the core array component as an internal

104 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

part of a new class is a difficult decision, and can be simply a matter of choice. NumPy has several tools for simplifying
how your new object interacts with other array objects, and so the choice may not be significant in the end. One way
to simplify the question is by asking yourself if the object you are interested in can be replaced as a single array or
does it really require two or more arrays at its core.

Note that asarray always returns the base-class ndarray. If you are confident that your use of the array object can
handle any subclass of an ndarray, then asanyarray can be used to allow subclasses to propagate more cleanly
through your subroutine. In principal a subclass could redefine any aspect of the array and therefore, under strict
guidelines, asanyarray would rarely be useful. However, most subclasses of the array object will not redefine
certain aspects of the array object such as the buffer interface, or the attributes of the array. One important example,
however, of why your subroutine may not be able to handle an arbitrary subclass of an array is that matrices redefine
the “*” operator to be matrix-multiplication, rather than element-by-element multiplication.

1.6.1 Special attributes and methods

See also:
Subclassing ndarray
NumPy provides several hooks that classes can customize:

class.__array ufunc__ (ufunc, method, *inputs, **kwargs)
New in version 1.13.

Any class, ndarray subclass or not, can define this method or set it to None in order to override the behavior of
NumPy’s ufuncs. This works quite similarly to Python’s __mul___ and other binary operation routines.

* ufunc is the ufunc object that was called.

* method is a string indicating which Ufunc method was called (one of "__call__ ", "reduce",
"reduceat", "accumulate", "outer", "inner").

* inputs is a tuple of the input arguments to the ufunc.

* kwargs is a dictionary containing the optional input arguments of the ufunc. If given, any out arguments,
both positional and keyword, are passed as a tuple in kwargs. See the discussion in Universal functions
(ufunc) for details.

The method should return either the result of the operation, or Not Implemented if the operation requested
is not implemented.

If one of the input or output arguments has a ___array ufunc__ method, it is executed instead of the
ufunc. If more than one of the arguments implements ___array ufunc__, they are tried in the order: sub-
classes before superclasses, inputs before outputs, otherwise left to right. The first routine returning something
other than Not Implemented determines the result. If all of the _ array ufunc__ operations return
Not Implemented, a TypeError is raised.

Note: We intend to re-implement numpy functions as (generalized) Ufunc, in which case it will become
possible for them to be overridden by the __array_ufunc___ method. A prime candidate is matmul, which
currently is not a Ufunc, but could be relatively easily be rewritten as a (set of) generalized Ufuncs. The same
may happen with functions such as median, min, and argsort.

Like with some other special methods in python, such as __hash___and __iter__ , itis possible to indi-
cate that your class does not support ufuncs by setting __array_ufunc__ = None. Ufuncs always raise
TypeError when called on an object that sets __array_ufunc__ = None.

The presence of __array ufunc__ also influences how ndarray handles binary operations like arr +
objand arr < obj when arr is an ndarray and obj is an instance of a custom class. There are two

1.6. Standard array subclasses 105

https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/stdtypes.html#tuple
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/exceptions.html#TypeError

NumPy Reference, Release 1.17.0

possibilities. If obj.__array_ufunc__ is present and not None, then ndarray.__add__ and friends
will delegate to the ufunc machinery, meaning that arr + obj becomes np.add (arr, obj), and then
add invokes obj.__array_ufunc__. Thisis useful if you want to define an object that acts like an array.

Alternatively, if obj.__array_ufunc__ is set to None, then as a special case, special methods like
ndarray.__add__ will notice this and unconditionally raise TypeError. This is useful if you want to
create objects that interact with arrays via binary operations, but are not themselves arrays. For example, a units
handling system might have an object m representing the “meters” unit, and want to support the syntax arr * m
to represent that the array has units of “meters”, but not want to otherwise interact with arrays via ufuncs or oth-

erwise. This can be done by setting __array_ufunc__ = None and defining _ mul___and ___rmul___
methods. (Note that this means that writing an __array_ufunc___ that always returns Not Implemented
is not quite the same as setting __array_ufunc__ = None: in the former case, arr + obj will raise

TypeError, while in the latter case it is possible to define a___radd___ method to prevent this.)

The above does not hold for in-place operators, for which ndarray never returns Not Implemented. Hence,
arr += obj would always lead to a TypeError. This is because for arrays in-place operations cannot
generically be replaced by a simple reverse operation. (For instance, by default, arr += ob7j would be
translated to arr = arr + obj,i.e., arr would be replaced, contrary to what is expected for in-place array
operations.)

Note: If youdefine __array_ufunc__:

* If you are not a subclass of ndarray, we recommend your class define special methods like __add___
and __1t___ that delegate to ufuncs just like ndarray does. An easy way to do this is to subclass from
NDArrayOperatorsMixin

 If you subclass ndarray, we recommend that you put all your override logic in __array_ufunc___
and not also override special methods. This ensures the class hierarchy is determined in only one place
rather than separately by the ufunc machinery and by the binary operation rules (which gives preference
to special methods of subclasses; the alternative way to enforce a one-place only hierarchy, of setting
__array_ufunc__ to None, would seem very unexpected and thus confusing, as then the subclass
would not work at all with ufuncs).

* ndarray defines its own ___array_ufunc__, which, evaluates the ufunc if no arguments have
overrides, and returns Not Implemented otherwise. This may be useful for subclasses for which
__array_ufunc___ converts any instances of its own class to ndarray: it can then pass these on to
its superclass using super () .__array_ufunc__ (xinputs, =**kwargs), and finally return the
results after possible back-conversion. The advantage of this practice is that it ensures that it is possible to
have a hierarchy of subclasses that extend the behaviour. See Subclassing ndarray for details.

Note: If a class defines the _ array ufunc__ method, this disables the _ array wrap ,
__array prepare__,_ _array priority__ mechanism described below for ufuncs (which may even-
tually be deprecated).

class.__array_ function__ (func, types, args, kwargs)

New in version 1.16.

Note:

e In NumPy 1.17, the protocol is enabled by default, but can be disabled with
NUMPY_EXPERIMENTAL_ARRAY_FUNCTION=O0.

* In NumPy 1.16, you need to set the environment variable NUMPY_EXPERIMENTAL_ARRAY_FUNCTION=1

before importing NumPy to use NumPy function overrides.

106

Chapter 1. Array objects

https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/constants.html#NotImplemented
https://docs.python.org/dev/library/exceptions.html#TypeError
https://docs.python.org/dev/library/constants.html#None
https://docs.python.org/dev/library/constants.html#NotImplemented

NumPy Reference, Release 1.17.0

* Eventually, expectto __array_function___ to always be enabled.

e func is an arbitrary callable exposed by NumPy’s public API, which was called in the form
func (xargs, =*xxkwargs).

* types is a collection of unique argument types from the original NumPy function call that implement
__array_function__.

» The tuple args and dict kwargs are directly passed on from the original call.
As a convenience for __array_function___ implementors, types provides all argument types with an
'__array_function__ ' attribute. This allows implementors to quickly identify cases where they should

defer to __array_function___ implementations on other arguments. Implementations should not rely on
the iteration order of types.

Most implementations of __array_function___ will start with two checks:
1. Is the given function something that we know how to overload?
2. Are all arguments of a type that we know how to handle?

If these conditions hold, __array_function__ should return the result from calling its implementation for
func (xargs, =x+kwargs). Otherwise, it should return the sentinel value Not Implemented, indicating
that the function is not implemented by these types.

There are no general requirements on the return value from __array_function__, although most sensible
implementations should probably return array(s) with the same type as one of the function’s arguments.

It may also be convenient to define a custom decorators (implements below) for registering
__array_function__ implementations.

HANDLED_FUNCTIONS = {}

class MyArray:
def _ _array_function__ (self, func, types, args, kwargs):

if func not in HANDLED_FUNCTIONS:
return NotImplemented

Note: this allows subclasses that don't override

__array_function__ to handle MyArray objects

if not all (issubclass(t, MyArray) for t in types):
return NotImplemented

return HANDLED_FUNCTIONS[func] (xargs, =xxkwargs)

def implements (numpy_function) :

"""Register an __array_function_ _ implementation for MyArray objects."""
def decorator (func):
HANDLED_FUNCTIONS [numpy_function] = func

return func
return decorator

@implements (np.concatenate)
def concatenate (arrays, axis=0, out=None) :
implementation of concatenate for MyArray objects

@implements (np.broadcast_to)
def broadcast_to(array, shape):
Implementation of broadcast_to for MyArray objects

1.6. Standard array subclasses 107

collections.abc.Collection

NumPy Reference, Release 1.17.0

Note that it is not required for __array_function__ implementations to include all of the corresponding
NumPy function’s optional arguments (e.g., broadcast_to above omits the irrelevant subok argument).
Optional arguments are only passedinto __array_function___ if they were explicitly used in the NumPy
function call.

Just like the case for builtin special methods like ___add__, properly written __array_function__ meth-
ods should always return Not Implemented when an unknown type is encountered. Otherwise, it will be
impossible to correctly override NumPy functions from another object if the operation also includes one of your
objects.

For the most part, the rules for dispatch with___array_function__ matchthose for _array ufunc_ .
In particular:

e NumPy will gather implementations of __array_function__ from all specified inputs and call them
in order: subclasses before superclasses, and otherwise left to right. Note that in some edge cases involving
subclasses, this differs slightly from the current behavior of Python.

* Implementations of __array_function__ indicate that they can handle the operation by returning
any value other than Not Implemented.

e Ifall__array_function__ methods return Not Implemented, NumPy will raise TypeError.

If no __array_function__ methods exists, NumPy will default to calling its own implementation,
intended for use on NumPy arrays. This case arises, for example, when all array-like arguments are
Python numbers or lists. (NumPy arrays do have a __array_function__ method, given below, but
it always returns NotImplemented if any argument other than a NumPy array subclass implements
__array_function__)

One deviation from the current behavior of ___array_ufunc__ is that NumPy will only -call
__array_function___ on the first argument of each unique type. This matches Python’s rule for calling
reflected methods, and this ensures that checking overloads has acceptable performance even when there are a
large number of overloaded arguments.

class.__array finalize_ (obj)

This method is called whenever the system internally allocates a new array from obj, where obj is a subclass
(subtype) of the ndarray. It can be used to change attributes of self after construction (so as to ensure a 2-d
matrix for example), or to update meta-information from the “parent.” Subclasses inherit a default implementa-
tion of this method that does nothing.

class.__array_ prepare__ (array, context=None)

At the beginning of every ufunc, this method is called on the input object with the highest array priority, or the
output object if one was specified. The output array is passed in and whatever is returned is passed to the ufunc.
Subclasses inherit a default implementation of this method which simply returns the output array unmodified.
Subclasses may opt to use this method to transform the output array into an instance of the subclass and update
metadata before returning the array to the ufunc for computation.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of ___array ufunc .

class.__array_wrap__ (array, context=None)

At the end of every ufunc, this method is called on the input object with the highest array priority, or the output
object if one was specified. The ufunc-computed array is passed in and whatever is returned is passed to the
user. Subclasses inherit a default implementation of this method, which transforms the array into a new instance
of the object’s class. Subclasses may opt to use this method to transform the output array into an instance of the
subclass and update metadata before returning the array to the user.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of __array ufunc .

108

Chapter 1. Array objects

https://bugs.python.org/issue30140
https://docs.python.org/3/reference/datamodel.html#object.__ror__
https://docs.python.org/3/reference/datamodel.html#object.__ror__

NumPy Reference, Release 1.17.0

class.__array_priority_
The value of this attribute is used to determine what type of object to return in situations where there is more
than one possibility for the Python type of the returned object. Subclasses inherit a default value of 0.0 for this
attribute.

Note: For ufuncs, it is hoped to eventually deprecate this method in favour of __array ufunc .

class.__array__ ([dtype])
If a class (ndarray subclass or not) having the __array__ method is used as the output object of an ufunc,
results will be written to the object returned by ___array__ . Similar conversion is done on input arrays.

1.6.2 Matrix objects

Note: It is strongly advised not to use the matrix subclass. As described below, it makes writing functions that
deal consistently with matrices and regular arrays very difficult. Currently, they are mainly used for interacting with
scipy.sparse. We hope to provide an alternative for this use, however, and eventually remove the matrix
subclass.

mat rix objects inherit from the ndarray and therefore, they have the same attributes and methods of ndarrays. There
are six important differences of matrix objects, however, that may lead to unexpected results when you use matrices
but expect them to act like arrays:

1. Matrix objects can be created using a string notation to allow Matlab-style syntax where spaces separate columns
and semicolons (°;”) separate rows.

2. Matrix objects are always two-dimensional. This has far-reaching implications, in that m.ravel() is still two-
dimensional (with a 1 in the first dimension) and item selection returns two-dimensional objects so that sequence
behavior is fundamentally different than arrays.

3. Matrix objects over-ride multiplication to be matrix-multiplication. Make sure you understand this for func-
tions that you may want to receive matrices. Especially in light of the fact that asanyarray(m) returns a
matrix when m is a matrix.

4. Matrix objects over-ride power to be matrix raised to a power. The same warning about using power inside a
function that uses asanyarray(...) to get an array object holds for this fact.

5. The default __array_priority__ of matrix objects is 10.0, and therefore mixed operations with ndarrays always
produce matrices.

6. Matrices have special attributes which make calculations easier. These are

matrix.T Returns the transpose of the matrix.
matrix.H Returns the (complex) conjugate transpose of self.
matrix.I Returns the (multiplicative) inverse of invertible self.
matrix.A Return self as an ndarray object.

attribute

matrix.T
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use . H.

Parameters

1.6. Standard array subclasses 109

NumPy Reference, Release 1.17.0

None
Returns
ret [matrix object] The (non-conjugated) transpose of the matrix.
See also:

transpose, getH

Examples
>>> m = np.matrix('[1, 2; 3, 41")
>>> m
matrix ([[1, 21,
[3, 411)
>>> m.getT ()
matrix ([[1, 371,
(2, 411)
attribute

matrix.H
Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose (self) if self is real-valued.
Parameters
None
Returns

ret [matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12) .reshape((3,4)))

0. +0.73, 1. -1.3, 2. -2.7, 3. -3.31,
[4. -4.3, 5. =5.3, 6. —-6.7, 7. =-7.31,

8. -8.73, 9. -9.3, 10.-10.3j, 11.-11.311)
>>> z.getH()

(
matrix([[0. -0.73, 4. +4.7, 8. +8.71,
[1. +1.9, 5. +5.3, 9. +9.31,
[2. +2.73, 6. +6.3, 10.+10.371,
[3. +3.5, 7. +7.5, 11.+11.311)
attribute

matrix.I
Returns the (multiplicative) inverse of invertible self.

Parameters
None
Returns

ret [matrix object] If self is non-singular, ref is such that ret % self ==self * ret
==np.matrix(np.eye(self[0,:].size) all return True.

110 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Raises
numpy.linalg.LinAlgError: Singular matrix If self is singular.
See also:

linalg.inv

Examples
>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix ([[1, 21,
[3, 411)
>>> m.getI()
matrix([[-2. , 1.1,
[1.5, -0.511)
>>> m.getI() > m
matrix ([[1., 0.1, # may vary
[0., 1.11)

attribute

matrix.A
Return self as an ndarray object.

Equivalent to np.asarray (self).
Parameters
None
Returns

ret [ndarray] self as an ndarray

Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

0

[4, 5 6, 7],
8, 9, 10, 11]1])
(

Warning: Matrix objects over-ride multiplication, ‘*’, and power, ‘**’, to be matrix-multiplication and matrix
power, respectively. If your subroutine can accept sub-classes and you do not convert to base- class arrays, then
you must use the ufuncs multiply and power to be sure that you are performing the correct operation for all inputs.

The matrix class is a Python subclass of the ndarray and can be used as a reference for how to construct your own
subclass of the ndarray. Matrices can be created from other matrices, strings, and anything else that can be converted
to an ndarray . The name “mat “is an alias for “matrix “in NumPy.

1.6. Standard array subclasses 111

NumPy Reference, Release 1.17.0

mat rix(data[, dtype, copy])

Note: It is no longer recommended to use this class,
even for linear

asmatrix(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, ldict, gdict]) Build a matrix object from a string, nested sequence, or
array.

class numpy.matrix (data, dtype=None, copy=True)

Note: It is no longer recommended to use this class, even for linear algebra. Instead use regular arrays. The
class may be removed in the future.

Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that
retains its 2-D nature through operations. It has certain special operators, such as » (matrix multiplication) and
* % (matrix power).

Parameters

data [array_like or string] If data is a string, it is interpreted as a matrix with commas or
spaces separating columns, and semicolons separating rows.

dtype [data-type] Data-type of the output matrix.

copy [bool] If data is already an ndarray, then this flag determines whether the data is
copied (the default), or whether a view is constructed.

See also:

array

Examples

>>> a = np.matrix ('l 2; 3 4")
>>> g
matrix ([[1, 21,

>>> np.matrix ([[1, 2], [3, 411])

matrix ([[1, 27,
[3, 411)
Attributes

A Return self as an ndarray object.

Al Return self as a flattened ndarray.

H Returns the (complex) conjugate transpose of self.

I Returns the (multiplicative) inverse of invertible self.

T Returns the transpose of the matrix.

112

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

base Base object if memory is from some other object.

ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

flat A 1-D iterator over the array.

imag The imaginary part of the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

a1 1(self], axis, out])

Test whether all matrix elements along a given axis
evaluate to True.

any (selff, axis, out])

Test whether any array element along a given axis
evaluates to True.

argmax(self], axis, out])

Indexes of the maximum values along an axis.

argmin(self], axis, out])

Indexes of the minimum values along an axis.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtypel, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap([inplace])

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a
set of choices.

c11p([min, max, out])

Return an array whose values are limited to [min,
max].

compress(condition[, axis, out])

Return selected slices of this array along given axis.

conij() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along
the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the
given axis.

diagonal([offset, axisl, axis2])

Return specified diagonals.

dot(b[, out])

Dot product of two arrays.

dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
f£111(value) Fill the array with a scalar value.

Continued on next page

1.6. Standard array subclasses

113

NumPy Reference, Release 1.17.0

Table 37 — continued from previous page

flatten(self], order])

Return a flattened copy of the matrix.

getA(self) Return self as an ndarray object.

getAl(self) Return self as a flattened ndarray.

get H(self) Returns the (complex) conjugate transpose of self.
get I(self) Returns the (multiplicative) inverse of invertible self.
get T(self) Returns the transpose of the matrix.

get field(dtype[, offset])

Returns a field of the given array as a certain type.

1item(*args)

Copy an element of an array to a standard Python
scalar and return it.

itemset(*args)

Insert scalar into an array (scalar is cast to array’s
dtype, if possible)

max(self[, axis, out])

Return the maximum value along an axis.

mean(self], axis, dtype, out])

Returns the average of the matrix elements along the
given axis.

min(self], axis, out])

Return the minimum value along an axis.

newbyteorder([new_order])

Return the array with the same data viewed with a
different byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way
that the value of the element in kth position is in the
position it would be in a sorted array.

prod(self], axis, dtype, out])

Return the product of the array elements over the
given axis.

ptp(selff, axis, out])

Peak-to-peak (maximum - minimum) value along the
given axis.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in in-
dices.

ravel(self], order])

Return a flattened matrix.

repeat(repeats|[, axis])

Repeat elements of an array.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given
number of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted
in a to maintain order.

set field(val, dtypel, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, (WRITE-
BACKIFCOPY and UPDATEIFCOPY), respec-
tively.

sort([axis, kind, order])

Sort an array in-place.

squeeze(self], axis])

Return a possibly reshaped matrix.

std(self], axis, dtype, out, ddof])

Return the standard deviation of the array elements
along the given axis.

sum(selff, axis, dtype, out])

Returns the sum of the matrix elements, along the
given axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 in-
terchanged.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

Continued on next page

114

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 37 — continued from previous page

tobytes([order])

Construct Python bytes containing the raw data bytes
in the array.

tofile(fid], sep, format])

Write array to a file as text or binary (default).

tolist(self)

Return the matrix as a (possibly nested) list.

tostring([order])

Construct Python bytes containing the raw data bytes
in the array.

t race([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

t ranspose(*axes)

Returns a view of the array with axes transposed.

var(self], axis, dtype, out, ddof])

Returns the variance of the matrix elements, along
the given axis.

view([dtype, type])

New view of array with the same data.

method

matrix.all (self, axis=None, out=None)

Test whether all matrix elements along a given axis evaluate to True.

Parameters

See ‘numpy.all‘ for complete descriptions

See also:

numpy.all

Notes

This is the same as ndarray.all,butitreturns a matrix object.

Examples
>>> x = np.matrix(np.arange(1l2) .reshape((3,4))); x
matrix ([[O, 1, 2, 31,
[4, 5, 6, 71,
[8, 9, 10, 1111)
>>> vy = x[0]; vy
matrix ([[0, 1, 2, 311)
>>> (x == y)
matrix ([[True, True, True, True],
[False, False, False, False],
[False, False, False, Falsel]])
>>> (x == vy).all()
False
>>> (x == vy).all(0)
matrix ([[False, False, False, Falsell])
>>> (x == vy).all(l)
matrix ([[Truel,
[False],
[Falsel])
method

matrix.any (self, axis=None, out=None)

Test whether any array element along a given axis evaluates to True.

Refer to numpy . any for full documentation.

1.6.

Standard array subclasses

115

NumPy Reference, Release 1.17.0

Parameters
axis [int, optional] Axis along which logical OR is performed

out [ndarray, optional] Output to existing array instead of creating new one, must have same
shape as expected output

Returns

any [bool, ndarray] Returns a single bool if axis is None; otherwise, returns ndarray

method

matrix.argmax (self, axis=None, out=None)

Indexes of the maximum values along an axis.

Return the indexes of the first occurrences of the maximum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters
See ‘numpy.argmax‘ for complete descriptions
See also:

numpy.argmax

Notes

This is the same as ndarray.argmax, but returns a mat rix object where ndarray.argmax would
return an ndarray.

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8, 9, 10, 1111)
>>> x.argmax ()
11
>>> x.argmax (0)
matrix ([[2, 2, 2, 2]1)
>>> x.argmax (1)
matrix ([[3],
(31,
[311)

method

matrix.argmin (self, axis=None, out=None)

Indexes of the minimum values along an axis.

Return the indexes of the first occurrences of the minimum values along the specified axis. If axis is None,
the index is for the flattened matrix.

Parameters
See ‘numpy.argmin‘ for complete descriptions.
See also:

numpy.argmin

116

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Notes

This is the same as ndarray.argmin, but returns a mat rix object where ndarray.argmin would

return an ndarray.

Examples
>>> x = -np.matrix(np.arange(l2) .reshape((3,4))); x
matrix([([O, -1, -2, =31,

[-4, -5, -6, =71,
[-8, -9, =10, -1111)
>>> x.argmin ()
11
>>> x.argmin (0)
matrix ([[2, 2, 2, 2]11)
>>> x.argmin (1)

matrix ([[3],
[31,
[311)

method

matrix.argpartition (kth, axis=-1, kind="introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy . argpartition for full documentation.
New in version 1.8.0.

See also:
numpy.argpartition equivalent function

method

matrix.argsort (axis=-1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See also:
numpy.argsort equivalent function

method

matrix.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

1.6.

Standard array subclasses

NumPy Reference, Release 1.17.0

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
 ‘safe’ means only casts which can preserve values are allowed.

» ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dt ype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the
string dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2., 2.51)

>>> x.astype (int)
array ([1, 2, 21])

method

matrix.byteswap (inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace [bool, optional] If True, swap bytes in-place, default is False.
Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

118 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> list (map (hex, A))

['Ox1', '0x100', '0x2233"']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=intlo6)
>>> list (map (hex, A))

['0x100', 'Ox1', '0x3322"']

>>> A = np.array([l, 256, 8755], dtype=np.intl6)

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'l])
>>> A.byteswap ()
Traceback (most recent call last):

UnicodeDecodeError:

method

matrix.choose (choices, out=None, mode="raise’)

Use an index array to construct a new array from a set of choices.

Refer to numpy . choose for full documentation.

See also:
numpy . choose equivalent function

method

matrix.eclip (min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy . c11p for full documentation.

See also:
numpy.clip equivalent function

method

matrix.compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy . compress for full documentation.

See also:
numpy . compress equivalent function

method

matrix.conj ()
Complex-conjugate all elements.

Refer to numpy . con jugate for full documentation.

See also:

numpy . conjugate equivalent function

1.6.

Standard array subclasses

119

NumPy Reference, Release 1.17.0

method

matrix.conjugate ()
Return the complex conjugate, element-wise.

Refer to numpy . con jugate for full documentation.

See also:
numpy . conjugate equivalent function

method

matrix.copy (order="C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A" means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy .
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy, numpy.copyto

Examples
’>>> x = np.array([[1,2,3],[4,5,6]], order="F")
’>>> y = x.copy()

>>> x.f111(0)

>>> x
array ([[0, 0, 0]

>>> y
array([[1, 2, 3],
(4, 5, 6]1)

>>> y.flags['C_CONTIGUOUS']
True

method

matrix.cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.

See also:
numpy . cumprod equivalent function

method

120 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

matrix.cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy . cumsum for full documentation.

See also:
numpy . cumsum equivalent function

method

matrix.diagonal (offset=0, axisl=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:
numpy.diagonal equivalent function

method

matrix.dot (b, out=None)
Dot product of two arrays.

Refer to numpy . dot for full documentation.

See also:

numpy . dot equivalent function

Examples
>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2

>>> a.dot (b)
array ([[2., 2.1,
(2., 2.11)

This array method can be conveniently chained:

>>> a.dot (b) .dot (b)
array([[8., 8.1,
[8., 8.11)

method

matrix.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

method

1.6.

Standard array subclasses 121

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

matrix.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None
method

matrix.£ill (value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 2])
>>> a.fil11(0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> a

array ([1l., 1.17)

method

matrix.flatten (self, order="C’)
Return a flattened copy of the matrix.

All N elements of the matrix are placed into a single row.
Parameters

order [{‘C’, ‘F’, ‘A’, ‘’K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran-style) order. ‘A’ means to flatten in column-
major order if m is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten m in the order the elements occur in memory. The default is ‘C’.

Returns

y [matrix] A copy of the matrix, flattened to a (/, N) matrix where N is the number of
elements in the original matrix.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the matrix.

Examples

>>> m = np.matrix ([[1,2], [3,41])
>>> m.flatten ()

matrix ([[1, 2, 3, 4]11)

>>> m.flatten('F")

matrix ([[1, 3, 2, 4]1])

122 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

method

matrix.getA (self)
Return self as an ndarray object.

Equivalent to np.asarray (self).
Parameters
None
Returns

ret [ndarray] self as an ndarray

Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix ([[O, 1, 2, 31,

0

[4, 5, 6, 71,
8 9, 10, 11711)
(

method

matrix.getAl (self)
Return self as a flattened ndarray.

Equivalent to np.asarray (x) .ravel ()
Parameters
None
Returns

ret [ndarray] self, 1-D, as an ndarray

Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8 9, 10, 1111])
>>> x.getAl ()
array ([0, 1, 2, ..., 9, 10, 111)

method

matrix.getH (self)
Returns the (complex) conjugate transpose of self.

Equivalent to np.transpose (self) if self is real-valued.
Parameters
None

Returns

1.6. Standard array subclasses 123

NumPy Reference, Release 1.17.0

ret [matrix object] complex conjugate transpose of self

Examples

>>> x = np.matrix(np.arange(12) .reshape((3,4)))

>>> z = x — 1j*x; z

matrix([[0. +0.7, 1. -1.73, 2. =2.7, 3. =3.731,

[4. -4.43, 5. =5.7, 6. —6.73, 7. =7.31,
8. -8.73, 9. -9.3, 10.-10.3, 11.-11.9311)

>>> z.getH()

(
matrix([[0. -0.73, 4. +4.7, 8. +8.71,
[1. +1.7, 5. +5.7, 9. +9.731,
[2. +2.59, 6. +6.3, 10.+10.31,
[3. 3.3, 7. +7.3, 11.+11.311)
method

matrix.getI (self)
Returns the (multiplicative) inverse of invertible self.

Parameters
None
Returns

ret [matrix object] If self is non-singular, ref is such that ret % self ==self * ret
==np.matrix (np.eye(self[0,:].size) all return True.

Raises
numpy.linalg.LinAlgError: Singular matrix If self is singular.
See also:

linalg.inv

Examples

>>> m = np.matrix('[1, 2; 3, 4]'); m
matrix ([[1, 21,
[3, 411)
>>> m.getI()
matrix ([[-2
[1
>>> m.getI (
matrix ([[1
[O

PR P
5, =0.511)
) *

4
’

method

matrix.getT (self)
Returns the transpose of the matrix.

Does not conjugate! For the complex conjugate transpose, use . H.
Parameters
None

Returns

124 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ret [matrix object] The (non-conjugated) transpose of the matrix.
See also:

transpose, getH

Examples
>>> m = np.matrix('[1, 2; 3, 41")
>>> m
matrix ([[1, 21,
(3, 411)
>>> m.getT ()
matrix ([[1, 31,
(2, 411)
method

matrix.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([l.+1.3]%2)
>>> x[1, 1] = 2 + 4.3
>>> x
array ([[1.+1.7, 0.+0.71,
[0.+0.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.7,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield (np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

matrix.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters

*args [Arguments (variable number and type)]

1.6.

Standard array subclasses 125

NumPy Reference, Release 1.17.0

* none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples
>>> np.random.seed(123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 6],
(1, 3, 6],
(1, 0, 111)
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

matrix.itemset (*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset (xargs) is
equivalent to but faster than a [args] = item. The item should be a scalar value and args must select
a single item in the array a.

Parameters

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-
guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

126

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Notes

Compared to indexing syntax, 1 t emset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> X
array([[2, 2, 6],
(1, 3, 6],
(1, 0, 111)
>>> x.itemset (4, 0)
>>> x.itemset ((2, 2), 9)
>>> x
array ([[2, 2, 6],

method

matrix.max (self, axis=None, out=None)
Return the maximum value along an axis.

Parameters
See ‘amax‘ for complete descriptions
See also:

amax, ndarray.max

Notes

This is the same as ndarray.max, but returns a mat rix object where ndarray.max would return

an ndarray.

Examples

>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([{[O, 1, 2, 3],

0

|: 47 5/ 6/ 7]/
8, 9, 10, 11]1])
)

>>> x.max (0)
matrix ([[8, 9, 10, 1111)
>>> x.max (

[

1)

matrix ([[3],
7]

[11]

1)

method

1.6. Standard array subclasses 127

NumPy Reference, Release 1.17.0

matrix.mean (self, axis=None, dtype=None, out=None)
Returns the average of the matrix elements along the given axis.

Refer to numpy . mean for full documentation.
See also:

numpy .mean

Notes

Same as ndarray.mean except that, where that returns an ndarray, this returns a mat rix object.

Examples

>>> x = np.matrix(np.arange (12) .reshape((3, 4)))
>>> x

matrix ([[O, 1, 2, 31,

[
>>> xX.mean
5.5
>>> x.mean (0)
matrix([[4., 5., 6., 7.11)
>>> x.mean (1

0

[4, 5, 6, 7]
8
(

)

(1)

matrix ([[1.57,
[5.51,
[9.511)

method

matrix.min (self, axis=None, out=None)
Return the minimum value along an axis.

Parameters
See ‘amin‘ for complete descriptions.
See also:

amin, ndarray.min

Notes

This is the same as ndarray.min, but returns a mat rix object where ndarray.min would return an

ndarray.

Examples

>>> x = -np.matrix(np.arange(l2) .reshape((3,4))); x
matrix ([0, -1, -2, -31,

[

[_41 _51 _6/ _7}1
[-8, -9, -10, -1111])
n

(continues on next page)

128 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> x.min (0)
matrix([[-8, -9, -10, -1111)
>>> x.min (1)
matrix ([[-31,
[=71,
[-11]11)

method

matrix.newbyteorder (new_order="S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

* ‘S’ - swap dtype from current to opposite endian
» {‘<’, 'L’} - little endian

e {*>’, ‘B’} - big endian

e {‘=", ‘N’} - native order

o {°I, I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-
insensitive check on the first letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr [array] New array object with the dtype reflecting given change to the byte order.
method

matrix.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

See also:
numpy.nonzero equivalent function

method

matrix.partition (kth, axis=-1, kind="introselect’, order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters

1.6. Standard array subclasses 129

NumPy Reference, Release 1.17.0

kth [int or sequence of ints] Element index to partition by. The kth element value will be
in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When «a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.
argpartition Indirect partition.

sort Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
>>> a
array ([1, 2, 3, 41)

method

matrix.prod (self, axis=None, dtype=None, out=None)
Return the product of the array elements over the given axis.

Refer to prod for full documentation.
See also:

prod, ndarray.prod

Notes

Same as ndarray . prod, except, where that returns an ndarray, this returns a mat r i x object instead.

130

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[9, 10, 1111)

0
[4, 5, 6, 171,
8
>>> x.prod(

)

0
>>> x.prod(0)
matrix([[0, 45, 120, 2311])
>>> x.prod(1l)
matrix ([[01,
[84017,
[792011)
method

matrix.ptp (self, axis=None, out=None)
Peak-to-peak (maximum - minimum) value along the given axis.

Refer to numpy . pt p for full documentation.

See also:

numpy.ptp

Notes

Same as ndarray.ptp, except, where that would return an ndarray object, this returns a matrix

object.
Examples
>>> x = np.matrix(np.arange (12) .reshape((3,4))); x

matrix([[O, 1, 2, 3],
[4, 5, 6, 711,
[8, 9, 10, 1111)
>>> x.ptp ()
11
>>> x.ptp (0)
matrix ([[8, 8, 8, 8]1)
>>> x.ptp (1)
matrix ([[3],
[31,
[311)

method

matrix.put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall n in indices.

Refer to numpy . put for full documentation.

See also:

numpy . put equivalent function

. Standard array subclasses 131

NumPy Reference, Release 1.17.0

method

matrix.ravel (self, order="C’)
Return a flattened matrix.

Refer to numpy . ravel for more documentation.
Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’ }, optional] The elements of m are read using this index order. ‘C’
means to index the elements in C-like order, with the last axis index changing fastest, back
to the first axis index changing slowest. ‘F’ means to index the elements in Fortran-like
index order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array,
and only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to
read the elements in the order they occur in memory, except for reversing the data when
strides are negative. By default, ‘C’ index order is used.

Returns

ret [matrix] Return the matrix flattened to shape (1, N) where N is the number of elements
in the original matrix. A copy is made only if necessary.

See also:

matrix.flatten returns a similar output matrix but always a copy
matrix.flat a flatiterator on the array.

numpy . ravel related function which returns an ndarray

method

matrix.repeat (repeats, axis=None)
Repeat elements of an array.

Refer to numpy . repeat for full documentation.

See also:
numpy . repeat equivalent function

method

matrix.reshape (shape, order="C’)
Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.

See also:

numpy . reshape equivalent function

Notes

Unlike the free function numpy . reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to
a.reshape ((10, 11)).

method

132 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

matrix.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.
Returns

None
Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-

shaped:
>>> a = np.array ([[0, 11, [2, 3]1], order='C")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array([[0, 1], [2, 311, order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
[211)
Enlarging an array: as above, but missing entries are filled with zeros:
>>> b = np.array ([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

(continues on next page)

1.6. Standard array subclasses 133

NumPy Reference, Release 1.17.0

(continued from previous page)

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((l, 1), refcheck=False)

>>> a

array ([[0]])

>>> C

array ([[0]])
method

matrix.round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

See also:
numpy . around equivalent function

method

matrix.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

See also:
numpy . searchsorted equivalent function

method

matrix.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.
Parameters
val [object] Value to be placed in field.
dtype [dtype object] Data-type of the field in which to place val.
offset [int, optional] The number of bytes into the field at which to place val.
Returns

None

134 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.7,
(0., 1., 0.1,
(0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,
[3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]1])
>>> x.setfield(np.eye(3), np.int32)

>>> x
array ([[1., 0., 0.1,
(0., 1., 0.1,
(0., 0., 1.11)
method

matrix.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters
write [bool, optional] Describes whether or not a can be written to.
align [bool, optional] Describes whether or not « is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

1.6. Standard array subclasses 135

NumPy Reference, Release 1.17.0

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y = np.array([[3, 1, 71,
(z, 0, 01,

[8, 5, 911

>>> y

array ([[3, 1, 71,
(2, o0, 01,
(8, 5, 911)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

matrix.sort (axis=-1, kind=None, order=None)

Sort an array in-place. Refer to numpy . sort for full documentation.
Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The de-
fault is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers
and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0.: The ‘stable’ option was added.

order [str or list of str, optional] When «a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

136

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also:

numpy . sort Return a sorted copy of an array.
argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.
searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 47,
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,
[1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)1, dtype=[('x', 'S1"), ('y', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x"', 'S1'), ('y', '<i8")])
method

matrix.squeeze (self, axis=None)
Return a possibly reshaped matrix.

Refer to numpy . squeeze for more documentation.
Parameters

axis [None or int or tuple of ints, optional] Selects a subset of the single-dimensional entries
in the shape. If an axis is selected with shape entry greater than one, an error is raised.

Returns
squeezed [matrix] The matrix, but as a (1, N) matrix if it had shape (N, 1).

See also:

numpy . squeeze related function

1.6.

Standard array subclasses 137

NumPy Reference, Release 1.17.0

Notes

If m has a single column then that column is returned as the single row of a matrix. Otherwise m is returned.
The returned matrix is always either m itself or a view into m. Supplying an axis keyword argument will
not affect the returned matrix but it may cause an error to be raised.

Examples
>>> ¢ = np.matrix ([[1], [2]])
>>> ¢
matrix ([[1],
[(211)
>>> c.squeeze ()
matrix ([[1, 2]])
>>> r = c.T
>>> r
matrix ([[1, 2]])
>>> r.squeeze ()
matrix ([[1, 211)
>>> m = np.matrix ([[1, 2], [3, 411)
>>> m.squeeze ()
matrix ([[1, 21,
[3, 4]11)

method

matrix.std (self, axis=None, dtype=None, out=None, ddof=0)

Return the standard deviation of the array elements along the given axis.
Refer to numpy . std for full documentation.
See also:

numpy.std

Notes

This is the same as ndarray. std, except that where an ndarray would be returned, a mat rix object
is returned instead.

Examples

>>> x = np.matrix(np.arange (12) .reshape((3, 4)))
>>> x

o, 1, 2, 31,

4, 5, 6, 11,

8, 9, 10, 1111])

matrix ([[
[
[
>>> x.std ()
3.4520525295346629 # may vary
>>> x.std (0)

matrix([[3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary
>>> x.std (1)
matrix ([[1.11803399],

[1.11803399]

[1.1180339911])

138

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

method

matrix.sum (self, axis=None, dtype=None, out=None)
Returns the sum of the matrix elements, along the given axis.

Refer to numpy . sum for full documentation.
See also:

numpy.sum

Notes

This is the same as ndarray . sum, except that where an ndarray would be returned, a mat rix object
is returned instead.

Examples

>>> x = np.matrix ([[1, 2], [4, 311)
>>> x.sum/()
10
>>> x.sum(axis=1)
matrix ([[3],
[711)
>>> x.sum(axis=1, dtype='float")
matrix ([[3.],
[7.11)
>>> out = np.zeros((2, 1), dtype='float')
>>> x.sum(axis=1, dtype='float', out=np.asmatrix(out))
matrix ([[3.],

[(7.11)

method

matrix.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.

See also:
numpy . swapaxes equivalent function

method

matrix.take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy . t ake for full documentation.

See also:
numpy . take equivalent function

method

matrix.tobytes (order="C’)
Construct Python bytes containing the raw data bytes in the array.

. Standard array subclasses 139

NumPy Reference, Release 1.17.0

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOQOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.
Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311, dtype='<u2')
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

"

matrix.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid [file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalentto file.write (a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support £ileno () (e.g., ByteslO).

method

matrix.tolist (self)
Return the matrix as a (possibly nested) list.

140 Chapter 1. Array objects

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

See ndarray. tolist for full documentation.
See also:

ndarray.tolist

Examples
>>> x = np.matrix(np.arange(12) .reshape((3,4))); x
matrix([[O, 1, 2, 31,

[4, 5, 6, 71,
[8 9, 10, 1111])
>>> x.tolist ()
(o, 1, 2, 31, I[4, 5, 6, 71, [8, 9, 10, 111]

method

matrix.tostring (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.
Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array ([[0, 1], [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes ('C') == x.tobytes/()

True

>>> x.tobytes ('F'")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

matrix.trace (offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy . t race for full documentation.

See also:
numpy . trace equivalent function

method

1.6. Standard array subclasses 141

NumPy Reference, Release 1.17.0

matrix.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-
D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves
this, as does a/:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if
axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose () .shape =
(i[n-11, i[n-21, ... if[1], 4if[0]).
Parameters

axes [None, tuple of ints, or n ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

ndarray.reshape Give a new shape to an array without changing its data.

Examples
>>> a = np.array ([[1, 2], [3, 411)
>>> a

array ([[1, 21,

[3, 411)
>>> a.transpose ()
array ([[1, 31,

(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,

(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,

(2, 411)

method

matrix.var (self, axis=None, dtype=None, out=None, ddof=0)
Returns the variance of the matrix elements, along the given axis.

Refer to numpy . var for full documentation.
See also:

numpy.var

142 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Notes

This is the same as ndarray. var, except that where an ndarray would be returned, a mat rix object
is returned instead.

Examples

>>> x = np.matrix(np.arange(12) .reshape((3, 4)))
>>> x

o, 1, 2, 31,

4, 5, 6, 711,

8, 9, 10, 1111)

matrix ([
[
[

>>> x.var ()
11.916666666666666
>>> x.var (0)

matrix ([[10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary
>>> x.var (1)
matrix ([[1.25],
[1.25]7,
[1.25]1])
method

matrix.view (dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the t ype parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

1.6. Standard array subclasses 143

NumPy Reference, Release 1.17.0

Examples

>>> x = np.array([(l1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2
[3, 4
(

1/
11, dtype=int8)
>>> xv.mean (0)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)]1, dtype=[('a', 'il'"), ('b', "i1l")1)

Using a view to convert an array to a recarray:

>>> 7z = x.view(np.recarray)
>>> z.a
array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.intlé6)

>>> y = x[:, 0:2]
>>> y
array ([[1, 2],
[4, 5]], dtype=intl6)
>>> y.view (dtype=[('width', np.intl6), ('length', np.intl6)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the array must be C-
—contiguous

>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl6), ('length', np.intl6)])
array ([[(1, 2)1,

[(4, 5)]1]1, dtype=[('width', '<i2'), ('length', '<i2')])

144

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

numpy .asmatrix (data, dtype=None)
Interpret the input as a matrix.

Unlike mat rix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix (data, copy=False).

Parameters

data [array_like] Input data.

dtype [data-type] Data-type of the output matrix.
Returns

mat [matrix] data interpreted as a matrix.

Examples
’>>> x = np.array ([[1, 21, [3, 411)
’>>> m = np.asmatrix (x)
’>>> x[0,0] =5
>>> m
matrix ([[5, 2],
(3, 411)

numpy . bmat (0bj, ldict=None, gdict=None)
Build a matrix object from a string, nested sequence, or array.

Parameters

obj [str or array_like] Input data. If a string, variables in the current scope may be referenced
by name.

Idict [dict, optional] A dictionary that replaces local operands in current frame. Ignored if obj
is not a string or gdict is None.

gdict [dict, optional] A dictionary that replaces global operands in current frame. Ignored if 0bj
is not a string.

Returns
out [matrix] Returns a matrix object, which is a specialized 2-D array.

See also:

block A generalization of this function for N-d arrays, that returns normal ndarrays.

Examples

>>> A = np.mat('1 1; 1 1")
>>> B = np.mat('2 2; 2 2")
>>> C = np.mat ('3 4; 5 6")
>>> D = np.mat ('7 8; 9 0")

All the following expressions construct the same block matrix:

1.6. Standard array subclasses 145

NumPy Reference, Release 1.17.0

>>> np.bmat ([[A, B], [C, DI1])
matrix([[1, 1, 2, 2],

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat (np.r_[np.c_[A, B], np.c_[C, DII])
matrix ([[1, 1, 2, 2],

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)
>>> np.bmat ('A,B; C,D")
matrix ([[1, 1, 2, 2],

(1, 1, 2, 21,

(3, 4, 7, 81,

[5, 6, 9, 011)

Example 1: Matrix creation from a string

>>> g=mat ('l 2 3; 4 5 3")

>>> print (axa.T).I

[[0.2924 -0.1345]
[-0.1345 0.0819]]

Example 2: Matrix creation from nested sequence

>>> mat ([[1,5,10],([1.0,3,4311)
matrix([[1.40.7, 5.+0.3, 10.+0.31,
[1.+0.73, 3.+0.7, 0.+4.7311)

Example 3: Matrix creation from an array

>>> mat (random.rand (3,3)).T

matrix([[0.7699, 0.7922, 0.3294],
[0.2792, 0.0101, 0.9219],
[0.3398, 0.7571, 0.8197]11)

1.6.3 Memory-mapped file arrays

Memory-mapped files are useful for reading and/or modifying small segments of a large file with regular layout,
without reading the entire file into memory. A simple subclass of the ndarray uses a memory-mapped file for the data
buffer of the array. For small files, the over-head of reading the entire file into memory is typically not significant,
however for large files using memory mapping can save considerable resources.

Memory-mapped-file arrays have one additional method (besides those they inherit from the ndarray): . flush ()
which must be called manually by the user to ensure that any changes to the array actually get written to disk.

memmap Create a memory-map to an array stored in a binary file
on disk.
memmap . £1ush(self) Write any changes in the array to the file on disk.

class numpy.memmap
Create a memory-map to an array stored in a binary file on disk.

Memory-mapped files are used for accessing small segments of large files on disk, without reading the entire
file into memory. NumPy’s memmap’s are array-like objects. This differs from Python’s mmap module, which

146 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

uses file-like objects.

This subclass of ndarray has some unpleasant interactions with some operations, because it doesn’t quite fit
properly as a subclass. An alternative to using this subclass is to create the mmap object yourself, then create an
ndarray with ndarray.__new__ directly, passing the object created in its ‘buffer=" parameter.

This class may at some point be turned into a factory function which returns a view into an mmap buffer.
Delete the memmap instance to close the memmap file.
Parameters

filename [str, file-like object, or pathlib.Path instance] The file name or file object to be used as
the array data buffer.
dtype [data-type, optional] The data-type used to interpret the file contents. Default is uint 8.

LIS I L]

mode [{‘r+’, ‘r’, ‘w+’, ‘c’}, optional] The file is opened in this mode:

r Open existing file for reading only.

Open existing file for reading and writing.

Create or overwrite existing file for reading and writing.

c Copy-on-write: assignments affect data in memory, but changes are not saved to
disk. The file on disk is read-only.

Default is ‘r+’.

offset [int, optional] In the file, array data starts at this offset. Since offset is measured in bytes,
it should normally be a multiple of the byte-size of dt ype. When mode != 'r', even
positive offsets beyond end of file are valid; The file will be extended to accommodate
the additional data. By default, memmap will start at the beginning of the file, even if
filename is afile pointer fp and fp.tell () != 0.

shape [tuple, optional] The desired shape of the array. If mode == 'r' and the number of
remaining bytes after offser is not a multiple of the byte-size of dt ype, you must specify
shape. By default, the returned array will be 1-D with the number of elements determined
by file size and data-type.

order [{‘C’, ‘F’}, optional] Specify the order of the ndarray memory layout: row-major, C-
style or column-major, Fortran-style. This only has an effect if the shape is greater than
1-D. The default order is ‘C’.

See also:

1lib. format .open_memmap Create or load a memory-mapped . npy file.

Notes

The memmap object can be used anywhere an ndarray is accepted. Given a memmap fp, isinstance (fp,
numpy .ndarray) returns True.

Memory-mapped files cannot be larger than 2GB on 32-bit systems.

When a memmap causes a file to be created or extended beyond its current size in the filesystem, the contents
of the new part are unspecified. On systems with POSIX filesystem semantics, the extended part will be filled
with zero bytes.

1.6. Standard array subclasses 147

NumPy Reference, Release 1.17.0

Examples

>>> data = np.arange(l2, dtype='float32")
>>> data.resize ((3,4))

This example uses a temporary file so that doctest doesn’t write files to your directory. You would use a ‘normal’

filename.

>>> from tempfile import mkdtemp
>>> import os.path as path
>>> filename = path.join (mkdtemp (), 'newfile.dat')

Create a memmap with dtype and shape that matches our data:

>>> fp = np.memmap (filename, dtype='float32', mode='w+',

>>> fp

memmap ([[0., 0., 0., 0.1,
(0., 0., 0., 0.1,
(0., 0., 0., 0.]], dtype=float32)

shape=(3,4))

Write data to memmap array:

>>> fp[:] = datal:]
>>> fp
memmap ([[0., 1., 2., 1,

3.
[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

>>> fp.filename == path.abspath (filename)
True

Deletion flushes memory changes to disk before removing the object:

>>> del fp

Load the memmap and verify data was stored:

>>> newfp = np.memmap (filename, dtype='float32', mode='r"',

>>> newfp
memmap ([[0., 1., 2., 3.7,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

shape=(3,4))

Read-only memmap:

>>> fpr = np.memmap (filename, dtype='float32', mode='r'"', shape=(3,4))
>>> fpr.flags.writeable

False

Copy-on-write memmap:

>>> fpc = np.memmap (filename, dtype='float32', mode='c', shape=(3,4))

>>> fpc.flags.writeable
True

It’s possible to assign to copy-on-write array, but values are only written into the memory copy of the array, and

not written to disk:

148

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> fpc
memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]11, dtype=float32)
>>> fpc[0,:] = 0
>>> fpc
memmap ([[0., 0., 0., 0.7,

[4., 5., 6., 1.1,
[8., 9., 10., 11.1], dtype=float32)

File on disk is unchanged:

>>> fpr
memmap ([[0., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.]], dtype=float32)

Offset into a memmap:

>>> fpo = np.memmap (filename, dtype='float32', mode='r', offset=16)

>>> fpo
memmap ([4., 5., 6., 7., 8., 9., 10., 11.], dtype=float32)
Attributes

filename [str or pathlib.Path instance] Path to the mapped file.
offset [int] Offset position in the file.

mode [str] File mode.

Methods

f1ush(self) Write any changes in the array to the file on disk.

method

memmap . £lush (self)
Write any changes in the array to the file on disk.

For further information, see memmap.

Parameters
None

See also:

memmap
Example:
>>> a = memmap ('newfile.dat', dtype=float, mode='w+', shape=1000)
>>> af[l0] = 10.0
>>> a[30] = 30.0
>>> del a
>>> b = fromfile('newfile.dat', dtype=float)

>>>

print b[10], b[30]

(continues on next page)

1.6.

Standard array subclasses

149

NumPy Reference, Release 1.17.0

(continued from previous page)

10.0 30.0

>>> a = memmap ('newfile.dat', dtype=float)
>>> print a[l10], al30]

10.0 30.0

1.6.4 Character arrays (numpy . char)

See also:

Creating character arrays (numpy.char)

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for new
development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of dtype
object_, string_ or unicode_, and use the free functions in the numpy. char module for fast vectorized
string operations.

—

These are enhanced arrays of either string_ type or unicode_ type. These arrays inherit from the ndarray,
but specially-define the operations +, %, and % on a (broadcasting) element-by-element basis. These operations are
not available on the standard ndarray of character type. In addition, the chararray has all of the standard
string (and unicode) methods, executing them on an element-by-element basis. Perhaps the easiest way to create
a chararray is to use self.view (chararray) where self is an ndarray of str or unicode data-type. However, a
chararray can also be created using the numpy . chararray constructor, or via the numpy . char. array function:

chararray(shapel[, itemsize, unicode, ...]) Provides a convenient view on arrays of string and uni-
code values.
core.defchararray.array(obj[, itemsize, ...]) Createa chararray.

class numpy.chararray (shape, itemsize=1, unicode=False, buffer=None, offset=0, strides=None, or-

der=None)
Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for
new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions in the numpy. char module for fast
vectorized string operations.

Versus a regular NumPy array of type st r or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values

3) vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",

"*", "%")

chararrays should be created using numpy.char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer
is None, then constructs a new array with strides in “C order”, unless both len (shape) >= 2 and
order="'Fortran', in which case st rides is in “Fortran order”.

Parameters

150 Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#str
https://docs.python.org/dev/library/stdtypes.html#str

NumPy Reference, Release 1.17.0

shape [tuple] Shape of the array.
itemsize [int, optional] Length of each array element, in number of characters. Default is 1.

unicode [bool, optional] Are the array elements of type unicode (True) or string (False). Default
is False.

buffer [int, optional] Memory address of the start of the array data. Default is None, in which
case a new array is created.

offset [int, optional] Fixed stride displacement from the beginning of an axis? Default is 0.
Needs to be >=0.

strides [array_like of ints, optional] Strides for the array (see ndarray.strides for full
description). Default is None.

order [{‘C’, ‘F’}, optional] The order in which the array data is stored in memory: ‘C’ -> “row
major” order (the default), ‘F’ -> “column major” (Fortran) order.

Examples
>>> charar = np.chararray((3, 3))
>>> charar([:] = 'a'
>>> charar
chararray([[b'a', b'a', b'a'l,
[b'a', b'a', b'a'],
[b'a', b'a', b'a']]l, dtype='|S1l")
>>> charar = np.chararray(charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray ([[b'abc', b'abc', b'abc'],
[b'abc', b'abc', b'abc'],
[b'abc', b'abc', b'abc']], dtype='|S5")

Attributes
T The transposed array.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
real The real part of the array.

shape Tuple of array dimensions.

1.6. Standard array subclasses 151

NumPy Reference, Release 1.17.0

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

astype(dtypel, order, casting, subok, copy])

Copy of the array, cast to a specified type.

argsort([axis, kind, order])

Returns the indices that would sort this array.

copy([order])

Return a copy of the array.

count(self, subl, start, end])

Returns an array with the number of non-overlapping
occurrences of substring sub in the range [start, end].

decode(self[, encoding, errors])

Calls str.decode element-wise.

dump(file)

Dump a pickle of the array to the specified file.

dumps()

Returns the pickle of the array as a string.

encode(self[, encoding, errors])

Calls st r.encode element-wise.

endswith(self, suffix[, start, end])

Returns a boolean array which is True where the
string element in self ends with suffix, otherwise
False.

expandtabs(self], tabsize])

Return a copy of each string element where all tab
characters are replaced by one or more spaces.

f£111(value)

Fill the array with a scalar value.

f1nd(self, sub[, start, end])

For each element, return the lowest index in the
string where substring sub is found.

flatten([order])

Return a copy of the array collapsed into one dimen-
sion.

get field(dtype[, offset])

Returns a field of the given array as a certain type.

1index(self, sub[, start, end])

Like £1ind, butraises ValueError when the substring
is not found.

1salnum(self)

Returns true for each element if all characters in the
string are alphanumeric and there is at least one char-
acter, false otherwise.

isalpha(self)

Returns true for each element if all characters in the
string are alphabetic and there is at least one charac-
ter, false otherwise.

isdecimal(self)

For each element in self, return True if there are only
decimal characters in the element.

isdigit(self)

Returns true for each element if all characters in the
string are digits and there is at least one character,
false otherwise.

1slower(self)

Returns true for each element if all cased characters
in the string are lowercase and there is at least one
cased character, false otherwise.

1snumeric(self)

For each element in self, return True if there are only
numeric characters in the element.

1sspace(self)

Returns true for each element if there are only
whitespace characters in the string and there is at
least one character, false otherwise.

istitle(self)

Returns true for each element if the element is a title-
cased string and there is at least one character, false
otherwise.

Continued on next page

Chapter 1. Array objects

https://docs.python.org/dev/library/stdtypes.html#str.encode

NumPy Reference, Release 1.17.0

Table 41 — continued from previous page

isupper(self)

Returns true for each element if all cased characters
in the string are uppercase and there is at least one
character, false otherwise.

1tem(*args)

Copy an element of an array to a standard Python
scalar and return it.

Jjoin(self, seq)

Return a string which is the concatenation of the
strings in the sequence seq.

1 just(self, width[, fillchar])

Return an array with the elements of self left-
justified in a string of length width.

1ower(self)

Return an array with the elements of self converted
to lowercase.

1strip(self[, chars])

For each element in self, return a copy with the lead-
ing characters removed.

nonzero()

Return the indices of the elements that are non-zero.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in in-
dices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

replace(self, old, new[, count])

For each element in self, return a copy of the string
with all occurrences of substring old replaced by
new.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

rfind(self, sub[, start, end])

For each element in self, return the highest index in
the string where substring sub is found, such that sub
is contained within [start, end].

rindex(self, sub[, start, end])

Like rfind, but raises ValueError when the sub-
string sub is not found.

rjust(self, width[, fillchar])

Return an array with the elements of self right-
justified in a string of length width.

rsplit(self], sep, maxsplit])

For each element in self, return a list of the words in
the string, using sep as the delimiter string.

rstrip(self[, chars])

For each element in self, return a copy with the trail-
ing characters removed.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted
in a to maintain order.

set field(val, dtype[, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, (WRITE-
BACKIFCOPY and UPDATEIFCOPY), respec-
tively.

sort([axis, kind, order])

Sort an array in-place.

split(self, sep, maxsplit])

For each element in self, return a list of the words in
the string, using sep as the delimiter string.

splitlines(self[, keepends])

For each element in self, return a list of the lines in
the element, breaking at line boundaries.

squeeze([axis])

Remove single-dimensional entries from the shape
of a.

Continued on next page

1.6. Standard array subclasses

153

NumPy Reference, Release 1.17.0

Table 41 — continued from previous page

startswith(self, prefix[, start, end]) Returns a boolean array which is True where the
string element in self starts with prefix, otherwise
False.

st rip(self[, chars]) For each element in self, return a copy with the lead-
ing and trailing characters removed.

swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 in-
terchanged.

swapcase(self) For each element in self, return a copy of the string

with uppercase characters converted to lowercase
and vice versa.

t ake(indices[, axis, out, mode]) Return an array formed from the elements of a at the
given indices.
t it le(self) For each element in self, return a titlecased version

of the string: words start with uppercase characters,
all remaining cased characters are lowercase.

tofile(fid], sep, format]) Write array to a file as text or binary (default).

tolist() Return the array as an a.ndim-levels deep nested
list of Python scalars.

tostring([order]) Construct Python bytes containing the raw data bytes
in the array.

t ranslate(self, table[, deletechars]) For each element in self, return a copy of the string

where all characters occurring in the optional ar-
gument deletechars are removed, and the remain-
ing characters have been mapped through the given
translation table.

transpose(*axes) Returns a view of the array with axes transposed.

upper(self) Return an array with the elements of self converted
to uppercase.

view([dtype, type]) New view of array with the same data.

z 11 1(self, width) Return the numeric string left-filled with zeros in a

string of length width.

method

chararray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’ }, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

154 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

* ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dt ype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for

“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the

string dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. 2.57)

>>> x.astype (int)
array ([1, 2, 2])

method

chararray.argsort (axis=-1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See also:
numpy.argsort equivalent function

method

chararray.copy (order="C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy .
copy are very similar, but have different default values for their order= arguments.)

1.6.

Standard array subclasses

NumPy Reference, Release 1.17.0

See also:

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F")

’>>> y = x.copy()

’>>> x.£1i11(0)

>>> x

array([[0, O, O],
(0, 0, 011)

>>> y

array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags['C_CONTIGUOUS']
True

method

chararray.count (self, sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

See also:
char.count
method

chararray.decode (self, encoding=None, errors=None)
Calls str.decode element-wise.

See also:
char.decode
method

chararray.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
method

chararray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters

None

156

Chapter 1. Array objects

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

method

chararray.encode (self, encoding=None, errors=None)
Calls st r.encode element-wise.

See also:
char.encode
method

chararray.endswith (self, suffix, start=0, end=None)
Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See also:
char.endswith
method

chararray.expandtabs (self, tabsize=38)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

See also:
char.expandtabs
method

chararray.£ill (value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 2])
>>> a.fi11 (0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> a

array ([1., 1.1)

method

chararray. £ind (self, sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

See also:
char. find
method

chararray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters

1.6. Standard array subclasses 157

https://docs.python.org/dev/library/stdtypes.html#str.encode

NumPy Reference, Release 1.17.0

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]11)
>>> a.flatten()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 41)

method

chararray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1l.+1.3]1%2)
>>> x[1, 1] = 2 + 4.3
>>> x
array ([[1.+1.7, 0.+0.717,
[0.40.9, 2.+4.7311)
>>> x.getfield(np.float64)
array ([[1., 0.1,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

158 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

chararray.index (self, sub, start=0, end=None)
Like f1ind, but raises ValueError when the substring is not found.

See also:
char.index
method

chararray.isalnum (self)
Returns true for each element if all characters in the string are alphanumeric and there is at least one
character, false otherwise.

See also:
char.isalnum
method

chararray.isalpha (self)
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See also:
char.isalpha
method

chararray.isdecimal (self)
For each element in self, return True if there are only decimal characters in the element.

See also:
char.isdecimal
method

chararray.isdigit (self)
Returns true for each element if all characters in the string are digits and there is at least one character,
false otherwise.

See also:
char.isdigit
method

chararray.islower (self)
Returns true for each element if all cased characters in the string are lowercase and there is at least one
cased character, false otherwise.

See also:
char.islower
method

chararray.isnumeric (self)
For each element in self, return True if there are only numeric characters in the element.

See also:
char.isnumeric

method

1.6.

Standard array subclasses 159

NumPy Reference, Release 1.17.0

chararray.isspace (self)
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

See also:
char.isspace
method

chararray.istitle (self)
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See also:
char.istitle
method

chararray.isupper (self)
Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

See also:
char.isupper
method

chararray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args [Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

160

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples
>>> np.random.seed(123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[2, 2, 6],
(1, 3, 6],
(1, 0, 111)
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

chararray. join (self, seq)
Return a string which is the concatenation of the strings in the sequence seq.

See also:
char. join
method

chararray.ljust (self, width, fillchar="")

Return an array with the elements of self left-justified in a string of length width.

See also:
char.1just
method

chararray.lower (self)
Return an array with the elements of self converted to lowercase.

See also:
char.lower
method

chararray.lstrip (self, chars=None)
For each element in self, return a copy with the leading characters removed.

See also:
char.lstrip
method

chararray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

See also:

numpy.nonzero equivalent function

1.6.

Standard array subclasses

161

NumPy Reference, Release 1.17.0

method

chararray.put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall nin indices.

Refer to numpy . put for full documentation.

See also:
numpy . put equivalent function

method

chararray.ravel ([order])
Return a flattened array.

Refer to numpy . ravel for full documentation.

See also:

numpy . ravel equivalent function

ndarray.flat aflatiterator on the array.

method

chararray.repeat (repeats, axis=None)
Repeat elements of an array.

Refer to numpy . repeat for full documentation.

See also:
numpy . repeat equivalent function

method

chararray.replace (self, old, new, count=None)
For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

See also:
char.replace
method

chararray.reshape (shape, order="C’)
Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.

See also:

numpy . reshape equivalent function

Notes

Unlike the free function numpy . reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to
a.reshape ((10, 11)).

method

162 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

chararray.resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.
Returns

None
Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-

shaped:
>>> a = np.array ([[0, 11, [2, 3]1], order='C")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array([[0, 1], [2, 311, order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
[211)
Enlarging an array: as above, but missing entries are filled with zeros:
>>> b = np.array ([[0, 11, [2, 311)
>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

(continues on next page)

1.6. Standard array subclasses 163

NumPy Reference, Release 1.17.0

(continued from previous page)

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)

>>> a

array ([[0]])

>>> C

array ([[0]])
method

chararray.rfind (self, sub, start=0, end=None)
For each element in self, return the highest index in the string where substring sub is found, such that sub
is contained within [start, end].

See also:
char.rfind
method

chararray.rindex (self, sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

See also:
char.rindex
method

chararray.rjust (self, width, fillchar="")
Return an array with the elements of self right-justified in a string of length width.

See also:
char.rjust
method

chararray.rsplit (self, sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:
char.rsplit
method

chararray.rstrip (self, chars=None)
For each element in self, return a copy with the trailing characters removed.

See also:

char.rstrip

164

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

method

chararray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

See also:
numpy . searchsorted equivalent function

method

chararray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.
Parameters
val [object] Value to be placed in field.
dtype [dtype object] Data-type of the field in which to place val.
offset [int, optional] The number of bytes into the field at which to place val.
Returns
None
See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,
(0., 1., 0.1,
[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield (np.int32)
array ([[3, 3, 31,
(3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]1])
>>> x.setfield(np.eye(3), np.int32)

>>> X
array ([[1., 0., 0.1,
(0., 1., 0.1,
(0., 0., 1.11)
method

chararray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

1.6. Standard array subclasses 165

NumPy Reference, Release 1.17.0

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters
write [bool, optional] Describes whether or not a can be written to.
align [bool, optional] Describes whether or not « is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);
UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y = np.array([[3, 1, 71,
[21 O!] 4

. [8, 5, 911)

>>> v

array ([[3, 1, 71,
[2, 0, 0],
(8, 5, 911)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False

(continues on next page)

166

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

chararray.sort (axis=-1, kind=None, order=None)
Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The de-
fault is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers
and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0.: The ‘stable’ option was added.

order [str or list of str, optional] When «a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy . sort Return a sorted copy of an array.
argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.
searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,1]1])
>>> a.sort (axis=1)
>>> a
array ([[1, 4],
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 3],
(1, 411])

Use the order keyword to specify a field to use when sorting a structured array:

. Standard array subclasses 167

NumPy Reference, Release 1.17.0

>>> a = np.array([('a', 2), ('c¢', 1)1, dtype=[('x', 'S1"), ('y', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x"', 'S1"'), ('y', '<i8")])
method

chararray.split (self, sep=None, maxsplit=None)

For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:
char.split
method

chararray.splitlines (self, keepends=None)

For each element in self, return a list of the lines in the element, breaking at line boundaries.

See also:
char.splitlines
method

chararray.squeeze (axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.

See also:
numpy . squeeze equivalent function

method

chararray.startswith (self, prefix, start=0, end=None)

Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

See also:
char.startswith
method

chararray.strip (self, chars=None)

For each element in self, return a copy with the leading and trailing characters removed.

See also:
char.strip
method

chararray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.

See also:
numpy . swapaxes equivalent function

method

168

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

chararray.swapcase (self)
For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See also:
char.swapcase
method

chararray.take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of « at the given indices.

Refer to numpy . t ake for full documentation.

See also:
numpy . take equivalent function

method

chararray.title (self)
For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See also:
char.title
method

"

chararray.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid [file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalentto file.write (a.tobytes ()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support £ileno () (e.g., ByteslO).

method

1.6.

Standard array subclasses 169

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

chararray.tolist ()
Return the array as an a . ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the i t em function.

If a.ndimis O, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none
Returns

y [object, or list of object, or list of list of object, or ...] The possibly nested list of array
elements.

Notes

The array may be recreated via a = np.array(a.tolist ()), although this may sometimes lose
precision.

Examples

For a ID array, a.tolist () is almost the same as 1ist (a):

>>> a = np.array([1l, 2])
>>> list (a)

[1, 2]

>>> a.tolist ()

[1, 2]

However, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 21, [3, 411)
>>> list (a)

larray ([1, 2]), array([3, 41)]
>>> a.tolist ()

(1, 21, [3, 41]

The base case for this recursion is a 0D array:

>>> a = np.array (1)
>>> list (a)
Traceback (most recent call last):

TypeError: iteration over a 0-d array
>>> a.tolist ()
1

method

chararray.tostring (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_ CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

170 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.
Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array ([[0, 11, [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

chararray.translate (self, table, deletechars=None)
For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation
table.

See also:
char.translate
method

chararray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-
D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves
this, as does a/:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if
axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose () .shape =
(i[n-11, i[n-2]1, ... if[1], 4if[0]).
Parameters

axes [None, tuple of ints, or n ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

1.6.

Standard array subclasses 171

NumPy Reference, Release 1.17.0

ndarray.reshape Give a new shape to an array without changing its data.

Examples
>>> a = np.array([[1, 2], [3, 4]1])
>>> a
array ([[1, 21,
(3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose (1, 0)
array ([[1, 31,
(2, 411)
method

chararray.upper (self)
Return an array with the elements of self converted to uppercase.

See also:
char.upper
method

chararray.view (dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the t ype parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

172

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> x = np.array([(l1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2
[3, 4
(

1/
11, dtype=int8)
>>> xv.mean (0)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)]1, dtype=[('a', 'il'"), ('b', "i1l")1)

Using a view to convert an array to a recarray:

>>> 7z = x.view(np.recarray)
>>> z.a
array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.intlé6)

>>> y = x[:, 0:2]
>>> y
array ([[1, 2],
[4, 5]], dtype=intl6)
>>> y.view (dtype=[('width', np.intl6), ('length', np.intl6)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the array must be C-
—contiguous

>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl6), ('length', np.intl6)])
array ([[(1, 2)1,

[(4, 5)]1]1, dtype=[('width', '<i2'), ('length', '<i2')])

1.6. Standard array subclasses 173

NumPy Reference, Release 1.17.0

method

chararray.z£ill (self, width)
Return the numeric string left-filled with zeros in a string of length width.

See also:
char.zfill

numpy . core.defchararray.array (0bj, itemsize=None, copy=True, unicode=None, order=None)
Create a chararray.

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray
compatibility) should use arrays of type string_ or unicode__ and use the free functions in numpy . char
for fast vectorized string operations instead.

Versus a regular NumPy array of type str or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values
3) vectorized string operations are provided as methods (e.g. strendswith) and infix operators (e.g. +, =*,
%)
Parameters
obj [array of str or unicode-like]

itemsize [int, optional] ifemsize is the number of characters per scalar in the resulting array. If
itemsize is None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If iremsize is provided and o0bj is of type str or unicode, then the 0bj string will
be chunked into itemsize pieces.

copy [bool, optional] If true (default), then the object is copied. Otherwise, a copy will only
be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to
satisfy any of the other requirements (itemsize, unicode, order, etc.).

unicode [bool, optional] When true, the resulting chararray can contain Unicode characters,
when false only 8-bit characters. If unicode is None and obj is one of the following:

* achararray,

* an ndarray of type str or unicode

* a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

order [{‘C’, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the
returned array will be in Fortran-contiguous order (first-index varies the fastest). If order
is ‘A’, then the returned array may be in any order (either C-, Fortran-contiguous, or even
discontiguous).

Another difference with the standard ndarray of str data-type is that the chararray inherits the feature introduced by
Numarray that white-space at the end of any element in the array will be ignored on item retrieval and comparison
operations.

174 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

1.6.5 Record arrays (numpy . rec)

See also:

Creating record arrays (numpy.rec), Data type routines, Data type objects (dtype).

NumPy provides the recarray class which allows accessing the fields of a structured array as attributes, and a
corresponding scalar data type object record.

recarray Construct an ndarray that allows field access using at-
tributes.
record A data-type scalar that allows field access as attribute

lookup.

class numpy.recarray
Construct an ndarray that allows field access using attributes.

Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x,
int), (y, float)], whereeach entryinthe arrayisapairof (int, float).Normally, these attributes
are accessed using dictionary lookups suchas arr['x'] and arr ['y"']. Record arrays allow the fields to be
accessed as members of the array, using arr.x and arr.y.

Parameters
shape [tuple] Shape of output array.

dtype [data-type, optional] The desired data-type. By default, the data-type is determined from
formats, names, titles, aligned and byteorder.

formats [list of data-types, optional] A list containing the data-types for the different columns,
eg. ['14', 'f£8', 'i4']. formats does not support the new convention of using types
directly, i.e. (int, float, int). Note that formats must be a list, not a tuple. Given
that formats is somewhat limited, we recommend specifying dt ype instead.

names [tuple of str, optional] The name of each column, e.g. ('x', 'y', 'z').

buf [buffer, optional] By default, a new array is created of the given shape and data-type. If
buf is specified and is an object exposing the buffer interface, the array will use the memory
from the existing buffer. In this case, the offset and st rides keywords are available.

Returns
rec [recarray] Empty array of the given shape and type.
Other Parameters

titles [tuple of str, optional] Aliases for column names. For example, if names
were ('x', 'y', 'z') and titles is ('x_coordinate', 'y_coordinate’',
'z_coordinate'), then arr['x'] is equivalent to both arr.x and arr.
x_coordinate.

byteorder [{‘<’, >’, ‘="}, optional] Byte-order for all fields.

aligned [bool, optional] Align the fields in memory as the C-compiler would.

strides [tuple of ints, optional] Buffer (buf) is interpreted according to these strides (strides
define how many bytes each array element, row, column, etc. occupy in memory).

offset [int, optional] Start reading buffer (buf) from this offset onwards.

order [{‘C’, ‘F’}, optional] Row-major (C-style) or column-major (Fortran-style) order.

See also:

1.6. Standard array subclasses

175

NumPy Reference, Release 1.17.0

rec. fromrecords Construct a record array from data.
record fundamental data-type for recarray.

format_ parser determine a data-type from formats, names, titles.

Notes

This constructor can be compared to empty: it creates a new record array but does not fill it with data. To create
arecord array from data, use one of the following methods:

1. Create a standard ndarray and convert it to a record array, using arr .view (np.recarray)
2. Use the buf keyword.
3. Use np.rec.fromrecords.

Examples

Create an array with two fields, x and y:

>>> x = np.array ([(1.0, 2), (3.0, 4)]1, dtype=[('x', '<f8"), ('y', '<i8")])
>>> x
array ([(1., 2), (3., 4)], dtype=[('x"', '<f8'"), ('y', '<i8')])

>>> x['x']
array ([1., 3.1)

View the array as a record array:

>>> x = x.view(np.recarray)

>>> X.X
array ([1., 3.1])

>>> x.y
array ([2, 4])

Create a new, empty record array:

>>> np.recarray((2,),
dtype=[('x"', int), ('y', float), ('z', int)]) #doctest: +SKIP

rec.array ([(-1073741821, 1.2249118382103472e-301, 24547520),
(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x", '<i4"), ('y', '<f8'), ('z', '<id")])
Attributes

T The transposed array.

base Base object if memory is from some other object.

ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.

dtype Data-type of the array’s elements.

flags Information about the memory layout of the array.

176

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

flat A 1-D iterator over the array.

imag The imaginary part of the array.

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

all([axis, out, keepdims])

Returns True if all elements evaluate to True.

any([axis, out, keepdims])

Returns True if any of the elements of a evaluate to
True.

argmax([axis, out])

Return indices of the maximum values along the
given axis.

argmin([axis, out])

Return indices of the minimum values along the
given axis of a.

argpartition(kth[, axis, kind, order])

Returns the indices that would partition this array.

argsort([axis, kind, order])

Returns the indices that would sort this array.

astype(dtypel, order, casting, subok, copy])

Copy of the array, cast to a specified type.

byteswap([inplace])

Swap the bytes of the array elements

choose(choices[, out, mode])

Use an index array to construct a new array from a
set of choices.

c11ip([min, max, out])

Return an array whose values are limited to [min,
max].

compress(condition|, axis, out])

Return selected slices of this array along given axis.

conij() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.

cumprod([axis, dtype, out])

Return the cumulative product of the elements along
the given axis.

cumsum([axis, dtype, out])

Return the cumulative sum of the elements along the
given axis.

diagonal([offset, axisl, axis2])

Return specified diagonals.

dot(bl[, out])

Dot product of two arrays.

dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
f£111(value) Fill the array with a scalar value.

flatten([order]) Return a copy of the array collapsed into one dimen-

sion.

get field(dtype[, offset])

Returns a field of the given array as a certain type.

1tem(*args)

Copy an element of an array to a standard Python
scalar and return it.

itemset(*args)

Insert scalar into an array (scalar is cast to array’s
dtype, if possible)

Continued on next page

1.6. Standard array subclasses

177

NumPy Reference, Release 1.17.0

Table 43 — continued from previous page

max([axis, out, keepdims, initial, where])

Return the maximum along a given axis.

mean([axis, dtype, out, keepdims])

Returns the average of the array elements along
given axis.

min([axis, out, keepdims, initial, where])

Return the minimum along a given axis.

newbyteorder([new_order])

Return the array with the same data viewed with a
different byte order.

nonzero()

Return the indices of the elements that are non-zero.

partition(kth[, axis, kind, order])

Rearranges the elements in the array in such a way
that the value of the element in kth position is in the
position it would be in a sorted array.

prod([axis, dtype, out, keepdims, initial, ...])

Return the product of the array elements over the
given axis

ptp([axis, out, keepdims])

Peak to peak (maximum - minimum) value along a
given axis.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in in-
dices.

ravel([order])

Return a flattened array.

repeat(repeats|[, axis])

Repeat elements of an array.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

round([decimals, out])

Return a with each element rounded to the given
number of decimals.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted
in a to maintain order.

set field(val, dtypel, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, (WRITE-
BACKIFCOPY and UPDATEIFCOPY), respec-
tively.

sort([axis, kind, order])

Sort an array in-place.

squeeze([axis])

Remove single-dimensional entries from the shape
of a.

std([axis, dtype, out, ddof, keepdims])

Returns the standard deviation of the array elements
along given axis.

sum([axis, dtype, out, keepdims, initial, where])

Return the sum of the array elements over the given
axis.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 in-
terchanged.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

tobytes([order])

Construct Python bytes containing the raw data bytes
in the array.

tofile(fid], sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as an a.ndim-levels deep nested
list of Python scalars.

tostring([order])

Construct Python bytes containing the raw data bytes
in the array.

t race([offset, axis1, axis2, dtype, out])

Return the sum along diagonals of the array.

transpose(*axes)

Returns a view of the array with axes transposed.

Continued on next page

178

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 43 — continued from previous page

var([axis, dtype, out, ddof, keepdims]) Returns the variance of the array elements, along
given axis.
view([dtype, type]) New view of array with the same data.
method

recarray.all (axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy. a1l for full documentation.

See also:
numpy.all equivalent function

method

recarray .any (axis=None, out=None, keepdims="False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy . any for full documentation.

See also:
numpy . any equivalent function

method

recarray .argmax (axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy . argmax for full documentation.

See also:
numpy.argmax equivalent function

method

recarray.argmin (axis=None, out=None)
Return indices of the minimum values along the given axis of a.

Refer to numpy . argmin for detailed documentation.

See also:
numpy.argmin equivalent function

method

recarray.argpartition (kth, axis=-1, kind="introselect’, order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.
New in version 1.8.0.

See also:

numpy.argpartition equivalent function

1.6. Standard array subclasses 179

NumPy Reference, Release 1.17.0

method

recarray.argsort (axis=-1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See also:
numpy.argsort equivalent function

method

recarray .astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dt ype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype (t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

180 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the
string dtype length is long enough to store the max integer/float value converted.

Examples
>>> x = np.array([1l, 2, 2.5])
>>> x

array ([1. , 2. 2.57)

>>> x.astype (int)
array ([1, 2, 21])

method

recarray .byteswap (inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, option-
ally swapped in-place.

Parameters
inplace [bool, optional] If True, swap bytes in-place, default is False.
Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1l, 256, 8755], dtype=np.intl6)
>>> list (map (hex, A))

['"Ox1', '0x100', '0x2233']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=intl6)

>>> list (map (hex, A))

['0x100', 'Ox1', '0x3322'"]

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap ()
Traceback (most recent call last):

UnicodeDecodeError:

method

recarray .choose (choices, out=None, mode="raise’)

Use an index array to construct a new array from a set of choices.
Refer to numpy . choose for full documentation.

See also:

numpy . choose equivalent function

method

1.6.

Standard array subclasses 181

NumPy Reference, Release 1.17.0

recarray .clip (min=None, max=None, out=None, **kwargs)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy . c11p for full documentation.

See also:
numpy.clip equivalent function

method

recarray .compress (condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy . compress for full documentation.

See also:
numpy . compress equivalent function

method

recarray.conj()
Complex-conjugate all elements.

Refer to numpy . con jugate for full documentation.

See also:
numpy . conjugate equivalent function

method

recarray.conjugate ()
Return the complex conjugate, element-wise.

Refer to numpy . con jugate for full documentation.

See also:
numpy . conjugate equivalent function

method

recarray .copy (order="C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘’K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy .
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy, numpy.copyto

182

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

’>>> x = np.array([[1,2,3],[4,5,6]], order='F")

TR

’>>> x.£111(0)

>>> x
array ([[0, 0, 0],
[0, 0, O11)

>>> v
array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags['C_CONTIGUOUS']
True

method

recarray.cumprod (axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy . cumprod for full documentation.

See also:
numpy . cumprod equivalent function

method

recarray .cumsum (axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy . cumsum for full documentation.

See also:
numpy . cumsum equivalent function

method

recarray .diagonal (offset=0, axisl=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:
numpy.diagonal equivalent function

method

recarray .dot (b, out=None)
Dot product of two arrays.

Refer to numpy . dot for full documentation.

1.6. Standard array subclasses 183

NumPy Reference, Release 1.17.0

See also:

numpy . dot equivalent function

Examples

>>> a = np.eye(2)

>>> b = np.ones((2, 2)) *= 2

>>> a.dot (b)

array ([[2., 2.1,
(2., 2.11)

This array method can be conveniently chained:

>>> a.dot (b) .dot (b)
array ([[8., 8.1,
(8., 8.11)

method

recarray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
method

recarray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None
method

recarray.£ill (value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 2])
>>> a.fi111 (0)

>>> a

array ([0, 0])

>>> a = np.empty(2)

>>> a.fill (1)

>>> a

array ([1., 1.1])

184

Chapter 1. Array objects

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

method

recarray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]11)
>>> a.flatten()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 41)

method

recarray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([l.+1.3]%2)
>>> x[1, 1] = 2 + 4.3
>>> x
array ([[1.+1.7, 0.+0.71,
[0.+0.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

. Standard array subclasses 185

NumPy Reference, Release 1.17.0

>>> x.getfield (np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

recarray.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args [Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples
>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 6],
[1, 3, 61,
(1, 0, 111
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

recarray.itemset (*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

186 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

There must be at least 1 argument, and define the last argument as ifem. Then, a.itemset (xargs) is

equivalent to but faster than a [args]

a single item in the array a.

Parameters

= item. The item should be a scalar value and args must select

*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-
guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, 1 t emset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other
problems, it complicates the appearance of the code. Also, when using itemset (and item) inside a
loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed(123)

>>> x = np.random.randint (9,
>>> x
array([[2, 2, 6],

(1, 3, 61,

(1, 0, 111)

>>> x.itemset (4,
>>> x.itemset ((2,

>>> x

array ([[2, 2,
(1, 0,
(1, 0,

2)

9)

size=(3, 3))

method

recarray .max (axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the maximum along a given axis.

Refer to numpy . amax for full documentation.

See also:

numpy . amax equivalent function

method

recarray .mean (axis=None, dtype=None, out=None, keepdims=False)

Returns the average of the array elements along given axis.

Refer to numpy . mean for full documentation.

See also:

numpy .mean equivalent function

method

1.6.

Standard array subclasses

187

NumPy Reference, Release 1.17.0

recarray .min (axis=None, out=None, keepdims=False, initial=<no value>, where=True)
Return the minimum along a given axis.

Refer to numpy . amin for full documentation.

See also:
numpy.amin equivalent function

method

recarray .newbyteorder (new_order="S’)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder (new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters

new_order [string, optional] Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

* ‘S’ - swap dtype from current to opposite endian
e {‘<’, ‘L’} - little endian

* {*>’, ‘B’} - big endian

e {*=’, ‘N’} - native order

e {‘I’, ‘T"} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order. The code does a case-
insensitive check on the first letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns
new_arr [array] New array object with the dtype reflecting given change to the byte order.
method

recarray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

See also:
numpy.nonzero equivalent function

method

recarray.partition (kth, axis=-1, kind="introselect’, order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters

188 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

kth [int or sequence of ints] Element index to partition by. The kth element value will be
in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When «a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.
argpartition Indirect partition.

sort Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 11)
>>> a.partition(3)

>>> a

array ([2, 1, 3, 41)

>>> a.partition((1, 3))
>>> a
array ([1, 2, 3, 41)

method

recarray .prod (axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
Return the product of the array elements over the given axis

Refer to numpy . prod for full documentation.

See also:
numpy . prod equivalent function

method

recarray .ptp (axis=None, out=None, keepdims=False)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy . pt p for full documentation.

See also:

1.6. Standard array subclasses

189

NumPy Reference, Release 1.17.0

numpy . ptp equivalent function

method

recarray .put (indices, values, mode="raise’)
Seta.flat[n] = values[n] forall nin indices.

Refer to numpy . put for full documentation.

See also:
numpy . put equivalent function

method

recarray.ravel ([order])
Return a flattened array.

Refer to numpy . ravel for full documentation.

See also:

numpy . ravel equivalent function

ndarray. flat aflatiterator on the array.

method

recarray .repeat (repeats, axis=None)
Repeat elements of an array.

Refer to numpy . repeat for full documentation.

See also:
numpy . repeat equivalent function

method

recarray .reshape (shape, order="C’)
Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.

See also:

numpy . reshape equivalent function

Notes

Unlike the free function numpy . reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a.reshape (10, 11) is equivalent to
a.reshape ((10, 11)).

method

recarray .resize (new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters

new_shape [tuple of ints, or n ints] Shape of resized array.

190 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

refcheck [bool, optional] If False, reference count will not be checked. Default is True.
Returns

None
Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-

shaped:
>>> a = np.array ([[0, 11, [2, 3]], order='C'")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array ([[0, 1], [2, 3]], order='F")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 11, [2, 311)

>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

array ([[0, 1, 2]

Referencing an array prevents resizing. . .

1.6. Standard array subclasses 191

NumPy Reference, Release 1.17.0

>>> ¢ = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array ([[0]])
>>> C
array ([[0]])
method

recarray . round (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

See also:
numpy . around equivalent function

method

recarray .searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

See also:
numpy . searchsorted equivalent function

method

recarray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.
Parameters
val [object] Value to be placed in field.
dtype [dtype object] Data-type of the field in which to place val.
offset [int, optional] The number of bytes into the field at which to place val.
Returns
None
See also:

getfield

192

Chapter 1

. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.1,
(0., 1., 0.1,
[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield (np.int32)
array ([[3, 3, 31,
(3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])
>>> x.setfield(np.eye(3), np.int32)

>>> x
array ([[1., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.11)
method

recarray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters
write [bool, optional] Describes whether or not a can be written to.
align [bool, optional] Describes whether or not « is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);
UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

1.6. Standard array subclasses 193

NumPy Reference, Release 1.17.0

Examples
>>> y = np.array([[3, 1, 71,
(z, 0, 01,
(8, 5, 911)
>>> y
array ([[3, 1, 71,
(2, o0, 01,
(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

recarray.sort (axis=-1, kind=None, order=None)
Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The de-
fault is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers
and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0.: The ‘stable’ option was added.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy . sort Return a sorted copy of an array.
argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.

194 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

Examples
>>> a = np.array ([[1,4], [3,111])
>>> a.sort (axis=1)
>>> a
array ([[1, 47,
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 31,
(1, 411)

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)1, dtype=[('x', 'S1"), ('yv', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x"', 'S1"'), ('y', '<i8")])
method

recarray.squeeze (axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.

See also:
numpy . squeeze equivalent function

method

recarray.std (axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy . std for full documentation.

See also:
numpy . std equivalent function

method

recarray .sum (axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
Return the sum of the array elements over the given axis.

Refer to numpy . sum for full documentation.

See also:

1.6.

Standard array subclasses

195

NumPy Reference, Release 1.17.0

numpy . sum equivalent function

method

recarray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.

See also:
numpy . swapaxes equivalent function

method

recarray .take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy . t ake for full documentation.

See also:
numpy . take equivalent function

method

recarray .tobytes (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C* or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

New in version 1.9.0.
Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array ([[0, 11, [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C'") == x.tobytes()

True

>>> x.tobytes ('F'")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

recarray.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

196 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Parameters
fid [file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

sep [str] Separator between array items for text output. If “”” (empty), a binary file is written,
equivalentto file.write (a.tobytes ()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support £ileno () (e.g., ByteslO).

method

recarray.tolist ()
Return the array as an a . ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the it em function.

If a.ndimis O, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none
Returns

y [object, or list of object, or list of list of object, or ...] The possibly nested list of array
elements.

Notes

The array may be recreated via a = np.array(a.tolist ()), although this may sometimes lose
precision.

Examples

For a 1D array, a.tolist () is almost the same as 1ist (a):

>>> a = np.array([1l, 2])
>>> list (a)

(1, 2]

>>> a.tolist ()

(1, 2]

However, for a 2D array, tolist applies recursively:

1.6. Standard array subclasses 197

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

>>> a = np.array([[1, 2], [3, 411)
>>> list (a)

larray ([1, 2]), array([3, 41)]
>>> a.tolist ()

(11, 21, [3, 41]

The base case for this recursion is a 0D array:

>>> a = np.array (1)
>>> list (a)
Traceback (most recent call last):

TypeError: iteration over a 0-d array
>>> a.tolist ()
1

method

recarray.tostring (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,

or the same as for the original array.
Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array ([[0, 1], [2, 311, dtype='<u2'")
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

recarray .trace (offset=0, axisI=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy . t race for full documentation.

See also:
numpy . trace equivalent function

method

198

. Array objects

NumPy Reference, Release 1.17.0

recarray.transpose (*axes)

Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-
D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves
this, as does a/:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if
axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided

and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose () .shape =
(i[n-11, i[n-21, ... if[1], 4if[0]).
Parameters

axes [None, tuple of ints, or n ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
Jj-th axis.

* nints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

ndarray.reshape Give a new shape to an array without changing its data.

Examples
>>> a = np.array ([[1, 2], [3, 41])
>>> a
array ([[1, 21,
[3, 411)
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose(l, 0)
array ([[1, 31,
(2, 411)
method

recarray .var (axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy . var for full documentation.

See also:
numpy.var equivalent function

method

1.6.

Standard array subclasses 199

NumPy Reference, Release 1.17.0

recarray .view (dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the t ype parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> Xv.mean

>>> x = np.array([(l, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2
[3, 4
(

1,
11, dtype=int8)
0)

array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)], dtype=[('a', 'il"), ('b', 'il')])

200

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Using a view to convert an array to a recarray:

>>> z x.view (np.recarray)
>>> z.a

array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.intl6)
>>> vy = x[:, 0:2]
>>> y
array ([[1, 2],
[4, 5]], dtype=intl6)
>>> y.view(dtype=[('width', np.intl6), ('length', np.intl6)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the array must be C-

—contiguous
>>> z = y.copy ()
>>> z.view(dtype=[('width', np.intl6), ('length', np.intl6)])
array ([[(1, 2)1,
[(4, 5)]11, dtype=[('width', '<i2'"), ('length', '<i2'")])

class numpy.record
A data-type scalar that allows field access as attribute lookup.

Attributes
T transpose
base base object
data pointer to start of data
dtype dtype object
flags integer value of flags
flat a1-d view of scalar
imag imaginary part of scalar
itemsize length of one element in bytes
nbytes length of item in bytes
ndim number of array dimensions
real real part of scalar
shape tuple of array dimensions

size number of elements in the gentype

1.6. Standard array subclasses 201

NumPy Reference, Release 1.17.0

strides tuple of bytes steps in each dimension

Methods

all()

Not implemented (virtual attribute)

any()

Not implemented (virtual attribute)

argmax()

Not implemented (virtual attribute)

argmin()

Not implemented (virtual attribute)

argsort()

Not implemented (virtual attribute)

astype()

Not implemented (virtual attribute)

byteswap()

Not implemented (virtual attribute)

choose()

Not implemented (virtual attribute)

clip()

Not implemented (virtual attribute)

compress()

Not implemented (virtual attribute)

conjugate()

Not implemented (virtual attribute)

copy()

Not implemented (virtual attribute)

cumprod()

Not implemented (virtual attribute)

cumsum()

Not implemented (virtual attribute)

diagonal()

Not implemented (virtual attribute)

dump()

Not implemented (virtual attribute)

dumps()

Not implemented (virtual attribute)

£111()

Not implemented (virtual attribute)

flatten()

Not implemented (virtual attribute)

getfield()

Not implemented (virtual attribute)

item()

Not implemented (virtual attribute)

itemset()

Not implemented (virtual attribute)

max()

Not implemented (virtual attribute)

mean()

Not implemented (virtual attribute)

min()

Not implemented (virtual attribute)

newbyteorder([new_order])

Return a new dt ype with a different byte order.

nonzero()

Not implemented (virtual attribute)

pprint(self) Pretty-print all fields.

prod() Not implemented (virtual attribute)
ptp() Not implemented (virtual attribute)
put() Not implemented (virtual attribute)
ravel() Not implemented (virtual attribute)
repeat() Not implemented (virtual attribute)
reshape() Not implemented (virtual attribute)
resize() Not implemented (virtual attribute)
round() Not implemented (virtual attribute)
searchsorted() Not implemented (virtual attribute)
setfield() Not implemented (virtual attribute)
setflags() Not implemented (virtual attribute)
sort() Not implemented (virtual attribute)
squeeze() Not implemented (virtual attribute)
std() Not implemented (virtual attribute)
sum() Not implemented (virtual attribute)
swapaxes() Not implemented (virtual attribute)
take() Not implemented (virtual attribute)
tofrile() Not implemented (virtual attribute)

Continued on next page

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 44 — continued from previous page

tolist() Not implemented (virtual attribute)

tostring() Not implemented (virtual attribute)

trace() Not implemented (virtual attribute)

transpose() Not implemented (virtual attribute)

var() Not implemented (virtual attribute)

view() Not implemented (virtual attribute)
method

record.all()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.any ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APIL

See also the corresponding attribute of the derived class of interest.
method

record.argmax ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.argmin ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APIL

See also the corresponding attribute of the derived class of interest.
method

record.argsort ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.astype ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform APIL

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

all the

all the

all the

all the

all the

all the

1.6.

Standard array subclasses

203

NumPy Reference, Release 1.17.0

See also the corresponding attribute of the derived class of interest.

method

record.byteswap ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.choose ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.clip ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.compress ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.conjugate ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.copy ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.cumprod ()

Not implemented (virtual attribute)

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

albeit unimplemented,

all the

all the

all the

all the

all the

all the

204

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform APL
See also the corresponding attribute of the derived class of interest.
method

record.cumsum ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform API.
See also the corresponding attribute of the derived class of interest.
method

record.diagonal ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform API.
See also the corresponding attribute of the derived class of interest.
method

record.dump ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform API.
See also the corresponding attribute of the derived class of interest.
method

record.dumps ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform API.
See also the corresponding attribute of the derived class of interest.
method

record.£ill ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform API.
See also the corresponding attribute of the derived class of interest.
method

record.flatten ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the

attributes of the ndarray class so as to provide a uniform API.
See also the corresponding attribute of the derived class of interest.

method

1.6.

Standard array subclasses

NumPy Reference, Release 1.17.0

record.getfield()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.item()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.itemset ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.max ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.mean ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.min ()

Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses,
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

record.newbyteorder (new_order="S’)

Return a new dt ype with a different byte order.
Changes are also made in all fields and sub-arrays of the data type.

The new_order code can be any from the following:

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

albeit unimplemented, all the

206

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

e ‘S’ - swap dtype from current to opposite endian

{‘<’, 'L’} - little endian
e {*>’, ‘B’} - big endian

3

e {‘=’, ‘N’} - native order

{°I’, T’} - ignore (no change to byte order)

Parameters

new_order [str, optional] Byte order to force; a value from the byte order specifications
above. The default value (‘S’) results in swapping the current byte order. The code does
a case-insensitive check on the first letter of new_order for the alternatives above. For
example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

Returns

new_dtype [dtype] New dt ype object with the given change to the byte order.

method

record.nonzero ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.pprint (self)
Pretty-print all fields.

method

record.prod ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.ptp ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.put ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

1.6. Standard array subclasses 207

NumPy Reference, Release 1.17.0

method

record.ravel ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.repeat ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.reshape ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.resize ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.round ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.searchsorted ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.setfield ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

208 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also the corresponding attribute of the derived class of interest.
method

record.setflags ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.sort ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record. squeeze ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.std ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.sum/()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.swapaxes ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.take ()
Not implemented (virtual attribute)

1.6. Standard array subclasses 209

NumPy Reference, Release 1.17.0

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform APL

See also the corresponding attribute of the derived class of interest.
method

record.tofile ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.tolist ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.tostring ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.trace ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.transpose ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.
method

record.var ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

method

210 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

record.view ()
Not implemented (virtual attribute)

Class generic exists solely to derive numpy scalars from, and possesses, albeit unimplemented, all the
attributes of the ndarray class so as to provide a uniform API.

See also the corresponding attribute of the derived class of interest.

conj
tobytes

1.6.6 Masked arrays (numpy .ma)

See also:

Masked arrays

1.6.7 Standard container class

For backward compatibility and as a standard “container “class, the UserArray from Numeric has been brought over to
NumPy and named numpy . 1ib.user_array.container The container class is a Python class whose self.array
attribute is an ndarray. Multiple inheritance is probably easier with numpy.lib.user_array.container than with the
ndarray itself and so it is included by default. It is not documented here beyond mentioning its existence because you
are encouraged to use the ndarray class directly if you can.

numpy.lib.user_array.container(datal, Standard container-class for easy multiple-inheritance.

)

class numpy.lib.user_array.container (data, dtype=None, copy=True)
Standard container-class for easy multiple-inheritance.

Methods

copy
tostring

byteswap
astype

1.6.8 Array lterators

Iterators are a powerful concept for array processing. Essentially, iterators implement a generalized for-loop. If myiter
is an iterator object, then the Python code:

for val in myiter:

some code involving val

callsval = myiter.next () repeatedly until StopIteration israised by the iterator. There are several ways
to iterate over an array that may be useful: default iteration, flat iteration, and /NV-dimensional enumeration.

1.6. Standard array subclasses 211

https://docs.python.org/dev/library/exceptions.html#StopIteration

NumPy Reference, Release 1.17.0

Default iteration

The default iterator of an ndarray object is the default Python iterator of a sequence type. Thus, when the array object
itself is used as an iterator. The default behavior is equivalent to:

for i in range(arr.shape[0]):
val = arr[i]

This default iterator selects a sub-array of dimension /N — 1 from the array. This can be a useful construct for defining
recursive algorithms. To loop over the entire array requires N for-loops.

>>> a = arange (24) .reshape(3,2,4)+10
>>> for val in a:
ce print 'item:', val
item: [[10 11 12 13]
[14 15 16 17]]
item: [[18 19 20 21]
[22 23 24 25]]
item: [[26 27 28 29]
[30 31 32 33]]

Flat iteration

ndarray.flat A 1-D iterator over the array.

As mentioned previously, the flat attribute of ndarray objects returns an iterator that will cycle over the entire array in
C-style contiguous order.

>>> for i, val in enumerate(a.flat):
.. if i%5 == 0: print i, wval

0 10

5 15

10 20
15 25
20 30

Here, I’ve used the built-in enumerate iterator to return the iterator index as well as the value.

N-dimensional enumeration

ndenumerate(arr) Multidimensional index iterator.

class numpy.ndenumerate (arr)
Multidimensional index iterator.

Return an iterator yielding pairs of array coordinates and values.
Parameters
arr [ndarray] Input array.
See also:

ndindex, flatiter

212 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> a = np.array ([[1, 21, [3, 411)
>>> for index, x in np.ndenumerate(a):
print (index, x)

(0, 0) 1

(0, 1) 2

(1, 0) 3

(1, 1) 4

Methods
next(self) Standard iterator method, returns the index tuple and

array value.
method

ndenumerate.next (self)
Standard iterator method, returns the index tuple and array value.

Returns
coords [tuple of ints] The indices of the current iteration.
val [scalar] The array element of the current iteration.

Sometimes it may be useful to get the N-dimensional index while iterating. The ndenumerate iterator can achieve this.

>>> for i, val in ndenumerate(a):

C. if sum(i) %5 == 0: print i, wval
(0, 0, 0) 10
(1, 1, 3) 25
(2, 0, 3) 29
(2, 1, 2) 32

~

Iterator for broadcasting

broadcast Produce an object that mimics broadcasting.

class numpy.broadcast
Produce an object that mimics broadcasting.

Parameters
inl, in2, ... [array_like] Input parameters.
Returns

b [broadcast object] Broadcast the input parameters against one another, and return an object
that encapsulates the result. Amongst others, it has shape and nd properties, and may be
used as an iterator.

See also:

broadcast_arrays, broadcast_to

1.6. Standard array subclasses 213

NumPy Reference, Release 1.17.0

Examples

Manually adding two vectors, using broadcasting:

>>> x = np.array ([[1], [2], [311])
>>> y = np.array([4, 5, 6])
>>> b = np.broadcast (x, V)
>>> out = np.empty (b.shape)
>>> out.flat = [u+v for (u,v) in Db]
>>> out
array ([[5., 6., 7.1,
[6., 7., 8.1,
[7., 8., 9.11)

Compare against built-in broadcasting:

>>> x + y

array ([[5, 6, 71,
(6, 7, 81,
(7, 8, 911)
Attributes
index current index in broadcasted result
iters tuple of iterators along self’s “components.”
nd Number of dimensions of broadcasted result.
ndim Number of dimensions of broadcasted result.
numiter Number of iterators possessed by the broadcasted result.
shape Shape of broadcasted result.
size Total size of broadcasted result.
Methods
reset() Reset the broadcasted result’s iterator(s).
method

broadcast.reset ()
Reset the broadcasted result’s iterator(s).

Parameters
None
Returns

None

214

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> x = np.array([1l, 2, 3])
>>> y = np.array([[4], [5], [6]])
>>> b = np.broadcast (x, V)
>>> b.index

0

>>> next (b), next (b), next (b)
(L, 4), (2, 4), (3, 4))

>>> b.index

3

>>> b.reset ()

>>> b.index

0

The general concept of broadcasting is also available from Python using the broadcast iterator. This object takes
N objects as inputs and returns an iterator that returns tuples providing each of the input sequence elements in the
broadcasted result.

>>> for val in broadcast([[1,0]1,[2,311,1[0,1]):
print val

w N O
~ .
= O = O

1.7 Masked arrays

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

1.7.1 The numpy .ma module

Rationale

Masked arrays are arrays that may have missing or invalid entries. The numpy . ma module provides a nearly work-
alike replacement for numpy that supports data arrays with masks.

What is a masked array?

In many circumstances, datasets can be incomplete or tainted by the presence of invalid data. For example, a sensor
may have failed to record a data, or recorded an invalid value. The numpy . ma module provides a convenient way to
address this issue, by introducing masked arrays.

A masked array is the combination of a standard numpy . ndarray and a mask. A mask is either noma sk, indicating
that no value of the associated array is invalid, or an array of booleans that determines for each element of the associated
array whether the value is valid or not. When an element of the mask is False, the corresponding element of the
associated array is valid and is said to be unmasked. When an element of the mask is True, the corresponding element
of the associated array is said to be masked (invalid).

The package ensures that masked entries are not used in computations.

As an illustration, let’s consider the following dataset:

1.7. Masked arrays 215

NumPy Reference, Release 1.17.0

>>> import numpy as np
>>> import numpy.ma as ma
>>> x = np.array([1l, 2, 3, -1, 51)

We wish to mark the fourth entry as invalid. The easiest is to create a masked array:

>>> mx = ma.masked_array(x, mask=[0, 0, 0, 1, 0])

We can now compute the mean of the dataset, without taking the invalid data into account:

>>> mx.mean ()
2.75

The numpy . ma module

The main feature of the numpy . ma module is the MaskedArray class, which is a subclass of numpy . ndarray.
The class, its attributes and methods are described in more details in the MaskedArray class section.

The numpy . ma module can be used as an addition to numpy:

>>> import numpy as np
>>> import numpy.ma as ma

To create an array with the second element invalid, we would do:

’>>> y = ma.array([1l, 2, 3], mask = [0, 1, 01)

To create a masked array where all values close to 1.e20 are invalid, we would do:

’>>> z = masked values([1.0, 1.e20, 3.0, 4.0], 1.e20)

For a complete discussion of creation methods for masked arrays please see section Constructing masked arrays.

1.7.2 Using humpy.ma

Constructing masked arrays

There are several ways to construct a masked array.
* A first possibility is to directly invoke the MaskedArray class.

* A second possibility is to use the two masked array constructors, array and masked_array.

array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
masked_array alias of numpy .ma.core.MaskedArray

numpy .ma.array (data, dtype=None, copy=False, order=None, mask=False, fill_value=None,

keep_mask=True, hard_mask=False, shrink=True, subok=True, ndmin=0)
An array class with possibly masked values.

Masked values of True exclude the corresponding element from any computation.

Construction:

216 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

x = MaskedArray (data, mask=nomask, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,

shrink=True, order=None)

Parameters
data [array_like] Input data.

mask [sequence, optional] Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

dtype [dtype, optional] Data type of the output. If dfype is None, the type of the data argu-
ment (data.dtype) is used. If dtype is not None and different from data.dtype, a
copy is performed.

copy [bool, optional] Whether to copy the input data (True), or to use a reference instead.
Default is False.

subok [bool, optional] Whether to return a subclass of MaskedArray if possible (True)
or a plain MaskedArray. Default is True.

ndmin [int, optional] Minimum number of dimensions. Default is 0.

fill_value [scalar, optional] Value used to fill in the masked values when necessary. If None,
a default based on the data-type is used.

keep_mask [bool, optional] Whether to combine mask with the mask of the input data, if
any (True), or to use only mask for the output (False). Default is True.

hard_mask [bool, optional] Whether to use a hard mask or not. With a hard mask, masked
values cannot be unmasked. Default is False.

shrink [bool, optional] Whether to force compression of an empty mask. Default is True.

order [{‘C’, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’, then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the
returned array will be in Fortran-contiguous order (first-index varies the fastest). If order
is ‘A’ (default), then the returned array may be in any order (either C-, Fortran-contiguous,
or even discontiguous), unless a copy is required, in which case it will be C-contiguous.

numpy .ma .masked_array
alias of numpy .ma.core.MaskedArray

* A third option is to take the view of an existing array. In that case, the mask of the view is set to noma sk if the
array has no named fields, or an array of boolean with the same structure as the array otherwise.

>>> x = np.array([l, 2, 31)

>>> x.view(ma.MaskedArray)
masked_array(data = [1 2 3],

mask = False,

fill_value = 999999)

>>> x = np.array ([(1, 1.), (2, 2.)], dtype=[('a',int), ('b', float)])
>>> x.view (ma.MaskedArray)
masked_array(data = [(1, 1.0) (2, 2.0)],
mask = (False, False) (False, False)],
)

[
fill_value = (999999, 1e+20),
dtype = [('a', '<i4d'), ('b', '<f8"'")1])

* Yet another possibility is to use any of the following functions:

1.7. Masked arrays 217

NumPy Reference, Release 1.17.0

asarray(al, dtype, order])

Convert the input to a masked array of the given data-
type.

asanyarray(al, dtype])

Convert the input to a masked array, conserving sub-
classes.

fix_invalid(a[, mask, copy, fill_value])

Return input with invalid data masked and replaced
by a fill value.

masked_equal(X, value[, copy])

Mask an array where equal to a given value.

masked_greater(x, value[, copy])

Mask an array where greater than a given value.

masked_greater_equal(Xx, value[, copy])

Mask an array where greater than or equal to a given
value.

masked_inside(x, vl, v2[, copy])

Mask an array inside a given interval.

masked_invalid(a[, copy])

Mask an array where invalid values occur (NaNs or
infs).

masked_1less(x, value[, copy])

Mask an array where less than a given value.

masked_less_equal(x, value[, copy])

Mask an array where less than or equal to a given
value.

masked_not_equal(x, value[, copy])

Mask an array where not equal to a given value.

masked_object(x, value[, copy, shrink])

Mask the array x where the data are exactly equal to
value.

masked_outside(x, vl, v2[, copy])

Mask an array outside a given interval.

masked_values(x, value[, rtol, atol, copy, ...

Mask using floating point equality.

masked_where(condition, a[, copy])

Mask an array where a condition is met.

numpy .ma .asarray (a, dtype=None, order=None)
Convert the input to a masked array of the given data-type.

No copy is performed if the input is already an ndarray. If a is a subclass of MaskedArray, a base class

MaskedArray is returned.

Parameters

a [array_like] Input data, in any form that can be converted to a masked array. This includes
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, ndarrays and masked arrays.

dtype [dtype, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (‘FOR-
TRAN’) memory representation. Default is ‘C’.

Returns

out [MaskedArray] Masked array interpretation of a.

See also:

asanyarray Similar to asarray, but conserves subclasses.

Examples
>>> x = np.arange (10.) .reshape (2,
>>> x

array ([[0., 1., 2., 3.,
[5., 6., 7., 8.,
>>> np.ma.asarray (x)

masked_array (

(continues on next page)

218

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

data=[10., 1., 2., 3., 4.1,
[5., 6., 7., 8., 9.11,
mask=False,
fill_value=1e+20)
>>> type (np.ma.asarray (x))
<class 'numpy.ma.core.MaskedArray'>

numpy .ma .asanyarray (a, dtype=None)
Convert the input to a masked array, conserving subclasses.

If a is a subclass of MaskedArray, its class is conserved. No copy is performed if the input is already
an ndarray.

Parameters
a [array_like] Input data, in any form that can be converted to an array.
dtype [dtype, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (‘C’) or column-major (‘FOR-
TRAN’) memory representation. Default is ‘C’.

Returns
out [MaskedArray] MaskedArray interpretation of a.

See also:

asarray Similar to asanyarray, but does not conserve subclass.

Examples
>>> x = np.arange (10.) .reshape (2, 5)
>>> x

array([[0., 1., 2., 3.,
(5., 6., 7., 8.,
>>> np.ma.asanyarray (x)
masked_array (
data=[[0., 1., 2., 3., 4.]
[5., 6., 7., 8., 9
mask=False,
fill_value=1e+20)
>>> type (np.ma.asanyarray (x))
<class 'numpy.ma.core.MaskedArray'>

numpy .ma . fix_invalid (a, mask=False, copy=True, fill_value=None)
Return input with invalid data masked and replaced by a fill value.

Invalid data means values of nan, inf, etc.
Parameters
a [array_like] Input array, a (subclass of) ndarray.

mask [sequence, optional] Mask. Must be convertible to an array of booleans with the same
shape as data. True indicates a masked (i.e. invalid) data.

copy [bool, optional] Whether to use a copy of a (True) or to fix a in place (False). Default
is True.

1.7.

Masked arrays 219

NumPy Reference, Release 1.17.0

fill_value [scalar, optional] Value used for fixing invalid data. Default is None, in which
casethe a.f1i11_value is used.

Returns
b [MaskedArray] The input array with invalid entries fixed.

Notes

A copy is performed by default.

Examples

>>> x = np.ma.array([l., -1, np.nan, np.inf], mask=[1] + [0]%*3)
>>> x

masked_array (data=[--, -1.0, nan, inf],

mask=[True, False, False, False],
fill value=1le+20)
>>> np.ma.fix_invalid (x)
masked_array (data=[--, -1.0, -—-, —-1,
mask=[True, False, True, Truel,
fill value=1e+20)

>>> fixed = np.ma.fix_invalid(x)

>>> fixed.data

array ([1.e+00, -1.e+00, 1.e+20, 1.e+20])
>>> x.data

array ([1., -1., nan, inf]

numpy .ma .masked_equal (x, value, copy=True)

Mask an array where equal to a given value.

This function is a shortcut to masked_where, with condition = (x == value). For floating point arrays,
consider using masked_values (x, value).

See also:

masked where Mask where a condition is met.

masked_values Mask using floating point equality.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_equal (a, 2)
masked_array (data=[0, 1, --, 31,
mask=[False, False, True, False],
fill _value=2)

numpy .ma .masked_greater (x, value, copy=True)

Mask an array where greater than a given value.

This function is a shortcut to masked_where, with condition = (x > value).

220

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also:

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_greater (a, 2)
masked_array (data=[0, 1, 2, —-1,
mask=[False, False, False, True],
fill_value=999999)

numpy .ma .masked_greater_equal (x, value, copy=True)
Mask an array where greater than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x >= value).

See also:

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_greater_equal (a, 2)
masked_array (data=[0, 1, --, —-1,
mask=[False, False, True, True],
fill_value=999999)

numpy .ma .masked_inside (x, v, v2, copy=True)
Mask an array inside a given interval.

Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (vl <= x <= v2).
The boundaries v/ and v2 can be given in either order.

See also:

masked where Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

Examples

1.7. Masked arrays 221

NumPy Reference, Release 1.17.0

>>> import numpy.ma as ma
>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_inside(x, -0.3, 0.3)
masked_array (data=[0.31, 1.2, --, ——, -0.4, -1.17,
mask=[False, False, True, True, False, False],
fill _value=1le+20)

The order of v/ and v2 doesn’t matter.

>>> ma.masked_inside(x, 0.3, -0.3)
masked_array (data=[0.31, 1.2, --, ——, -0.4, -1.17,
mask=[False, False, True, True, False, False],
fill value=1le+20)

numpy .ma.masked_invalid (a, copy=True)

Mask an array where invalid values occur (NaNs or infs).

This function is a shortcut to masked_where, with condition = ~(np.isfinite(a)). Any pre-existing mask
is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types),
but accepts any array_like object.

See also:

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.arange (5, dtype=float)

>>> a[2] = np.NaN

>>> a[3] = np.PINF

>>> a

array ([0., 1., nan, inf, 4.])

>>> ma.masked_invalid(a)
masked_array (data=[0.0, 1.0, -—-, ——, 4.0],
mask=[False, False, True, True, False],
fill_value=1le+20)

numpy .ma .masked_less (x, value, copy=True)

Mask an array where less than a given value.
This function is a shortcut to masked_where, with condition = (x < value).

See also:

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma

>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)

>>> ma.masked_less(a, 2)
masked_array (data=[-—-, --, 2, 31,

(continues on next page)

222

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

mask=[True, True, False, False],
fill_value=999999)

numpy .ma .masked_less_equal (x, value, copy=True)
Mask an array where less than or equal to a given value.

This function is a shortcut to masked_where, with condition = (x <= value).

See also:

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma

>>> a = np.arange (4)

>>> a

array ([0, 1, 2, 31)

>>> ma.masked_less_equal (a, 2)
masked_array (data=[--, -—, —-—-, 31,

mask=[True, True, True, False],
fill_value=999999)

numpy .ma .masked_not_equal (x, value, copy=True)
Mask an array where not equal to a given value.

This function is a shortcut to masked_where, with condition = (x != value).

See also:

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a np.arange (4)

>>> a
array ([0, 1, 2, 31)
>>> ma.masked_not_equal (a, 2)
masked_array (data=[--, --, 2, —-1,

mask=[True, True, False, True],
fill_value=999999)

numpy .ma .masked_object (x, value, copy=True, shrink=True)
Mask the array x where the data are exactly equal to value.

This function is similar to masked_values, but only suitable for object arrays: for floating point, use

masked_values instead.
Parameters
x [array_like] Array to mask
value [object] Comparison value

copy [{True, False}, optional] Whether to return a copy of x.

1.7.

Masked arrays

223

NumPy Reference, Release 1.17.0

shrink [{True, False}, optional] Whether to collapse a mask full of False to nomask
Returns
result [MaskedArray] The result of masking x where equal to value.

See also:

masked where Mask where a condition is met.
masked_equal Mask where equal to a given value (integers).

masked_values Mask using floating point equality.

Examples

>>> import numpy.ma as ma

>>> food = np.array(['green_eggs', 'ham'], dtype=object)
>>> # don't eat spoiled food
>>> eat = ma.masked_object (food, 'green_eggs')
>>> eat
masked_array (data=[--, 'ham'],
mask=[True, False],

fill_value='green_eggs',
dtype=object)
>>> # plain ol' ham is boring

>>> fresh_food = np.array(['cheese', 'ham', 'pineapple'], dtype=object)
>>> eat = ma.masked_object (fresh_food, 'green_eggs')

>>> eat

masked_array (data=["'cheese', 'ham', 'pineapple'],

mask=False,
fill value='green_eggs',
dtype=object)

Note that mask is set to nomask if possible.

>>> eat
masked_array (data=["'cheese', 'ham', 'pineapple'l],
mask=False,
fill_value='green_eggs',
dtype=object)

numpy .ma .masked_outside (x, vl, v2, copy=True)

Mask an array outside a given interval.

Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v])I(x > v2).
The boundaries v/ and v2 can be given in either order.

See also:

masked where Mask where a condition is met.

Notes

The array x is prefilled with its filling value.

224

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> import numpy.ma as ma

>>> x = [0.31, 1.2, 0.01, 0.2, -0.4, -1.1]
>>> ma.masked_outside(x, -0.3, 0.3)
masked_array (data=[--, --, 0.01, 0.2, —-—-, ——-1,

mask=[True, True, False, False, True, True],
fill_value=1le+20)

The order of v/ and v2 doesn’t matter.

>>> ma.masked_outside(x, 0.3, -0.3)
masked_array (data=[--, --, 0.01, 0.2, —--, —-1,
mask=[True, True, False, False, True, True],
fill value=1le+20)

numpy .ma .masked_values (x, value, rtol=1e-05, atol=1e-08, copy=True, shrink=True)
Mask using floating point equality.

Return a MaskedArray, masked where the data in array x are approximately equal to value, determined
using isclose. The default tolerances for masked_values are the same as those for isclose.

For integer types, exact equality is used, in the same way as masked_equal.
The fill_value is set to value and the mask is set to nomask if possible.
Parameters
x [array_like] Array to mask.
value [float] Masking value.
rtol, atol [float, optional] Tolerance parameters passed on to isclose
copy [bool, optional] Whether to return a copy of x.
shrink [bool, optional] Whether to collapse a mask full of False to nomask.
Returns
result [MaskedArray] The result of masking x where approximately equal to value.

See also:

masked where Mask where a condition is met.

masked_equal Mask where equal to a given value (integers).

Examples

>>> import numpy.ma as ma
>>> x = np.array([(1, 1.1, 2, 1.1, 31])
>>> ma.masked_values(x, 1.1)
masked_array (data=[1.0, --, 2.0, --, 3.0],
mask=[False, True, False, True, False],
fill_value=1.1)

Note that mask is set to nomask if possible.

1.7. Masked arrays 225

NumPy Reference, Release 1.17.0

>>> ma.masked_values (x, 1.5)
masked_array (data=[1. , 1.1, 2. , 1.1, 3. 1,
mask=False,
fill value=1.5)

For integers, the fill value will be different in general to the result of masked_equal.

>>> x = np.arange (5)
>>> x
array ([0, 1, 2, 3, 41)
>>> ma.masked_values (x, 2)
masked_array (data=[0, 1, --, 3, 41,
mask=[False, False, True, False, False],
fill value=2)
>>> ma.masked_equal (x, 2)
masked_array (data=[0, 1, --, 3, 41,
mask=[False, False, True, False, False],
fill_value=2)

numpy .ma .masked_where (condition, a, copy=True)
Mask an array where a condition is met.

Return a as an array masked where condition is True. Any masked values of a or condition are also masked
in the output.

Parameters

condition [array_like] Masking condition. When condition tests floating point values for
equality, consider using masked_values instead.

a [array_like] Array to mask.

copy [bool] If True (default) make a copy of a in the result. If False modify a in place and
return a view.

Returns
result [MaskedArray] The result of masking a where condition is True.

See also:

masked_values Mask using floating point equality.

masked_equal Mask where equal to a given value.

masked_not_equal Mask where not equal to a given value.

masked less_equal Mask where less than or equal to a given value.
masked _greater._equal Mask where greater than or equal to a given value.
masked_less Mask where less than a given value.

masked _greater Mask where greater than a given value.
masked_inside Mask inside a given interval.

masked _outside Mask outside a given interval.

masked invalid Mask invalid values (NaNs or infs).

226 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> import numpy.ma as ma
>>> a = np.arange (4)
>>> a
array ([0, 1, 2, 31)
>>> ma.masked_where(a <= 2, a)
masked_array (data=[--, --, --, 31,
mask=[True, True, True, False],
fill_value=999999)

Mask array b conditional on a.

>> b = ['a', 'b', 'c¢', 'd']
>>> ma.masked_where(a == 2, b)
masked_array (data=['a', 'b', —--, 'd'],
mask=[False, False, True, False],
fill_value='N/A"',
dtype="'<Ul")

Effect of the copy argument.

>>> ¢ = ma.masked_where(a <= 2, a)

>>> ¢
masked_array (data=[--, --, --, 31,
mask=[True, True, True, False],
fill _value=999999)
>>> c[0] = 99
>>> ¢
masked_array (data=[99, --, --, 31,
mask=[False, True, True, False],
fill _value=999999)
>>> a

array ([0, 1, 2, 31)
>>> ¢ = ma.masked_where(a <= 2, a, copy=False)

>>> ¢c[0] = 99
>>> ¢
masked_array (data=[99, --, —-—, 31,
mask=[False, True, True, False],

fill_value=999999)
>>> a
array ([99, 1, 2, 31)

When condition or a contain masked values.

>>> a = np.arange (4)
>>> a = ma.masked_where(a == 2, a)
>>> a
masked_array (data=[0, 1, --, 3],
mask=[False, False, True, False],
fill_value=999999)
>>> b = np.arange (4)
>>> b = ma.masked_where(b == 0, b)
>>> Db
masked_array (data=[-—-, 1, 2, 31,
mask=[True, False, False, False],

fill value=999999)

(continues on next page)

1.7. Masked arrays 227

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> ma.masked_where(a == 3, b)
masked_array (data=[--, 1, —-, —-1,
mask=[True, False, True, Truel,

fill value=999999)

Accessing the data

The underlying data of a masked array can be accessed in several ways:

e through the data attribute. The output is a view of the array as a numpy . ndarray or one of its subclasses,
depending on the type of the underlying data at the masked array creation.

e throughthe _ array method. The output is then a numpy.ndarray.

* by directly taking a view of the masked array as a numpy . ndarray or one of its subclass (which is actually
what using the dat a attribute does).

* by using the getdata function.

None of these methods is completely satisfactory if some entries have been marked as invalid. As a general rule,
where a representation of the array is required without any masked entries, it is recommended to fill the array with the
f£1i1led method.

Accessing the mask

The mask of a masked array is accessible through its mask attribute. We must keep in mind that a True entry in the
mask indicates an invalid data.

Another possibility is to use the getmask and getmaskarray functions. getmask (x) outputs the mask of x if
x is a masked array, and the special value nomask otherwise. getmaskarray (x) outputs the mask of x if x is a
masked array. If x has no invalid entry or is not a masked array, the function outputs a boolean array of False with
as many elements as x.

Accessing only the valid entries

To retrieve only the valid entries, we can use the inverse of the mask as an index. The inverse of the mask can be
calculated with the numpy . Iogical_not function or simply with the ~ operator:

>>> x = ma.array ([[1l, 2], [3, 4]], mask=[[0, 1], [1, 011)
>>> x[~x.mask]

masked_array (data [1 47,
mask = [False False],
fill _value = 999999)

Another way to retrieve the valid data is to use the compressed method, which returns a one-dimensional ndarray
(or one of its subclasses, depending on the value of the haseclass attribute):

>>> x.compressed ()
array ([1, 4])

Note that the output of compressed is always 1D.

228 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Modifying the mask

Masking an entry

The recommended way to mark one or several specific entries of a masked array as invalid is to assign the special
value masked to them:

>>> x = ma.array([1l, 2, 31)
>>> x[0] = ma.masked
>>> x
masked_array (data = [-— 2 3],
mask = [True False False],
fill_value 999999)

>>> vy = ma.array([[1l, 2, 31, [4, 5, 61, [7, 8, 911)
>>> y[(0, 1, 2), (1, 2, 0)] = ma.masked
>>> y
masked_array (data =
[[1 -- 3]
[4 5 ——]
[-— 8 911,
mask =
[[False True False]
[False False True]
[True False False]l],
fill_value = 999999)
>>> 7z = ma.array([1l, 2, 3, 4])
>>> z[:-2] ma .masked
>>> 7z
masked_array (data [-- -—— 3 47,
mask = [True True False False],
fill_value = 999999)

A second possibility is to modify the ma sk directly, but this usage is discouraged.

Note: When creating a new masked array with a simple, non-structured datatype, the mask is initially set to the
special value noma sk, that corresponds roughly to the boolean False. Trying to set an element of noma sk will fail
with a TypeError exception, as a boolean does not support item assignment.

All the entries of an array can be masked at once by assigning True to the mask:

>>> x = ma.array([1l, 2, 3], mask=[0, 0, 11)
>>> x.mask True
>>> x
masked_array(data = [-—— —— ——],
mask = [True True True],

fill_value 999999)

Finally, specific entries can be masked and/or unmasked by assigning to the mask a sequence of booleans:

>>> x = ma.array([1l, 2, 31)
>>> x.mask [0, 1, 0]
>>> x
masked_array (data = [1 —— 3],
mask = [False True False],
fill_value = 999999)

1.7. Masked arrays 229

https://docs.python.org/dev/library/exceptions.html#TypeError

NumPy Reference, Release 1.17.0

Unmasking an entry

To unmask one or several specific entries, we can just assign one or several new valid values to them:

>>> x = ma.array([l, 2, 3], mask=[0, 0, 17])

>>> x
masked_array(data = [1 2 —--],
mask = [False False True],
fill_value = 999999)
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 5],
mask = [False False False],

fill _value = 999999)

Note: Unmasking an entry by direct assignment will silently fail if the masked array has a hard mask, as shown by
the hardmask attribute. This feature was introduced to prevent overwriting the mask. To force the unmasking of an
entry where the array has a hard mask, the mask must first to be softened using the soften_mask method before
the allocation. It can be re-hardened with harden_mask:

>>> x = ma.array([1l, 2, 3], mask=[0, 0, 1], hard_mask=True)

>>> x
masked_array(data = [1 2 —-],
mask = [False False True],
fill_value = 999999)
>>> x[-1] = 5
>>> x
masked_array(data = [1 2 —-],
mask = [False False True],

fill_value = 999999)
>>> x.soften_mask ()
>>> x[-1] = 5

>>> x
masked_array(data = [1 2 5],
mask = [False False False],

fill_value = 999999)
>>> x.harden_mask ()

To unmask all masked entries of a masked array (provided the mask isn’t a hard mask), the simplest solution is to
assign the constant noma sk to the mask:

>>> x = ma.array([1l, 2, 3], mask=[0, O, 17])

>>> x
masked_array(data = [1 2 —-],
mask = [False False True],
fill_value = 999999)
>>> x.mask = ma.nomask
>>> x
masked_array(data = [1 2 3],
mask = [False False False],

fill value = 999999)

230 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Indexing and slicing

As a MaskedArray is a subclass of numpy . ndarray, it inherits its mechanisms for indexing and slicing.

When accessing a single entry of a masked array with no named fields, the output is either a scalar (if the corresponding
entry of the mask is False) or the special value masked (if the corresponding entry of the mask is True):

>>> x = ma.array([l, 2, 3], mask=[0, O, 17])

>>> x[0]

1

>>> x[-1]

masked_array (data = ——,
mask = True,

fill _value = 1e+20)
>>> x[-1] is ma.masked
True

If the masked array has named fields, accessing a single entry returns a numpy . void object if none of the fields are
masked, or a 0d masked array with the same dtype as the initial array if at least one of the fields is masked.

>>> y = ma.masked_array([(1,2), (3, 4

)1,
mask=[(0, 0), (0, 1)1,
C dtype=[('a', int), ('b', int)])
>>> y[0]
(1, 2)
>>> y[-1]
masked_array (data = (3, --),
mask = (False, True),
fill_value = (999999, 999999),
dtype = [('a', '<id'), ('b', '<id4")])

When accessing a slice, the output is a masked array whose data attribute is a view of the original data, and whose
mask is either nomask (if there was no invalid entries in the original array) or a view of the corresponding slice of
the original mask. The view is required to ensure propagation of any modification of the mask to the original.

>>> x = ma.array([1, 2, 3, 4, 5], mask=[0, 1, O, 0, 17])

>>> mx = x[:3]
>>> mx
masked_array (data = [1 —— 3],
mask = [False True False],
fill_value = 999999)
>>> mx[1] = -1
>>> mx
masked_array(data = [1 -1 3],
mask = [False False False],

fill_value = 999999)
>>> x.mask
array ([False, True, False, False, True])
>>> x.data
array ([1, -1, 3, 4, 51)

Accessing a field of a masked array with structured datatype returns a MaskedArray.

Operations on masked arrays

Arithmetic and comparison operations are supported by masked arrays. As much as possible, invalid entries of a
masked array are not processed, meaning that the corresponding dat a entries should be the same before and after the

1.7. Masked arrays 231

NumPy Reference, Release 1.17.0

operation.

Warning: We need to stress that this behavior may not be systematic, that masked data may be affected by the
operation in some cases and therefore users should not rely on this data remaining unchanged.

The numpy . ma module comes with a specific implementation of most ufuncs. Unary and binary functions that have a
validity domain (such as 1og or divide) return the masked constant whenever the input is masked or falls outside
the validity domain:

>>> ma.log([-1, 0, 1, 21)
masked_array (data [-— —— 0.0 0.693147180506],
mask = [True True False False],

fill_value le+20)

Masked arrays also support standard numpy ufuncs. The output is then a masked array. The result of a unary ufunc is
masked wherever the input is masked. The result of a binary ufunc is masked wherever any of the input is masked. If
the ufunc also returns the optional context output (a 3-element tuple containing the name of the ufunc, its arguments
and its domain), the context is processed and entries of the output masked array are masked wherever the corresponding
input fall outside the validity domain:

>>> x = ma.array([-1, 1, 0, 2, 3], mask=[0, O, O, 0, 11)
>>> np.log(x)
masked_array(data = [-— —— 0.0 0.69314718056 —-1,
mask = [True True False False True],
fill _value = 1e+20)

1.7.3 Examples
Data with a given value representing missing data

Let’s consider a list of elements, x, where values of -9999. represent missing data. We wish to compute the average
value of the data and the vector of anomalies (deviations from the average):

>>> import numpy.ma as ma

>> x = [0.,1.,-9999.,3.,4.]

>>> mx = ma.masked_values (x, —-9999.)
>>> print mx.mean ()

2.0

>>> print mx - mx.mean ()

[-2.0 -1.0 —= 1.0 2.0]

>>> print mx.anom()

[-2.0 -1.0 == 1.0 2.0]

Filling in the missing data

Suppose now that we wish to print that same data, but with the missing values replaced by the average value.

>>> print mx.filled (mx.mean())
[0. 1. 2. 3. 4.]

232 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Numerical operations

Numerical operations can be easily performed without worrying about missing values, dividing by zero, square roots
of negative numbers, etc.:

>>> import numpy as np, numpy.ma as ma

>>> x = ma.array([1l., -1., 3., 4., 5., 6.], mask=[0,0,0,0,1,01)
>>> y = ma.array([(1., 2., 0., 4., 5., 6.1, mask=[0,0,0,0,0,11)
>>> print np.sqrt (x/y)
[1.0 —— —— 1.0 —— ——]

Four values of the output are invalid: the first one comes from taking the square root of a negative number, the second
from the division by zero, and the last two where the inputs were masked.

Ignoring extreme values

Let’s consider an array d of random floats between 0 and 1. We wish to compute the average of the values of d while
ignoring any data outside the range [0.1, 0.9]:

>>> print ma.masked_outside(d, 0.1, 0.9) .mean/()

1.7.4 Constants of the numpy .ma module

In addition to the MaskedArray class, the numpy . ma module defines several constants.

numpy .ma .masked
The masked constant is a special case of MaskedArray, with a float datatype and a null shape. It is used to
test whether a specific entry of a masked array is masked, or to mask one or several entries of a masked array:

>>> x = ma.array([l, 2, 3], mask=[0, 1, 0])
>>> x[1] is ma.masked

True

>>> x[-1] = ma.masked

>>> x

masked_array (data 1 -- --1,
mask [False True True]l,
fill_value = 999999)

numpy .ma .nomask
Value indicating that a masked array has no invalid entry. nomask is used internally to speed up computations
when the mask is not needed.

numpy .ma .masked_print_options
String used in lieu of missing data when a masked array is printed. By default, this stringis '—-".

1.7.5 The MaskedArray class

class numpy.ma.MaskedArray
A subclass of ndarray designed to manipulate numerical arrays with missing data.
An instance of MaskedArray can be thought as the combination of several elements:

e The data, as aregular numpy . ndarray of any shape or datatype (the data).

1.7. Masked arrays 233

NumPy Reference, Release 1.17.0

* A boolean ma sk with the same shape as the data, where a True value indicates that the corresponding element
of the data is invalid. The special value noma sk is also acceptable for arrays without named fields, and indicates
that no data is invalid.

e A fill_value, a value that may be used to replace the invalid entries in order to return a standard numpy .
ndarray.

Attributes and properties of masked arrays

See also:
Array Attributes

MaskedArray.data
Returns the underlying data, as a view of the masked array.

If the underlying data is a subclass of numpy . ndarray, it is returned as such.

>>> x = np.ma.array (np.matrix([[1, 2], [3, 41]), mask=[[0, 11, [1, O011)
>>> x.data
matrix ([[1, 27,

[3, 411)

The type of the data can be accessed through the baseclass attribute.

MaskedArray.mask
Current mask.

MaskedArray.recordmask
Get or set the mask of the array if it has no named fields. For structured arrays, returns a ndarray of booleans
where entries are True if all the fields are masked, False otherwise:

>>> x = np.ma.array ([(1, 1), (2, 2), (3, 3), (4, 4), (5, 51,
mask=[(0, 0O0), (1, O), (1, 1), (O, 1), (O, 0)1,

R dtype=[('a', int), ('b', int)])

>>> x.recordmask

array ([False, False, True, False, Falsel])

MaskedArray.fill_wvalue
The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complexl128]:
np.ma.array ([0, 1], dtype=dt).get_fill wvalue()

999999

999999

1e+20
(1e+20+07)

>>> x = np.ma.array ([0, 1.1, fill_value=-np.inf)
>>> x.fill_value

—-inf

>>> x.fill_value = np.pi

>>> x.fill_value

3.1415926535897931 # may vary

234 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Reset to default:

>>> x.fill_value = None
>>> x.fi1ll_value
le+20

MaskedArray.baseclass
Class of the underlying data (read-only).

MaskedArray.sharedmask
Share status of the mask (read-only).

MaskedArray.hardmask
Hardness of the mask

As MaskedArray is a subclass of ndarray, a masked array also inherits all the attributes and properties of a
ndarray instance.

MaskedArray.base Base object if memory is from some other object.

MaskedArray.ctypes An object to simplify the interaction of the array with
the ctypes module.

MaskedArray.dtype Data-type of the array’s elements.

MaskedArray.flags Information about the memory layout of the array.

MaskedArray.itemsize Length of one array element in bytes.

MaskedArray.nbytes Total bytes consumed by the elements of the array.

MaskedArray.ndim Number of array dimensions.

MaskedArray.shape Tuple of array dimensions.

MaskedArray.size Number of elements in the array.

MaskedArray.strides Tuple of bytes to step in each dimension when travers-
ing an array.

MaskedArray.imag The imaginary part of the masked array.

MaskedArray.real The real part of the masked array.

MaskedArray.flat Return a flat iterator, or set a flattened version of self to
value.

MaskedArray.__array_priority

attribute

MaskedArray.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

attribute

1.7. Masked arrays 235

NumPy Reference, Release 1.17.0

MaskedArray.ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None
Returns
¢ [Python object] Possessing attributes data, shape, strides, etc.
See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted
undocumented public attributes, as well as documented private attributes):

_ctypes.data
A pointer to the memory area of the array as a Python integer. This memory area may contain data that
is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags
and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid
trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as
self._array_interface_['data'][O0].

Note that unlike data_as, a reference will not be kept to the array: code like ctypes.c_void_p((a
+ Db) .ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + Db) .
ctypes.data_as (ctypes.c_void_p)

_ctypes.shape
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding
to dtype ('p') on this platform. This base-type could be ctypes.c_int, ctypes.c_long, or
ctypes.c_longlong depending on the platform. The c_intp type is defined accordingly in numpy .
ctypeslib. The ctypes array contains the shape of the underlying array.

_ctypes.strides
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape
attribute. This ctypes array contains the strides information from the underlying array. This strides in-
formation is important for showing how many bytes must be jumped to get to the next element in the
array.

_ctypes.data_as (self, obj)
Return the data pointer cast to a particular c-types object. For example, calling self.
_as_parameter_ is equivalent to self.data_as (ctypes.c_void_p). Perhaps you want
to use the data as a pointer to a ctypes array of floating-point data: self.data_as (ctypes.
POINTER (ctypes.c_double)).

The returned pointer will keep a reference to the array.

_ctypes.shape_as (self, obj)
Return the shape tuple as an array of some other c-types type. For example: self.
shape_as (ctypes.c_short).

236

Chapter 1. Array objects

https://docs.python.org/dev/library/ctypes.html#ctypes.c_int
https://docs.python.org/dev/library/ctypes.html#ctypes.c_long
https://docs.python.org/dev/library/ctypes.html#ctypes.c_longlong

NumPy Reference, Release 1.17.0

_ctypes.strides_as (self, obj)
Return the strides tuple as an array of some other c-types type. For example: self.
strides_as (ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the
as_parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array ([[0, 17,
(2, 311
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as (ctypes.POINTER(ctypes.c_long)) .contents
c_long (0)
>>> x.ctypes.data_as (ctypes.POINTER (ctypes.c_longlong)) .contents
c_longlong (4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01lFFD580>
>>> x.ctypes.shape_as (ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01lFCE620>
>>> x.ctypes.strides_as (ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

attribute

MaskedArray.dtype
Data-type of the array’s elements.

Parameters
None
Returns
d [numpy dtype object]
See also:

numpy.dtype

Examples

>>> X

array ([[0, 11,
(2, 311)

>>> x.dtype

dtype ('int32")

>>> type (x.dtype)
<type 'numpy.dtype'>

1.7. Masked arrays 237

NumPy Reference, Release 1.17.0

attribute

MaskedArray.flags

Information about the memory layout of the array.

Notes

The f1ags object can be accessed dictionary-like (asina.flags ['"WRITEABLE']), or by using lowercased
attribute names (asin a. flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed by
the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:
o UPDATEIFCOPY can only be set False.
* WRITEBACKIFCOPY can only be set False.
e ALIGNED can only be set True if the data is truly aligned.

* WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the memory
exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional arrays,
but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides [dim] may be arbitrary if arr.
shape [dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1]
== self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

Attributes
C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.
F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.
OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data, making
it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at creation time,
but a view of a writeable array may be subsequently locked while the base array remains
writeable. (The opposite is not true, in that a view of a locked array may not be made
writeable. However, currently, locking a base object does not lock any views that already
reference it, so under that circumstance it is possible to alter the contents of a locked array
via a previously created writeable view onto it.) Attempting to change a non-writeable array
raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will
be updated with the contents of this array.

UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of some
other array. When this array is deallocated, the base array will be updated with the contents
of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.
FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

238

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_ CONTIGUOUS and not C_CONTIGUOUS.
attribute

MaskedArray.itemsize
Length of one array element in bytes.

Examples
>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complexl128)
>>> x.itemsize
16
attribute

MaskedArray.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complexl28)
>>> x.nbytes

480

>>> np.prod(x.shape) *» x.itemsize

480

attribute

MaskedArray.ndim
Number of array dimensions.

Examples
>>> x = np.array([1l, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3
attribute

1.7. Masked arrays 239

NumPy Reference, Release 1.17.0

MaskedArray.shape

Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape the
array in-place by assigning a tuple of array dimensions to it. As with numpy . reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of the array and the remaining dimensions.
Reshaping an array in-place will fail if a copy is required.

See also:

numpy . reshape similar function

ndarray.reshape similar method

Examples

>>> x = np.array([1l, 2, 3, 41)
>>> x.shape

(4,)

>>> y = np.zeros((2, 3, 4))
>>> y.shape

(2, 3, 4)

>>> y.shape = (3, 8)

>>> y

array([[0., 0., 0., 0., 0., 0., 0., 0.1,
[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.11)

>>> y.shape = (3, 6)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2] .shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: incompatible shape for a non-contiguous array

attribute

MaskedArray.size

Number of elements in the array.
Equal to np.prod (a.shape), i.e., the product of the array’s dimensions.
Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of
obtaining the same value (like the suggested np.prod (a.shape), which returns an instance of np. int_),
and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complexl128)
>>> x.size
30

(continues on next page)

240

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> np.prod(x.shape)
30

attribute

MaskedArray.strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (1 [0], i[1], ..., i[n]) inan array ais:

offset = sum(np.array (i) = a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See also:
numpy.lib.stride tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 41,
[5, 6, 7, 8, 911, dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The
strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain
axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get
to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape (np.arange (2+«3%4), (2,3,4))
>>> y
o, 1, 2, 3
4, 5, 6, 7
8, 9, 10, 11
[[12, 13, 14, 15
16, 17, 18, 1971,
[20, 21, 22, 23111)
>>> y.strides

(48, 16, 4)
>>> y[1,1,1]
17

>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape (np.arange (5«6+7%x8), (5,6,7,8)) .transpose(2,3,1,0)
>>> x.strides

(32, 4, 224, 1344)

>>> i = np.array([3,5,2,2])

>>> offset = sum(i * x.strides)

>>> x[3,5,2,2]

(continues on next page)

1.7. Masked arrays 241

NumPy Reference, Release 1.17.0

(continued from previous page)

813
>>> offset / x.itemsize
813

attribute

MaskedArray.imag
The imaginary part of the masked array.

This property is a view on the imaginary part of this MaskedArray.
See also:

real

Examples

>>> x = np.ma.array([1+1.3, -23, 3.45+1.63j], mask=[False, True, False])
>>> x.imag
masked_array (data=[1.0, --, 1.6],
mask=[False, True, False],
fill value=le+20)

attribute

MaskedArray.real
The real part of the masked array.

This property is a view on the real part of this MaskedArray.
See also:

imag

Examples

>>> x = np.ma.array([1+1.3, -23, 3.45+1.63j], mask=[False, True, False])
>>> x.real
masked_array (data=[1.0, --, 3.45],
mask=[False, True, False],
fill value=1e+20)

attribute

MaskedArray.£flat
Return a flat iterator, or set a flattened version of self to value.

attribute

MaskedArray.__array priority = 15

1.7.6 MaskedArray methods

See also:

Array methods

242 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Conversion

MaskedArray._ float__ (self)

Convert to float.

MaskedArray.___int__ (self)

Convert to int.

MaskedArray._ long _ (self)

Convert to long.

MaskedArray.view([dtype, type])

New view of array with the same data.

MaskedArray.astype(dtypel, order, casting, ...])

Copy of the array, cast to a specified type.

MaskedArray.byteswap([inplace])

Swap the bytes of the array elements

MaskedArray.compressed(self)

Return all the non-masked data as a 1-D array.

MaskedArray.filled(selff, fill_value])

Return a copy of self, with masked values filled with a
given value.

MaskedArray.tofile(self, fid[, sep, format])

Save a masked array to a file in binary format.

MaskedArray.toflex(self)

Transforms a masked array into a flexible-type array.

MaskedArray.tolist(self], fill_value])

Return the data portion of the masked array as a hierar-
chical Python list.

MaskedArray.torecords(self)

Transforms a masked array into a flexible-type array.

MaskedArray.tostring(self], fill_value, order])

This function is a compatibility alias for tobytes.

MaskedArray.tobytes(self], fill_value, order])

Return the array data as a string containing the raw bytes
in the array.

method

MaskedArray.__ float__ (self)
Convert to float.

method

MaskedArray.__int__ (self)
Convert to int.

method

MaskedArray.__long__ (self)
Convert to long.

method

MaskedArray.view (dfype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view, e.g.,
float32 or int16. The default, None, results in the view having the same data-type as a. This
argument can also be specified as an ndarray sub-class, which then specifies the type of the
returned object (this is equivalent to setting the t ype parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory with
a different data-type. This can cause a reinterpretation of the bytes of memory.

1.7. Masked arrays

243

NumPy Reference, Release 1.17.0

a.view(ndarray_subclass) or a.view (type=ndarray_subclass) just returns an instance of
ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be
predicted just from the superficial appearance of a (shown by print (a)). It also depends on exactly how a
is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or transpose,
etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type (y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array ([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])

>>> xv = x.view (dtype=np.int8) .reshape(-1,2)
>>> xv
array ([[1, 2
[3, 4
(

]I

11, dtype=int8)
>>> xv.mean (0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> X
array ([(1, 20), (3, 4)], dtype=[('a', 'il"), ('b', "i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3]1,[4,5,6]], dtype=np.intl6)
>>> y = x[:, 0:2]
>>> y

(continues on next page)

244

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

array ([[1, 21,
[4, 5]], dtype=intl6)
>>> y.view(dtype=[('width', np.intl6), ('length', np.intl6)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the array must be C-

—contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl6), ('length', np.intl6)])
array ([[(1, 2)1,
[(4, 5)]1]1, dtype=[('width', '<i2'), ('length', '<i2")])
method

MaskedArray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’ }, optional] Controls the memory layout order of the result. ‘C’ means
C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran contigu-
ous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements appear in
memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise the
returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is set to
false, and the dt ype, order, and subok requirements are satisfied, the input array is returned
instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array are
satisfied (see description for copy input parameter), arr_t is a new array of the same shape
as the input array, with dtype, order given by dt ype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype (t).

1.7. Masked arrays

NumPy Reference, Release 1.17.0

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for “unsafe”
casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the string
dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1l, 2, 2.5])
>>> x
array ([1. , 2. 2.51)

>>> x.astype (int)
array ([1, 2, 21)

method

MaskedArray .byteswap (inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place.

Parameters
inplace [bool, optional] If True, swap bytes in-place, default is False.
Returns

out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1l, 256, 8755], dtype=np.intl6)
>>> list (map (hex, A))

['0x1', 'O0x100', '0x2233']

>>> A.byteswap (inplace=True)

array ([256, 1, 13090], dtype=intl6)

>>> list (map (hex, A))

['0x100', 'Ox1l', '0x3322"']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap ()
Traceback (most recent call last):

UnicodeDecodeError:

method

MaskedArray.compressed (self)

Return all the non-masked data as a 1-D array.

Returns

246

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

data [ndarray] A new ndarray holding the non-masked data is returned.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array(np.arange (5), mask=[0]*2 + [1]%3)
>>> x.compressed ()

array ([0, 17])

>>> type (x.compressed())

<class 'numpy.ndarray'>

method

MaskedArray. filled (self, fill_value=None)
Return a copy of self, with masked values filled with a given value. However, if there are no masked values to
fill, self will be returned instead as an ndarray.

Parameters

fill_value [scalar, optional] The value to use for invalid entries (None by default). If None, the
£ill_value attribute of the array is used instead.

Returns

filled_array [ndarray] A copy of self with invalid entries replaced by fill_value (be it the
function argument or the attribute of self), or self itself as an ndarray if there are no
invalid entries to be replaced.

Notes

The result is not a MaskedArray!

Examples

>>> x = np.ma.array([1,2,3,4,5], mask=[0,0,1,0,1], fill value=-999)
>>> x.filled()

array ([1, 2, =999, 4, -9997)

>>> type(x.filled())

<class 'numpy.ndarray'>

Subclassing is preserved. This means that if, e.g., the data part of the masked array is a recarray, filled
returns a recarray:

>>> x = np.array ([(-1, 2), (=3, 4)], dtype='18,18") .view (np.recarray)
>>> m = np.ma.array(x, mask=[(True, False), (False, True)])
>>> m.filled()
rec.array ([(999999, 2), (-3, 999999)1],
dtype=[('f0', '<i8"), ('f1', '<ig8")])

method

1.7. Masked arrays 247

NumPy Reference, Release 1.17.0

MaskedArray.tofile (self, fid, sep="", format="%s’)
Save a masked array to a file in binary format.

Warning: This function is not implemented yet.

Raises

NotImplementedError When tofile is called.

method

MaskedArray.toflex (self)
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:
e the _data field stores the _data part of the array.

* the _mask field stores the _mask part of the array.

Parameters
None

Returns

record [ndarray] A new flexible-type ndarray with two fields: the first element containing a
value, the second element containing the corresponding mask boolean. The returned record

shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (f111_value,

...) will be lost.

Examples

>>> x = np.ma.array([[1,2,31,[4,5,61,[7,8,91]1, mask=[0]
>>> x

masked_array (

data=[[1, —-—-, 3],
[——» 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, Truel],
[False, True, Falsel],

fill_value=999999)
>>> x.toflex ()

+ [1,0]1+4)

array ([[(1, False), (2, True), (3, False)],
[(4, True), (5, False), (6, True)],
[(7, False), (8, True), (9, False)]ll],
dtype=[('_data', '<i8'"), ('_mask', '?')1)
method

248

Chapter 1

. Array objects

NumPy Reference, Release 1.17.0

MaskedArray.tolist (self, fill_value=None)
Return the data portion of the masked array as a hierarchical Python list.

Data items are converted to the nearest compatible Python type. Masked values are converted to fi11_value.
If f111 value is None, the corresponding entries in the output list will be None.

Parameters

fill_value [scalar, optional] The value to use for invalid entries. Default is None.
Returns

result [list] The Python list representation of the masked array.

Examples

>>> x = np.ma.array([[1,2,3], [4,5,6], [7,8,9]], mask=[0] + [1,0]x4)
>>> x.tolist ()

[[1, None, 3], [None, 5, Nonel], [7, None, 9]]

>>> x.tolist (-999)

[[1, =999, 31, [-999, 5, -999], [7, —-999, 9]]

method

MaskedArray.torecords (self)
Transforms a masked array into a flexible-type array.

The flexible type array that is returned will have two fields:
* the _data field stores the _data part of the array.

 the _mask field stores the _mask part of the array.

Parameters
None
Returns

record [ndarray] A new flexible-type ndarray with two fields: the first element containing a
value, the second element containing the corresponding mask boolean. The returned record
shape matches self.shape.

Notes

A side-effect of transforming a masked array into a flexible ndarray is that meta information (fi11_value,
...) will be lost.

Examples

>>> x = np.ma.array([[1,2,3]1,[4,5,6]1,[7,8,91], mask=[0] + [1,0]%4)
>>> x
masked_array (

data=[[1, --, 31,
[(—/, 5, ——1,
(7, ——,» 911,
[

mask=[[False, True, False],

(continues on next page)

1.7. Masked arrays 249

NumPy Reference, Release 1.17.0

(continued from previous page)

[True, False, True],
[False, True, Falsel],
fill_value=999999)
>>> x.toflex ()
array ([[(1, False), (2, True), (3, False)
[(4, True), (5, False), (6, True)
[(7, False), (8, True), (9, False) ,
dtype=[('_data', '<i8'), ('_mask', '?")])

method

MaskedArray.tostring (self, fill_value=None, order="C")
This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

method

MaskedArray.tobytes (self, fill_value=None, order="C")
Return the array data as a string containing the raw bytes in the array.

The array is filled with a fill value before the string conversion.
New in version 1.9.0.
Parameters

fill_value [scalar, optional] Value used to fill in the masked values. Default is None, in which
case MaskedArray.fill_value is used.

order [{‘C’)F’;A’}, optional] Order of the data item in the copy. Default is ‘C’.
e ‘C’ — C order (row major).
e ‘F’ — Fortran order (column major).
* ‘A’ — Any, current order of array.
* None — Same as ‘A’.
See also:

ndarray.tobytes, tolist, tofile

Notes

As for ndarray.tobytes, information about the shape, dtype, etc., but also about £i11_value, will be lost.

Examples

>>> x = np.ma.array(np.array ([[1l, 2], [3, 4]1]), mask=[[0, 11, [1, O11])
>>> x.tobytes ()
b'"\x01\x00\x00\x00\x00\x00\x00\x00?B\x0£\x00\x00\x00\x00\x007?
—B\x0f\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00"

Shape manipulation

For reshape, resize, and transpose, the single tuple argument may be replaced with n integers which will be interpreted
as an n-tuple.

250 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

MaskedArray. flatten([order]) Return a copy of the array collapsed into one dimension.

MaskedArray.ravel(self], order]) Returns a 1D version of self, as a view.

MaskedArray.reshape(self, *s, **kwargs) Give a new shape to the array without changing its data.

MaskedArray. resize(self, newshapel[, ...])

MaskedArray.squeeze([axis]) Remove single-dimensional entries from the shape of a.

MaskedArray.swapaxes(axisl, axis2) Return a view of the array with axis/ and axis2 inter-
changed.

MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

MaskedArray.T

method

MaskedArray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means to
flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,4]1])
>>> a.flatten ()
array ([1, 2, 3,
>>> a.flatten('F
array([1, 3, 2, 4

41)

o~

)

method

MaskedArray.ravel (self, order="C’)
Returns a 1D version of self, as a view.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’
means to index the elements in C-like order, with the last axis index changing fastest, back
to the first axis index changing slowest. ‘F’ means to index the elements in Fortran-like
index order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array,
and only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read
the elements in the order they occur in memory, except for reversing the data when strides
are negative. By default, ‘C’ index order is used.

Returns

1.7. Masked arrays 251

NumPy Reference, Release 1.17.0

MaskedArray Output view is of shape (self.size,) (or (np.ma.product (self.
shape),)).

Examples

>>> x = np.ma.array([[1,2,31,[4,5,6],17,8,91]1, mask=[0] + [1,0]%4)
>>> x
masked_array (
data=[[1, --, 31,
[——» 5, —1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, Truel,
[False, True, Falsel],
fill_value=999999)
>>> x.ravel ()
masked_array (data=[(1, --, 3, ——, 5, ——, 7, ——, 91,
mask=[False, True, False, True, False, True, False, True,
False],
fill_value=999999)

method

MaskedArray.reshape (self, *s, **kwargs)
Give a new shape to the array without changing its data.

Returns a masked array containing the same data, but with a new shape. The result is a view on the original
arrays; if this is not possible, a ValueError is raised.

Parameters

shape [int or tuple of ints] The new shape should be compatible with the original shape. If an
integer is supplied, then the result will be a 1-D array of that length.

order [{‘C’, ‘F’}, optional] Determines whether the array data should be viewed as in C (row-
major) or FORTRAN (column-major) order.

Returns
reshaped_array [array] A new view on the array.

See also:

reshape Equivalent function in the masked array module.
numpy .ndarray. reshape Equivalent method on ndarray object.

numpy . reshape Equivalent function in the NumPy module.

Notes

The reshaping operation cannot guarantee that a copy will not be made, to modify the shape in place, use
a.shape = s

252 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples
>>> x = np.ma.array([[1,2],[3,4]], mask=[1,0,0,1])
>>> x

masked_array (

data=[[--, 2],
[31 __]]r
mask=[[True, False]

[False, Truel],
fill_value=999999)
>>> x = x.reshape((4,1))
>>> x
masked_array (

data=[[--1,
(21,
(31,
[—=11,
mask=[[True],
[False],
[False],
[Truell,

fill value=999999)

method

MaskedArray.resize (self, newshape, refcheck=True, order=False)

Warning: This method does nothing, except raise a ValueError exception. A masked array does not own
its data and therefore cannot safely be resized in place. Use the numpy . ma. resize function instead.

This method is difficult to implement safely and may be deprecated in future releases of NumPy.

method

MaskedArray.squeeze (axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.

See also:
numpy . squeeze equivalent function

method

MaskedArray.swapaxes (axisl, axis2)

Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.

See also:
numpy . swapaxes equivalent function

method

1.7. Masked arrays

253

NumPy Reference, Release 1.17.0

MaskedArray.transpose (*axes)

Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array

into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does

af:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given,

their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape =

(101, 4111, ... i[n-2], i[n-1]),thena.transpose().shape = (i[n-1], i[n-21],
i[1], if[01).

Parameters
axes [None, tuple of ints, or n ints]
» None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.franspose()’s
Jj-th axis.

* pints: same as an n-tuple of the same ints (this form is intended simply as a “convenience”
alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

ndarray.reshape Give a new shape to an array without changing its data.

Examples
>>> a = np.array ([[1, 2], [3, 4]1])
>>> a
array ([[1, 21,
[3, 411)
>>> a.transpose ()
array ([[1, 3],
[2, 411)
>>> a.transpose((1, 0))
array ([[1, 3],
[2, 411)
>>> a.transpose(l, 0)
array ([[1, 3],
[2, 411)
attribute

MaskedArray.T

Item selection and manipulation

For array methods that take an axis keyword, it defaults to None. If axis is None, then the array is treated as a 1-D
array. Any other value for axis represents the dimension along which the operation should proceed.

254

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

MaskedArray.argmax(self[, axis, fill_value, out]) Returns array of indices of the maximum values along
the given axis.

MaskedArray.argmin(self], axis, fill_value, out]) Return array of indices to the minimum values along the
given axis.

MaskedArray.argsort(self], axis, kind, ...]) Return an ndarray of indices that sort the array along the
specified axis.

MaskedArray.choose(choices[, out, mode]) Use an index array to construct a new array from a set
of choices.

MaskedArray.compress(self, condition], ...]) Return a where condition is True.

MaskedArray.diagonal([offset, axisl, axis2]) Return specified diagonals.

MaskedArray.fill(value) Fill the array with a scalar value.

MaskedArray . item(*args) Copy an element of an array to a standard Python scalar
and return it.

MaskedArray.nonzero(self) Return the indices of unmasked elements that are not
Zero.

MaskedArray.put(self, indices, values[, mode]) Set storage-indexed locations to corresponding values.

MaskedArray. repeat(repeats[, axis]) Repeat elements of an array.

MaskedArray.searchsorted(v], side, sorter]) Find indices where elements of v should be inserted in
a to maintain order.

MaskedArray.sort(self], axis, kind, order, ...]) Sort the array, in-place

MaskedArray.take(self, indices[, axis, out, ...])

method

MaskedArray.argmax (self, axis=None, fill_value=None, out=None)
Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had
the value fill_value.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified

axis

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns

index_array [{integer_array}]

Examples

>>> a =

5

array ([1,

array ([2,

np.arange (6) .reshape (2, 3)
>>> a.argmax ()

>>> a.argmax (0)

1, 11)

>>> a.argmax (1)

21)

method

1.7. Masked arrays

255

NumPy Reference, Release 1.17.0

MaskedArray.argmin (self, axis=None, fill_value=None, out=None)
Return array of indices to the minimum values along the given axis.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns

ndarray or scalar If multi-dimension input, returns a new ndarray of indices to the minimum
values along the given axis. Otherwise, returns a scalar of index to the minimum values
along the given axis.

Examples

>>> x = np.ma.array (np.arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)

>>> x

masked_array (
data=[[--, —-1,
(2, 311,
mask=[[True, True],
[False, Falsel]ll,
fill _value=999999)
>>> x.argmin (axis=0, fill_value=-1)
array ([0, 0])
>>> x.argmin (axis=0, fill_value=9)
array ([1, 11])

method

MaskedArray.argsort (self, axis=<no value>, kind=None, order=None, endwith=True,

fill_value=None)
Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to

fill value.
Parameters
axis [int, optional] Axis along which to sort. If None, the default, the flattened array is used.

Changed in version 1.13.0: Previously, the default was documented to be -1, but that was in
error. At some future date, the default will change to -1, as originally intended. Until then,
the axis should be given explicitly when arr.ndim > 1, to avoid a FutureWarning.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.

order [list, optional] When a is an array with fields defined, this argument specifies which fields
to compare first, second, etc. Not all fields need be specified.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
at the same extremes of the datatype, the ordering of these values and the masked values is
undefined.

256 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

fill_value [{var}, optional] Value used internally for the masked values. If £i11_value is
not None, it supersedes endwith.

Returns

index_array [ndarray, int] Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

See also:

MaskedArray.sort Describes sorting algorithms used.
lexsort Indirect stable sort with multiple keys.

ndarray.sort Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array (data=[3, 2, —--1,
mask=[False, False, True],
fill_value=999999)
>>> a.argsort ()
array([1l, 0, 21)

method

MaskedArray .choose (choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.

Refer to numpy . choose for full documentation.

See also:
numpy . choose equivalent function

method

MaskedArray .compress (self, condition, axis=None, out=None)
Return a where condition is True.

If condition is a MaskedArray, missing values are considered as False.
Parameters

condition [var] Boolean 1-d array selecting which entries to return. If len(condition) is less
than the size of a along the axis, then output is truncated to length of condition array.

axis [{None, int}, optional] Axis along which the operation must be performed.

out [{None, ndarray}, optional] Alternative output array in which to place the result. It must
have the same shape as the expected output but the type will be cast if necessary.

Returns

result [MaskedArray] A MaskedArray object.

1.7. Masked arrays 257

NumPy Reference, Release 1.17.0

Notes

Please note the difference with compressed ! The output of compress has a mask, the output of

compressed does not.

Examples

>>> x = np.ma.array([[1,2,31,[4,5,61,17,8,911,
>>> x
masked_array (

data=[[1, --, 31,

[__r 5! __JI

[71 — 9]}!
mask=[[False, True, Falsel],

[True, False, True]

14
[False, True, Falsel],
fill_value=999999)
>>> x.compress ([1, 0, 11)
masked_array (data=[1, 3],
mask=[False, False],
fill _value=999999)

mask=[0]

+

[1,0]+4)

>>> x.compress([1l, 0, 1], axis=1)
masked_array (
data=[[1, 31,
[——, —1,
(7, 911,
mask=[[False, False],
[True, True],
[False, False]ll,
fill value=999999)

method

MaskedArray.diagonal (offset=0, axisl=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous

NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy . diagonal for full documentation.

See also:
numpy .diagonal equivalent function

method

MaskedArray.£ill (value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

258

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> a = np.array([1l, 21)
>>> a.f111(0)

>>> a

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> g

array ([1., 1.1)

method

MaskedArray.item (*args)

Copy an element of an array to a standard Python scalar and return it.
Parameters
*args [Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is no
available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless
fields are defined, in which case a tuple is returned.

itemis very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This can
be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using
Python’s optimized math.

Examples

>>> np.random.seed (123)

>>> x = np.random.randint (9, size=(3, 3))
>>> x
array([[2, 2, 6],
[1, 3, 6],
(1, 0, 111)
>>> x.item(3)
1
>>> x.item(7)
0

>>> x.item((0, 1))

(continues on next page)

1.7. Masked arrays 259

NumPy Reference, Release 1.17.0

(continued from previous page)

2
>>> x.item((2, 2))
1

method

MaskedArray.nonzero (self)
Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

’a[a.nonzero()]

To group the indices by element, rather than dimension, use instead:

’np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.

Parameters
None

Returns

tuple_of_arrays [tuple] Indices of elements that are non-zero.

See also:

numpy . nonzero Function operating on ndarrays.

flatnonzero Return indices that are non-zero in the flattened version of the input array.

ndarray.nonzero Equivalent ndarray method.

count_nonzero Counts the number of non-zero elements in the input array.

Examples

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array (
data=[[1., 0., O
[0., 1., 0.]
[0., 0., 1
mask=False,
fill_value=1le+20)
>>> x.nonzero ()
(array ([0, 1, 2]), array ([0,

Masked elements are ignored.

>>> x[1, 1] = ma.masked

>>> x

masked_array (
data=[[1.0, 0.0, 0.0],

(continues on next page)

260

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

0.0, -——, 0.071,

0.0, 0.0, 1.011,

False, False, False],

False, True, False],

[False, False, False]l],

fill value=le+20)

>>> x.nonzero ()

(array ([0, 21), array ([0, 21))

mask=[

[
(
[
[

Indices can also be grouped by element.

>>> np.transpose (x.nonzero())
array ([[0, 0],
(2, 211

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array ([[1,2,31,104,5,6]1,17,8,911)
>>> a > 3
masked_array (
data=[[False, False, False],
[True, True, Truel],
[True, True, Truell,
mask=False,
fill value=True)
>>> ma.nonzero(a > 3)
(array (12, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero ()
(array([(1, 1, 1, 2, 2, 2]), array([O, 1, 2, 0, 1, 2]))

method

MaskedArray.put (self, indices, values, mode="raise’)
Set storage-indexed locations to corresponding values.

Sets self._data.flat[n] = values[n] for each n in indices. If values is shorter than indices then it will repeat. If
values has some masked values, the initial mask is updated in consequence, else the corresponding values are
unmasked.

Parameters
indices [1-D array_like] Target indices, interpreted as integers.
values [array_like] Values to place in self._data copy at target indices.

mode [{‘raise’, ‘wrap’, ‘clip’}, optional] Specifies how out-of-bounds indices will behave.
‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range.

Notes

values can be a scalar or length 1 array.

1.7. Masked arrays 261

NumPy Reference, Release 1.17.0

Examples

>>> x
masked_array (
data=[[1, -—-, 31,
[——» 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, ,
[False, True, Falsel],
fill_value=999999)
>>> x.put([0,4,8],110,20,3017)
>>> x

True]

masked_array (
data=[[10, --, 31,
[-——, 20, —-1,
(7, ——, 3011,
mask=[[False, True, False],
[True, False, Truel],
[False, True, Falsel],
fill_value=999999)

>>> x = np.ma.array ([[1,2,3],[4,5,61,17,8,911,

mask=[0]

+

[1,01+4)

>>> x.put (4,999)
>>> x
masked_array (
data=[[10, -—-, 31,
[-—, 999, —-—-1,
(7, ——, 3011,
mask=[[False, True, False],
[True, False, True]
[False, True, False]
fill_value=999999)

o~

’

method

MaskedArray.repeat (repeats, axis=None)
Repeat elements of an array.

Refer to numpy . repeat for full documentation.

See also:
numpy . repeat equivalent function

method

MaskedArray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

See also:
numpy . searchsorted equivalent function

method

262

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

MaskedArray.sort (self, axis=-1, kind=None, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters
a [array_like] Array to be sorted.

axis [int, optional] Axis along which to sort. If None, the array is flattened before sorting. The
default is -1, which sorts along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.

order [list, optional] When a is a structured array, this argument specifies which fields to com-
pare first, second, and so on. This list does not need to include all of the fields.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
sorting at the same extremes of the datatype, the ordering of these values and the masked
values is undefined.

fill_value [{var}, optional] Value used internally for the masked values. If £i11_value is
not None, it supersedes endwith.

Returns
sorted_array [ndarray] Array of the same type and shape as a.

See also:

ndarray.sort Method to sort an array in-place.
argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.
searchsorted Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # Default
>>> a.sort ()
>>> a
masked_array (data=[1, 3, 5, -——, ——1,
mask=[False, False, False, True, Truel,
fill_value=999999)

>>> a = np.ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # Put missing values 1in the front
>>> a.sort (endwith=False)
>>> a
masked_array (data=[--, -—-, 1, 3, 5],
mask=[True, True, False, False, False],
fill_value=999999)

1.7. Masked arrays 263

NumPy Reference, Release 1.17.0

>>> a

np.ma.array([(1, 2, 5, 4, 3],mask=[0, 1, 0, 1, 0])
>>> # fill value takes over endwith
>>> a.sort (endwith=False, fill_value=3)

>>> a
masked_array (data=[1, --, —--, 3, 5],
mask=[False, True, True, False, False],
fill value=999999)
method

MaskedArray.take (self, indices, axis=None, out=None, mode="raise’)

Pickling and copy

MaskedArray.copy([order]) Return a copy of the array.

MaskedArray . dump(file) Dump a pickle of the array to the specified file.

MaskedArray.dumps() Returns the pickle of the array as a string.
method

MaskedArray.copy (order="C’)
Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of a as closely as possible. (Note that this function and numpy. copy are
very similar, but have different default values for their order= arguments.)

See also:

numpy.copy, numpy.copyto

Examples

’>>> x = np.array([[1,2,3],[4,5,6]], order='F")

>>> y = x.copy ()

’>>> x.£111(0)

>>> x
array ([[0, 0, 0],
[0, 0, 01D

>>> Y
array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags['C_CONTIGUOUS']
True

method

264 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

MaskedArray .dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.
Changed in version 1.17.0: pathlib.Path objects are now accepted.
method

MaskedArray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters
None
Calculations

MaskedArray.all(self[, axis, out, keepdims]) Returns True if all elements evaluate to True.

MaskedArray.anom(self], axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

MaskedArray.any(self[, axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min,
max].

MaskedArray.con j() Complex-conjugate all elements.

MaskedArray.conjugate() Return the complex conjugate, element-wise.

MaskedArray.cumprod(self[, axis, dtype, out]) Return the cumulative product of the array elements
over the given axis.

MaskedArray . cumsum(self], axis, dtype, out]) Return the cumulative sum of the array elements over
the given axis.

MaskedArray.max(self[, axis, out, ...]) Return the maximum along a given axis.

MaskedArray.mean(self[, axis, dtype, out, ...]) Returns the average of the array elements along given
axis.

MaskedArray.min(self], axis, out, ...]) Return the minimum along a given axis.

MaskedArray.prod(self], axis, dtype, out, ...]) Return the product of the array elements over the given
axis.

MaskedArray.product(self], axis, dtype, ...]) Return the product of the array elements over the given
axis.

MaskedArray.ptp(self], axis, out, ...]) Return (maximum - minimum) along the given dimen-
sion (i.e.

MaskedArray. round(self[, decimals, out]) Return each element rounded to the given number of
decimals.

MaskedArray.std(self], axis, dtype, out, ...]) Returns the standard deviation of the array elements
along given axis.

MaskedArray . sum(self], axis, dtype, out, ...]) Return the sum of the array elements over the given axis.

MaskedArray.trace([offset, axisl, axis2, ...]) Return the sum along diagonals of the array.

MaskedArray . var(self], axis, dtype, out, ...]) Compute the variance along the specified axis.

method

MaskedArray.all (self, axis=None, out=None, keepdims=<no value>)
Returns True if all elements evaluate to True.

The output array is masked where all the values along the given axis are masked: if the output would have been

1.7. Masked arrays 265

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

a scalar and that all the values are masked, then the output is masked.
Refer to numpy . a1l for full documentation.

See also:

ndarray.all corresponding function for ndarrays

numpy.all equivalent function

Examples
>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True
method

MaskedArray .anom (self, axis=None, dtype=None)
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters

axis [int, optional] Axis over which the anomalies are taken. The default is to use the mean of
the flattened array as reference.

dtype [dtype, optional]

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

See also:

mean Compute the mean of the array.

Examples

>>> a = np.ma.array([1l,2,3])
>>> a.anomf()
masked_array (data=[-1., 0., 1.1,
mask=False,
fill_value=1le+20)

method

MaskedArray .any (self, axis=None, out=None, keepdims=<no value>)
Returns True if any of the elements of a evaluate to True.

Masked values are considered as False during computation.
Refer to numpy . any for full documentation.

See also:

ndarray.any corresponding function for ndarrays

266 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

numpy.any equivalent function

method

MaskedArray.clip (min=None, max=None, out=None, **kwargs)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy . c¢11p for full documentation.

See also:
numpy.clip equivalent function

method

MaskedArray.conj ()
Complex-conjugate all elements.

Refer to numpy . con jugat e for full documentation.

See also:
numpy . conjugate equivalent function

method

MaskedArray.conjugate ()
Return the complex conjugate, element-wise.

Refer to numpy . con jugat e for full documentation.

See also:
numpy . conjugate equivalent function

method

MaskedArray .cumprod (self, axis=None, dtype=None, out=None)
Return the cumulative product of the array elements over the given axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Refer to numpy . cumprod for full documentation.

See also:

ndarray.cumprod corresponding function for ndarrays
numpy . cumprod equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !
Arithmetic is modular when using integer types, and no error is raised on overflow.

method

1.7. Masked arrays 267

NumPy Reference, Release 1.17.0

MaskedArray .cumsum (self, axis=None, dtype=None, out=None)

Return the cumulative sum of the array elements over the given axis.

Masked values are set to O internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Refer to numpy . cumsum for full documentation.

See also:

ndarray.cumsum corresponding function for ndarrays
numpy . cumsum equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[0,0,0,1,1,1,0,0,0,01)
>>> marr.cumsum ()

masked_array (data=(0, 1, 3, --, ——-, -——, 9, 16, 24, 33],

mask=[False, False, False, True, True, True, False, False,
False, False],
fill_value=999999)

method

MaskedArray .max (self, axis=None, out=None, fill_value=None, keepdims=<no value>)

Return the maximum along a given axis.
Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

Returns

amax [array_like] New array holding the result. If out was specified, out is returned.

See also:

maximum fill value Returns the maximum filling value for a given datatype.

method

MaskedArray .mean (self, axis=None, dtype=None, out=None, keepdims=<no value>)

Returns the average of the array elements along given axis.
Masked entries are ignored, and result elements which are not finite will be masked.

Refer to numpy . mean for full documentation.

268

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also:

ndarray.mean corresponding function for ndarrays
numpy . mean Equivalent function

numpy.ma.average Weighted average.

Examples

>>> a = np.ma.array([l,2,3], mask=[False, False, True])
>>> a
masked_array (data=[1, 2, —--1,
mask=[False, False, True],
fill_value=999999)
>>> g.mean ()
1.5

method

MaskedArray .min (self, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the minimum along a given axis.

Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
minimum fill_wvalue.

Returns
amin [array_like] New array holding the result. If out was specified, out is returned.

See also:
minimum £ill_ value Returns the minimum filling value for a given datatype.

method

MaskedArray.prod (self, axis=None, dtype=None, out=None, keepdims=<no value>)
Return the product of the array elements over the given axis.

Masked elements are set to 1 internally for computation.
Refer to numpy . prod for full documentation.

See also:

ndarray.prod corresponding function for ndarrays

numpy . prod equivalent function

1.7. Masked arrays

269

NumPy Reference, Release 1.17.0

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.
method

MaskedArray .product (self, axis=None, dtype=None, out=None, keepdims=<no value>)
Return the product of the array elements over the given axis.

Masked elements are set to 1 internally for computation.
Refer to numpy . prod for full documentation.

See also:

ndarray.prod corresponding function for ndarrays

numpy . prod equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.
method

MaskedArray .ptp (self, axis=None, out=None, fill_value=None, keepdims=False)
Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Parameters

axis [{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened
array is used.

out [{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.

fill_value [{var}, optional] Value used to fill in the masked values.
Returns

ptp [ndarray.] A new array holding the result, unless out was specified, in which case a refer-
ence to out is returned.

method

MaskedArray . round (self, decimals=0, out=None)
Return each element rounded to the given number of decimals.

Refer to numpy . around for full documentation.

See also:

ndarray.around corresponding function for ndarrays

numpy . around equivalent function

method

MaskedArray.std (self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)
Returns the standard deviation of the array elements along given axis.

Masked entries are ignored.

270 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Refer to numpy . std for full documentation.

See also:

ndarray.std corresponding function for ndarrays

numpy . std Equivalent function

method

MaskedArray.sum (self, axis=None, dtype=None, out=None, keepdims=<no value>)
Return the sum of the array elements over the given axis.

Masked elements are set to O internally.
Refer to numpy . sum for full documentation.

See also:

ndarray.sum corresponding function for ndarrays

numpy . sum equivalent function

Examples

>>> x = np.ma.array([[1,2,3]1,[4,5,6]1,[7,8,91], mask=[0] + [1,0]%4)
>>> x
masked_array (
data=[[1, --, 31,
[-— 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, True]
[False, True, False]
fill_value=999999)
>>> x.sum()
25
>>> x.sum(axis=1)
masked_array(data=[4, 5, 16],

o~

4

mask=[False, False, False],
fill_value=999999)
>>> x.sum(axis=0)
masked_array(data=[8, 5, 12],
mask=[False, False, False],
fill_value=999999)
>>> print (type(x.sum(axis=0, dtype=np.int64) [0]))
<class 'numpy.int64'>

method

MaskedArray.trace (offset=0, axisl =0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy . t race for full documentation.

See also:
numpy . trace equivalent function

method

1.7. Masked arrays 271

NumPy Reference, Release 1.17.0

MaskedArray .var (self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>)

Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters

a [array_like] Array containing numbers whose variance is desired. If @ is not an array, a con-
version is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof [int, optional] “Delta Degrees of Freedom™: the divisor used in the calculation is N —
ddof, where N represents the number of elements. By default ddof is zero.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

variance [ndarray, see dtype parameter above] If out=None, returns a new array containing
the variance; otherwise, a reference to the output array is returned.

See also:
std, mean, nanmean, nanstd, nanvar

numpy .doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs(x - x.
mean ()) **2).

The mean is normally calculated as x.sum () / N, where N = len (x). If, however, ddof is specified, the
divisor N - ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the
variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and
nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a
higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

272

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> a = np.array ([[1, 21, [3, 411)
>>> np.var (a)

1.25

>>> np.var(a, axis=0)

array ([1., 1.1)

>>> np.var (a, axis=1)

array ([0.25, 0.257)

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512x512), dtype=np.float32)
>>> a[0, :] = 1.0

>>> af[l, :]1 = 0.1

>>> np.var (a)

0.20250003

Computing the variance in float64 is more accurate:

>>> np.var (a, dtype=np.float64)
0.20249999932944759 # may vary

>>> ((1-0.55)*%x2 + (0.1-0.55)%%2)/2
0.2025

Arithmetic and comparison operations

Comparison operators:

MaskedArray.__ 1t__ (self, value, /) Return self<value.

MaskedArray._ le_ (self, value, /) Return self<=value.

MaskedArray.___gt__ (self, value, /) Return self>value.

MaskedArray.__ ge__ (self, value, /) Return self>=value.

MaskedArray.__eq__ (self, other) Check whether other equals self elementwise.

MaskedArray.__ne__ (self, other) Check whether other does not equal self elementwise.
attribute

MaskedArray.__1lt__ (self, value,/)
Return self<value.

attribute

MaskedArray.__le__ (self,value,/)
Return self<=value.

attribute

MaskedArray.__gt_ (self, value,/)
Return self>value.

attribute

MaskedArray.__ge_ (self, value,/)
Return self>=value.

method

1.7. Masked arrays

273

NumPy Reference, Release 1.17.0

MaskedArray.__eq _ (self, other)

Check whether other equals self elementwise.

When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.

For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields
were masked, with self and other considered equal only if both were fully masked.

method

MaskedArray.__ _ne__ (self, other)

Check whether other does not equal self elementwise.

When either of the elements is masked, the result is masked as well, but the underlying boolean data are still set,
with self and other considered equal if both are masked, and unequal otherwise.

For structured arrays, all fields are combined, with masked values ignored. The result is masked if all fields
were masked, with self and other considered equal only if both were fully masked.

Truth value of an array (bool):

MaskedArray._ _bool__ (self,/)

self =0

attribute

MaskedArray.__bool__ (self,/)
self 1=0

Arithmetic:

MaskedArray.__abs__ (self)

MaskedArray.__add__ (self, other)

Add self to other, and return a new masked array.

MaskedArray.__radd __ (self, other)

Add other to self, and return a new masked array.

MaskedArray.__ sub__ (self, other)

Subtract other from self, and return a new masked array.

MaskedArray._ _rsub__ (self, other)

Subtract self from other, and return a new masked array.

MaskedArray.__mul__ (self, other)

Multiply self by other, and return a new masked array.

MaskedArray.__ rmul__ (self, other)

Multiply other by self, and return a new masked array.

MaskedArray.___div__ (self, other)

Divide other into self, and return a new masked array.

MaskedArray.__ truediv__ (self, other)

Divide other into self, and return a new masked array.

MaskedArray._ rtruediv__ (self, other)

Divide self into other, and return a new masked array.

MaskedArray._ floordiv__ (self, other)

Divide other into self, and return a new masked array.

MaskedArray._ rfloordiv__ (self, other)

Divide self into other, and return a new masked array.

MaskedArray.__mod__ (self, value, /)

Return self%value.

MaskedArray._ rmod__ (self, value, /)

Return value%self.

MaskedArray._ divmod__ (self, value, /)

Return divmod(self, value).

MaskedArray._ rdivmod__ (self, value, /)

Return divmod(value, self).

MaskedArray.__ pow__ (self, other)

Raise self to the power other, masking the potential
NaNs/Infs

MaskedArray.__ rpow__ (self, other)

Raise other to the power self, masking the potential
NaNs/Infs

MaskedArray._ 1shift__ (self, value,/)

Return self<<value.

Continued on next page

274

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 61 — continued from previous page

MaskedArray._rlshift__ (self, value,/) Return value<<self.
MaskedArray._ rshift__ (self, value, /) Return self>>value.
MaskedArray.__ rrshift__ (self, value,/) Return value>>self.
MaskedArray.__and__ (self, value, /) Return self&value.
MaskedArray.__ rand__ (self, value, /) Return value&self.
MaskedArray.__ or__ (self, value, /) Return selflvalue.
MaskedArray.__ror__ (self, value, /) Return valuelself.
MaskedArray.__ xor__ (self, value, /) Return self*value.
MaskedArray._ rxor__ (self, value, /) Return value”self.
attribute

MaskedArray.__abs__ (self)
method

MaskedArray.__add__ (self, other)
Add self to other, and return a new masked array.

method

MaskedArray.__radd__ (self, other)
Add other to self, and return a new masked array.

method

MaskedArray.__sub__ (self, other)

Subtract other from self, and return a new masked array.

method

MaskedArray.__rsub__ (self, other)

Subtract self from other, and return a new masked array.

method

MaskedArray.__mul__ (self, other)
Multiply self by other, and return a new masked array.

method

MaskedArray.__rmul__ (self, other)
Multiply other by self, and return a new masked array.

method

MaskedArray.__div__ (self, other)
Divide other into self, and return a new masked array.

method

MaskedArray.__truediv___ (self, other)
Divide other into self, and return a new masked array.

method

MaskedArray.__rtruediv___ (self, other)
Divide self into other, and return a new masked array.

method

MaskedArray.__floordiv___ (self, other)
Divide other into self, and return a new masked array.

1.7. Masked arrays

275

NumPy Reference, Release 1.17.0

method

MaskedArray.__rfloordiv___ (self, other)
Divide self into other, and return a new masked array.

attribute

MaskedArray.__mod___ (self, value,/)
Return self%value.

attribute

MaskedArray.__rmod__ (self, value,/)
Return value%self.

attribute

MaskedArray.__divmod__ (self, value,/)
Return divmod(self, value).

attribute

MaskedArray.__rdivmod__ (self, value,/)
Return divmod(value, self).

method

MaskedArray.__pow___(self, other)
Raise self to the power other, masking the potential NaNs/Infs

method

MaskedArray.__rpow__ (self, other)
Raise other to the power self, masking the potential NaNs/Infs

attribute

MaskedArray._ _lshift__ (self, value,/)
Return self<<value.

attribute

MaskedArray.__rlshift__ (self, value,/)
Return value<<self.

attribute

MaskedArray.__rshift__ (self, value,/)
Return self>>value.

attribute

MaskedArray.__rrshift__ (self, value,/)
Return value>>self.

attribute

MaskedArray.__and__ (self, value,/)
Return self&value.

attribute

MaskedArray.__rand__ (self, value,/)
Return value&self.

attribute

276

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

MaskedArray.__or__ (self,value,/)
Return selflvalue.

attribute

MaskedArray.__ror_ _ (self, value,/)
Return valuelself.

attribute

MaskedArray.__xor__ (self, value,/)
Return self*value.

attribute

MaskedArray.__rxor__ (self, value,/)
Return value”self.

Arithmetic, in-place:

MaskedArray.__iadd _ (self, other)

Add other to self in-place.

MaskedArray.___isub__ (self, other)

Subtract other from self in-place.

MaskedArray._ imul__ (self, other)

Multiply self by other in-place.

MaskedArray.___idiv__ (self, other)

Divide self by other in-place.

MaskedArray._ itruediv__ (self, other)

True divide self by other in-place.

MaskedArray.___ifloordiv__ (self, other)

Floor divide self by other in-place.

MaskedArray._ imod _ (self, value, /)

Return self%=value.

MaskedArray.___ipow__ (self, other)

Raise self to the power other, in place.

MaskedArray._ ilshift__ (self, value,/)

Return self<<=value.

MaskedArray.___irshift__ (self, value, /)

Return self>>=value.

MaskedArray._ iand _ (self, value, /)

Return self&=value.

MaskedArray.__ior__ (self, value, /)

Return selfl=value.

MaskedArray._ ixor _ (self, value, /)

Return self*=value.

method

MaskedArray.__iadd__ (self, other)
Add other to self in-place.

method

MaskedArray.__isub__ (self, other)
Subtract other from self in-place.

method

MaskedArray.__imul___ (self, other)
Multiply self by other in-place.

method

MaskedArray.__idiv__ (self, other)
Divide self by other in-place.

method

MaskedArray.__itruediv__ (self, other)
True divide self by other in-place.

method

1.7. Masked arrays

277

NumPy Reference, Release 1.17.0

MaskedArray.__ifloordiv___ (self, other)
Floor divide self by other in-place.

attribute

MaskedArray._ _imod__ (self, value,/)
Return self%=value.

method

MaskedArray.__ipow___ (self, other)
Raise self to the power other, in place.

attribute

MaskedArray.__ilshift__ (self, value,/)
Return self<<=value.

attribute

MaskedArray.__irshift__ (self, value,/)
Return self>>=value.

attribute

MaskedArray._ _iand__ (self, value,/)
Return self&=value.

attribute

MaskedArray.__ior__ (self, value,/)
Return selfl=value.

attribute

MaskedArray.__ixor__ (self, value,/)
Return self"=value.

Representation

MaskedArray.__ repr__ (self) Literal string representation.
MaskedArray.__ str__ (self) Return str(self).
MaskedArray . ids(self) Return the addresses of the data and mask areas.
MaskedArray.iscontiguous(self) Return a boolean indicating whether the data is contigu-
ous.
method

MaskedArray.__repr__ (self)
Literal string representation.

method

MaskedArray.__str__ (self)
Return str(self).

method

MaskedArray.ids (self)
Return the addresses of the data and mask areas.

Parameters

278 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

None

Examples

>>> x = np.ma.array([1l, 2, 3], mask=[0,
>>> x.1ds ()
(166670640, 166659832) # may vary

1, 11)

If the array has no mask, the address of nomask is returned. This address is typically not close to the data in

memory:

>>> x = np.ma.array([1l, 2, 31)
>>> x.1ds ()
(166691080, 3083169284L) # may vary

method

MaskedArray.iscontiguous (self)

Return a boolean indicating whether the data is contiguous.

Parameters

None

Examples

>>> x = np.ma.array([l, 2, 31)
>>> x.iscontiguous ()
True

iscontiguous returns one of the flags of the masked array:

>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

Special methods

For standard library functions:

MaskedArray._ _copy_ ()

Used if copy . copy is called on an array.

MaskedArray.__ deepcopy.__ (self[, memo])

Used if copy . deepcopy is called on an array.

MaskedArray.___getstate_ _ (self)

Return the internal state of the masked array, for pick-
ling purposes.

MaskedArray.___reduce__ (self)

Return a 3-tuple for pickling a MaskedArray.

MaskedArray._ setstate_ _ (self, state)

Restore the internal state of the masked array, for pick-
ling purposes.

1.7. Masked arrays

279

https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.17.0

method

MaskedArray.__copy__ ()

Used if copy . copy is called on an array. Returns a copy of the array.

Equivalent to a. copy (order="K").
method

MaskedArray.__deepcopy__ (self, memo=None)
Used if copy . deepcopy is called on an array.

method

MaskedArray.__getstate__ (self)
Return the internal state of the masked array, for pickling purposes.

method

MaskedArray.__reduce__ (self)
Return a 3-tuple for pickling a MaskedArray.

method

MaskedArray.__setstate_ (self, state)

Restore the internal state of the masked array, for pickling purposes.

__getstate__ output, and is a 5-tuple:
* class name
* atuple giving the shape of the data
* atypecode for the data
* abinary string for the data
* a binary string for the mask.

Basic customization:

state is typically the output of the

MaskedArray.___new__ (cls[, data, mask, ...]) Create a new masked array from scratch.

MaskedArray._ _array_ () Returns either a new reference to self if dtype is not
given or a new array of provided data type if dtype is
different from the current dtype of the array.

MaskedArray.__array wrap__(self, obj[, con- Special hook for ufuncs.

text])

method

static MaskedArray.__new___ (cls, data=None, mask=False, dtype=None, copy=False, subok=True,
ndmin=0, fill_value=None, keep_mask=True, hard_mask=None,

shrink=True, order=None, **options)

Create a new masked array from scratch.

Notes

A masked array can also be created by taking a .view(MaskedArray).
method

MaskedArray.__array_ ()

Returns either a new reference to self if dtype is not given or a new array of provided data type if dtype is

280

Chapter 1. Array objects

https://docs.python.org/dev/library/copy.html#copy.copy
https://docs.python.org/dev/library/copy.html#copy.deepcopy

NumPy Reference, Release 1.17.0

different from the current dtype of the array.
method

MaskedArray.__array_wrap__ (self, obj, context=None)
Special hook for ufuncs.

Wraps the numpy array and sets the mask according to context.

Container customization: (see Indexing)

MaskedArray._ len (self,/) Return len(self).
MaskedArray.__getitem _ (self, indx) X.__getitem__(y) <==> x[y]
MaskedArray._ setitem _ (self, indx, value) X.__setitem__(i, y) <==> x[i]=y
MaskedArray.__delitem__(self, key, /) Delete self[key].
MaskedArray.__contains__ (self, key, /) Return key in self.

attribute

MaskedArray.__len__ (self,/)
Return len(self).

method

MaskedArray.__getitem__ (self, indx)
X.__getitem__(y) <==> x[y]

Return the item described by i, as a masked array.
method

MaskedArray.__setitem__ (self, indx, value)
X.__setitem__(i, y) <==> x[i]=y

Set item described by index. If value is masked, masks those locations.
attribute

MaskedArray.__delitem__ (self, key,/)
Delete self[key].

attribute

MaskedArray.__contains__ (self, key,/)
Return key in self.

Specific methods

Handling the mask

The following methods can be used to access information about the mask or to manipulate the mask.

MaskedArray.___setmask__ (self, mask[, copy]) Set the mask.

MaskedArray.harden mask(self) Force the mask to hard.
MaskedArray.soften_mask(self) Force the mask to soft.
MaskedArray.unshare_mask(self) Copy the mask and set the sharedmask flag to False.
MaskedArray.shrink_mask(self) Reduce a mask to nomask when possible.

method

1.7. Masked arrays 281

NumPy Reference, Release 1.17.0

MaskedArray.__setmask___ (self, mask, copy=False)
Set the mask.

method

MaskedArray.harden_mask (self)
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True.

See also:
hardmask
method

MaskedArray.soften_mask (self)
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its ha rdmask property. soften_mask
sets hardmask to False.

See also:
hardmask
method

MaskedArray.unshare_mask (self)
Copy the mask and set the sharedmask flag to False.

Whether the mask is shared between masked arrays can be seen from the sharedmask property.
unshare_mask ensures the mask is not shared. A copy of the mask is only made if it was shared.

See also:
sharedmask
method

MaskedArray.shrink_mask (self)
Reduce a mask to nomask when possible.

Parameters
None
Returns

None

Examples

>>> x = np.ma.array ([[1,2 1, [3, 4]], mask=[0]~4)
>>> x.mask
array ([[False, False],
[False, False]l])
>>> x.shrink_mask ()
masked_array (
data=[[1, 21,
[3, 411,
mask=False,

(continues on next page)

282 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

fill_value=999999)
>>> x.mask
False

Handling the fill_value

MaskedArray.get_fill_value(self) The filling value of the masked array is a scalar.

MaskedArray.set_fill_value(self], value])

method

MaskedArray.get_£ill_value (self)

The filling value of the masked array is a scalar. When setting, None will set to a default based on the data type.

Examples

>>> for dt in [np.int32, np.int64, np.float64, np.complexl128]:
np.ma.array ([0, 1], dtype=dt) .get_fill value()

999999

999999

le+20

(1e+20+07)

>>> x = np.ma.array ([0, 1.], fill _value=-np.inf)
>>> x.fill_value

—-inf

>>> x.fill_value = np.pi

>>> x.fill_value
3.1415926535897931 # may vary

Reset to default:

>>> x.fill_value = None
>>> x.fi1ll _value
le+20

method

MaskedArray.set_£fill_wvalue (self, value=None)

Counting the missing elements

MaskedArray.count(self], axis, keepdims]) Count the non-masked elements of the array along the

given axis.

method

MaskedArray.count (self, axis=None, keepdims=<no value>)

Count the non-masked elements of the array along the given axis.

1.7. Masked arrays 283

NumPy Reference, Release 1.17.0

Parameters

axis [None or int or tuple of ints, optional] Axis or axes along which the count is performed.
The default (axis = None) performs the count over all the dimensions of the input array. axis
may be negative, in which case it counts from the last to the first axis.

New in version 1.10.0.

If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or
all the axes as before.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
array.

Returns

result [ndarray or scalar] An array with the same shape as the input array, with the specified
axis removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

count_masked Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma

>>> a = ma.arange (6) .reshape((2, 3))
>>> a[l, :] = ma.masked
>>> a

masked_array (
data=[[0, 1, 2],
[y —+ —11,
mask=[[False, False, False],
[True, True, True]ll,
fill _value=999999)
>>> a.count ()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count (axis=0)
array([1, 1, 17])
>>> ag.count (axis=1)
array ([3, 0])

1.7.7 Masked array operations

Constants

ma.MaskType alias of numpy .bool_

numpy .ma .MaskType
alias of numpy .bool_

284 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Creation

From existing data

ma.masked_array alias of numpy .ma.core.MaskedArray
ma . array(data[, dtype, copy, order, mask, ...]) An array class with possibly masked values.
ma . copy(self, *args, **params) a.copy(order=) Return a copy of the array.
ma . frombuf fer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.
ma . fromfunct ion(function, shape, **kwargs) Construct an array by executing a function over each
coordinate.
ma.MaskedArray.copy([order]) Return a copy of the array.
numpy .ma . copy (self, *args, **params) a.copy(order="C’) = <numpy.ma.core._frommethod
object>

Return a copy of the array.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of a as closely as possible. (Note that this function and numpy . copy are
very similar, but have different default values for their order= arguments.)

Examples

’>>> x = np.array([[1,2,3],[4,5,6]], order='F")

’>>> y = x.copy()

>>> x.fi11(0)

>>> x

array ([[0, 0, 0],
[0, O, 011)

>>> y

array ([[1, 2, 3]

>>> y.flags['C_CONTIGUOUS']
True

numpy .ma . frombuf fer (buffer, dtype=float, count=-1, offset=0) = <numpy.ma.core.

_convert2ma object>
Interpret a buffer as a 1-dimensional array.

Parameters
buffer [buffer_like] An object that exposes the buffer interface.
dtype [data-type, optional] Data-type of the returned array; default: float.

count [int, optional] Number of items to read. —1 means all data in the buffer.

1.7. Masked arrays 285

NumPy Reference, Release 1.17.0

offset [int, optional] Start reading the buffer from this offset (in bytes); default: 0.

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype (int)
>>> dt = dt.newbyteorder('>")
>>> np.frombuffer (buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

>>> s = b'hello world'
>>> np.frombuffer (s, dtype='Sl', count=5, offset=6)
array ([b'w', b'o', b'r', b'l', b'd'], dtype='|S1l"'")

>>> np.frombuffer (b'\x01\x02', dtype=np.uint8)

array ([1, 2], dtype=uint8)

>>> np.frombuffer (b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array([l, 2, 3], dtype=uint8)

numpy .ma . fromfunction (function, shape, **kwargs) = <numpy.ma.core._convert2ma

object>
Construct an array by executing a function over each coordinate.

The resulting array therefore has a value £n (x, vy, z) atcoordinate (x, y, z).
Parameters

function [callable] The function is called with N parameters, where N is the rank of shape.
Each parameter represents the coordinates of the array varying along a specific axis. For ex-
ample, if shape were (2, 2), then the parameters would be array ([[0, 0], [1,
111) andarray ([[0, 11, [0, 111)

shape [(N,) tuple of ints] Shape of the output array, which also determines the shape of the
coordinate arrays passed to function.

dtype [data-type, optional] Data-type of the coordinate arrays passed to function. By default,
dtype is float.

Returns

fromfunction [any] The result of the call to function is passed back directly. Therefore the
shape of fromfunctionis completely determined by function. If function returns a scalar
value, the shape of fromfunction would not match the shape parameter.

See also:
indices,meshgrid
Notes

Keywords other than dtype are passed to function.

286 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[True, False, False],

[False, True, False],
[False, False, Truel])

>>> np.fromfunction(lambda i, j: i1 + j, (3, 3), dtype=int)
array([[0, 1, 21,

[1, 2, 31,

(2, 3, 411)

Ones and zeros

ma . empt y(shape[, dtype, order]) Return a new array of given shape and type, without
initializing entries.

ma.empty_11ke(prototype[, dtype, order, ...]) Return a new array with the same shape and type as a
given array.

ma .masked_all(shapel[, dtype]) Empty masked array with all elements masked.

ma.masked_all_1ike(arr) Empty masked array with the properties of an existing
array.

ma . ones(shape[, dtype, order]) Return a new array of given shape and type, filled with
ones.

ma . zeros(shape[, dtype, order]) Return a new array of given shape and type, filled with
ZEeros.

numpy .ma . empty (shape, dtype=float, order="C’) = <numpy.ma.core._convert2ma object>

Return a new array of given shape and type, without initializing entries.
Parameters
shape [int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.

dtype [data-type, optional] Desired output data-type for the array, e.g, numpy . int 8. Default
is numpy . float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object
arrays will be initialized to None.

See also:

empty like Return an empty array with shape and type of input.
ones Return a new array setting values to one.
zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

1.7. Masked arrays 287

NumPy Reference, Release 1.17.0

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty ([2, 21)
array ([[—-9.74499359e+001, 6.69583040e-3091,
[2.13182611le-314, 3.06959433e-30911) #uninitialized

>>> np.empty([2, 2], dtype=int)
array ([[-1073741821, -10679491337,
[496041986, 1924976011) #funinitialized

s

numpy .ma .empty_like (prototype, dtype=None, order="K’, subok=True, shape=None) = <numpy.

ma.core._convert2ma object>
Return a new array with the same shape and type as a given array.

Parameters

prototype [array_like] The shape and data-type of prototype define these same attributes of the
returned array.

dtype [data-type, optional] Overrides the data type of the result.
New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if prot ot ype is Fortran contiguous, ‘C’ otherwise.
‘K’ means match the layout of prototype as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

shape [int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.
Returns
out [ndarray] Array of uninitialized (arbitrary) data with the same shape and type as prototype.

See also:

ones_like Return an array of ones with shape and type of input.
zeros_like Return an array of zeros with shape and type of input.
full like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

Notes

This function does not initialize the returned array; to do that use zeros_like or ones_like instead. It may be
marginally faster than the functions that do set the array values.

288 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> a = ([1,2,31, [4,5,06]) # a 1s array-like
>>> np.empty_like (a)

array ([[-1073741821, -1073741821, 3] # uninitialized

[0, 0, -107374182111)
>>> a = np.array([[1., 2., 3.1,[4.,5.,6.11)
>>> np.empty_like (a)
array ([[—-2.00000715e+000, 1.48219694e-323, -2.00000572e+0007,
[4.38791518e-305, -2.00000715e+000, 4.17269252e-30911)

uninitialized

numpy .ma .masked_all (shape, dtype=<class 'float’>)
Empty masked array with all elements masked.

Return an empty masked array of the given shape and dtype, where all the data are masked.
Parameters
shape [tuple] Shape of the required MaskedArray.
dtype [dtype, optional] Data type of the output.
Returns
a [MaskedArray] A masked array with all data masked.

See also:

masked_all_ like Empty masked array modelled on an existing array.

Examples

>>> import numpy.ma as ma
>>> ma.masked_all ((3, 3))
masked_array (

data=[[-~-, ——, —-1,
IR
- == =11,
True, True, Truel],
True, True, Truel],

[True, True, Truel],

fill_value=1le+20,
dtype=float64)

[,

[,
mask=1[[
[

The dtype parameter defines the underlying data type.

>>> a = ma.masked_all((3, 3))

>>> a.dtype

dtype ('float64d")

>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype

dtype ('"int32"')

numpy .ma .masked_all_like (arr)
Empty masked array with the properties of an existing array.

Return an empty masked array of the same shape and dtype as the array arr, where all the data are masked.

Parameters

1.7. Masked arrays

289

NumPy Reference, Release 1.17.0

arr [ndarray] An array describing the shape and dtype of the required MaskedArray.
Returns

a [MaskedArray] A masked array with all data masked.
Raises

AttributeError If arr doesn’t have a shape attribute (i.e. not an ndarray)

See also:

masked_all Empty masked array with all elements masked.

Examples

>>> import numpy.ma as ma

>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr

array ([[0., 0., 0.1,

[0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
masked_array (

data=[[-—, ——, ——1,
(== — —11,
mask=[[True, True, Truel],
[True, True, Truel],
fill_value=1le+20,
dtype=float32)

The dtype of the masked array matches the dtype of arr.

>>> arr.dtype

dtype ('float32")

>>> ma.masked_all_like(arr) .dtype
dtype ('float32")

numpy .ma . ones (shape, dtype=None, order="C’) = <numpy.ma.core._convert2ma object>
Return a new array of given shape and type, filled with ones.

Parameters
shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy . int 8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: C] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns
out [ndarray] Array of ones with the given shape, dtype, and order.

See also:

ones_like Return an array of ones with shape and type of input.
empty Return a new uninitialized array.

zeros Return a new array setting values to zero.

290 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

full Return a new array of given shape filled with value.

Examples

>>> np.ones (5)
array (1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 11)

>>> np.ones ((2, 1))
array ([[1.1,
[(1.11)

>>> 5 = (2,2)

>>> np.ones(s)

array ([[1l., 1.1,
[1., 1.11)

numpy .ma . zeros (shape, dtype=float, order="C’) = <numpy.ma.core._convert2ma object>
Return a new array of given shape and type, filled with zeros.

Parameters
shape [int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy . int 8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns
out [ndarray] Array of zeros with the given shape, dtype, and order.

See also:

zeros_like Return an array of zeros with shape and type of input.
empty Return a new uninitialized array.
ones Return a new array setting values to one.

full Return a new array of given shape filled with value.

Examples

>>> np.zeros (5)
array ([0., 0., 0., 0., 0.1)

>>> np.zeros((5,), dtype=int)
array ([0, 0, 0, 0, 01)

>>> np.zeros((2, 1))
array ([[0.],
[0.11)

1.7. Masked arrays 291

NumPy Reference, Release 1.17.0

>>> s = (2,2)

>>> np.zeros(s)

array ([[0., 0.1,
[0. 0.11)

>>> np.zeros((2,), dtype=[('x"', 'i4"),
array ([(0, 0), (0, 0)1,
dtype=[('x"', '<id'"), ('y', '<id'")]

', 'i4')]) # custom dtype

Inspecting the array

ma . all(self[, axis, out, keepdims])

Returns True if all elements evaluate to True.

ma . any(self[, axis, out, keepdims])

Returns True if any of the elements of a evaluate to True.

ma . count(self], axis, keepdims])

Count the non-masked elements of the array along the
given axis.

ma.count_masked(arr[, axis])

Count the number of masked elements along the given
axis.

ma.getmask(a) Return the mask of a masked array, or nomask.

ma.getmaskarray(arr) Return the mask of a masked array, or full boolean array
of False.

ma.getdata(al, subok]) Return the data of a masked array as an ndarray.

ma . nonzero(self) Return the indices of unmasked elements that are not
Zero.

ma . shape(obj) Return the shape of an array.

ma . s1ze(obj[, axis]) Return the number of elements along a given axis.

ma.is_masked(x) Determine whether input has masked values.

ma.is_mask(m) Return True if m is a valid, standard mask.

ma.MaskedArray.all(self[, axis, out, keepdims]) Returns True if all elements evaluate to True.

ma.MaskedArray.any(self[, axis, out, keepdims]) Returns True if any of the elements of a evaluate to True.

ma.MaskedArray.count(self], axis, keepdims]) Count the non-masked elements of the array along the
given axis.

ma.MaskedArray.nonzero(self) Return the indices of unmasked elements that are not
zero.

ma . shape(obj) Return the shape of an array.

ma . size(obj[, axis]) Return the number of elements along a given axis.

numpy .ma.all (self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core.

_frommethod object>
Returns True if all elements evaluate to True.

The output array is masked where all the values along

the given axis are masked: if the output would have been

a scalar and that all the values are masked, then the output is masked.

Refer to numpy . all for full documentation.

See also:

ndarray.all corresponding function for ndarrays

numpy.all equivalent function

292

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples
>>> np.ma.array([1,2,3]).all()
True
>>> a = np.ma.array([1l,2,3], mask=True)
>>> (a.all() is np.ma.masked)
True
numpy .ma.any (self, axis=None, out=None, keepdims=<no value>) = <numpy.ma.core.

_frommethod object>
Returns True if any of the elements of a evaluate to True.

Masked values are considered as False during computation.
Refer to numpy . any for full documentation.

See also:

ndarray.any corresponding function for ndarrays
numpy . any equivalent function

numpy .ma.count (self, axis=None, keepdims=<no value>) = <numpy.ma.core._frommethod

object>))
Count the non-masked elements of the array along the given axis.

Parameters

axis [None or int or tuple of ints, optional] Axis or axes along which the count is performed.
The default (axis = None) performs the count over all the dimensions of the input array. axis
may be negative, in which case it counts from the last to the first axis.

New in version 1.10.0.

If this is a tuple of ints, the count is performed on multiple axes, instead of a single axis or
all the axes as before.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
array.

Returns

result [ndarray or scalar] An array with the same shape as the input array, with the specified
axis removed. If the array is a 0-d array, or if axis is None, a scalar is returned.

See also:

count_masked Count masked elements in array or along a given axis.

Examples

>>> import numpy.ma as ma
>>> a = ma.arange (6) .reshape((2, 3))
>>> a[l, :] = ma.masked
>>> a
masked_array (
data=[[0, 1, 21,

(continues on next page)

1.7. Masked arrays 293

NumPy Reference, Release 1.17.0

(continued from previous page)

mask=[[False, False, False],
[True, True, Truel],
fill_value=999999)
>>> a.count ()
3

When the axis keyword is specified an array of appropriate size is returned.

>>> a.count (axis=0)
array ([1, 1, 11)
>>> a.count (axis=1)
array ([3, 0])

numpy .ma .count_masked (arr, axis=None)

Count the number of masked elements along the given axis.
Parameters
arr [array_like] An array with (possibly) masked elements.

axis [int, optional] Axis along which to count. If None (default), a flattened version of the array
is used.

Returns

count [int, ndarray] The total number of masked elements (axis=None) or the number of
masked elements along each slice of the given axis.

See also:

MaskedArray.count Count non-masked elements.

Examples

>>> import numpy.ma as ma

>>> a = np.arange (9) .reshape ((3,3))
>>> a = ma.array(a)

>>> a[l, 0] = ma.masked

>>> a[l, 2] = ma.masked

>>> a2, 1] = ma.masked

>>> a

masked_array (
data=[[0, 1, 2],
(-, 4, ——1,
(6, ——, 811,
mask=[[False, False, False],
[True, False, True]
[False, True, False]
fill_value=999999)
>>> ma.count_masked (a)
3

o~

’

When the axis keyword is used an array is returned.

>>> ma.count_masked (a, axis=0)
array ([1, 1, 11)

(continues on next page)

294

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> ma.count_masked (a, axis=1)
array ([0, 2, 11)

numpy .ma .getmask (a)
Return the mask of a masked array, or nomask.

Return the mask of @ as an ndarray if a is a MaskedArray and the mask is not nomask, else return nomask.
To guarantee a full array of booleans of the same shape as a, use getmaskarray.

Parameters
a [array_like] Input MaskedArray for which the mask is required.

See also:

getdata Return the data of a masked array as an ndarray.

getmaskarray Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma

>>> a = ma.masked_equal ([[1,2], 13,411, 2)
>>> a
masked_array (
data=[[1, —--],
[3, 411,
mask=[[False, True]

14
[False, Falsel]ll,
fill_value=2)
>>> ma.getmask (a)
array ([[False, Truel,
[False, Falsell])

Equivalently use the MaskedArray mask attribute.

>>> a.mask
array ([[False, True],
[False, Falsell])

Result when mask == nomask

>>> b = ma.masked_array ([[1,2],[3,4]1])
>>> b
masked_array (

data=[[1, 2],

[3, 411,

mask=False,

fill_value=999999)
>>> ma.nomask

False

>>> ma.getmask (b) == ma.nomask
True

>>> b.mask == ma.nomask

True

1.7. Masked arrays 295

NumPy Reference, Release 1.17.0

numpy .ma .getmaskarray (arr)
Return the mask of a masked array, or full boolean array of False.

Return the mask of arr as an ndarray if arr is a MaskedArray and the mask is not noma sk, else return a full

boolean array of False of the same shape as arr.
Parameters
arr [array_like] Input MaskedArray for which the mask is required.

See also:

getmask Return the mask of a masked array, or nomask.

getdata Return the data of a masked array as an ndarray.

Examples

>>> import numpy.ma as ma

>>> a = ma.masked_equal ([[1,2],1[3,411, 2)
>>> a

masked_array (

data=[[1, —-1,
[3, 411,
mask=[[False, True]

14
[False, Falsel],
fill value=2)
>>> ma.getmaskarray (a)
array ([[False, Truel,
[False, Falsell])

Result when mask == nomask

>>> b = ma.masked_array ([[1,2],[3,411])
>>> b
masked_array (
data=[[1, 2],
(3, 411,
mask=False,
fill_value=999999)
>>> ma.getmaskarray (b)
array ([[False, False],
[False, Falsell])

numpy .ma .getdata (a, subok=True)
Return the data of a masked array as an ndarray.

Return the data of a (if any) as an ndarray if a is a MaskedArray, else return ¢ as a ndarray or subclass

(depending on subok) if not.
Parameters
a [array_like] Input MaskedArray, alternatively a ndarray or a subclass thereof.

subok [bool] Whether to force the output to be a pure ndarray (False) or to return a subclass of
ndarray if appropriate (True, default).

See also:

getmask Return the mask of a masked array, or nomask.

296 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

getmaskarray Return the mask of a masked array, or full array of False.

Examples

>>> import numpy.ma as ma

>>> a = ma.masked_equal ([[1,2], 13,411, 2)
>>> a

masked_array (

data=[[1, —-1,
[3, 411,
mask=[[False, True]

14
[False, Falsell],
fill value=2)
>>> ma.getdata(a)
array ([[1, 21,
[3, 411)

Equivalently use the MaskedArray data attribute.

>>> a.data
array ([[1, 2],
[3, 411)

numpy .ma.nonzero (self) = <numpy.ma.core._frommethod object>
Return the indices of unmasked elements that are not zero.

Returns a tuple of arrays, one for each dimension, containing the indices of the non-zero elements in that
dimension. The corresponding non-zero values can be obtained with:

’a[a‘nonzero()]

To group the indices by element, rather than dimension, use instead:

’np.transpose(a.nonzero())

The result of this is always a 2d array, with a row for each non-zero element.
Parameters
None
Returns
tuple_of_arrays [tuple] Indices of elements that are non-zero.

See also:

numpy . nonzero Function operating on ndarrays.
flatnonzero Return indices that are non-zero in the flattened version of the input array.
ndarray.nonzero Equivalent ndarray method.

count_nonzero Counts the number of non-zero elements in the input array.

Examples

1.7. Masked arrays 297

NumPy Reference, Release 1.17.0

>>> import numpy.ma as ma
>>> x = ma.array(np.eye(3))
>>> x
masked_array (
data=[[1., 0., O
[0., 1., 0.]
[0., 0., 1
mask=False,
fill_value=1e+20)
>>> x.nonzero ()
(array ([0, 1, 21), array ([0, 1, 2]))

Masked elements are ignored.

>>> x[1, 1] = ma.masked
>>> x
masked_array (
data=[[1.0, 0.0, 0.07],
0.0, -——, 0.071,
0.0, 0.0, 1.011,
False, False, False],
False, True, False],
[False, False, False]ll],
fill_value=1e+20)
>>> x.nonzero ()
(array ([0, 21), arrayv ([0, 21))

mask=[

(
[
[
(

Indices can also be grouped by element.

>>> np.transpose (x.nonzero())
array ([[0, 0],
(2, 211

A common use for nonzero is to find the indices of an array, where a condition is True. Given an array a, the
condition a > 3 is a boolean array and since False is interpreted as 0, ma.nonzero(a > 3) yields the indices of the
a where the condition is true.

>>> a = ma.array ([[1,2,31,14,5,6]1,17,8,911)
>>> a > 3
masked_array (
data=[[False, False, False],
[True, True, True]l,
[True, True, Truel],
mask=False,
fill_value=True)
>>> ma.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

The nonzero method of the condition array can also be called.

>>> (a > 3).nonzero ()
(array([1, 1, 1, 2, 2, 21), array([0, 1, 2, 0, 1, 21))

numpy .ma . shape (obj)
Return the shape of an array.

Parameters

a [array_like] Input array.

298 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Returns

shape [tuple of ints] The elements of the shape tuple give the lengths of the corresponding array
dimensions.

See also:
alen

ndarray.shape Equivalent array method.

Examples

>>> np.shape (np.eye(3))
(3, 3)

>>> np.shape([[1, 2]])
(1, 2)

>>> np.shape ([0])

(1,)

>>> np.shape (0)

()

>>> a = np.array([(1, 2), (3, 4)], dtype=[('x", "i4"), ('y', '14")])
>>> np.shape (a)

(2,)

>>> a.shape

(2,)

numpy .ma . size (obj, axis=None)
Return the number of elements along a given axis.

Parameters
a [array_like] Input data.

axis [int, optional] Axis along which the elements are counted. By default, give the total number
of elements.

Returns
element_count [int] Number of elements along the specified axis.

See also:

shape dimensions of array
ndarray.shape dimensions of array

ndarray.size number of elements in array

Examples

>>> a = np.array([[1,2,3]1,[4,5,611)
>>> np.size(a)

>>> np.size(a,l)

>>> np.size(a,0)

1.7. Masked arrays 299

NumPy Reference, Release 1.17.0

numpy .ma.is_masked (x)

Determine whether input has masked values.

Accepts any object as input, but always returns False unless the input is a MaskedArray containing masked
values.

Parameters
x [array_like] Array to check for masked values.
Returns

result [bool] True if x is a MaskedArray with masked values, False otherwise.

Examples

>>> import numpy.ma as ma
>>> x = ma.masked_equal ([0, 1, 0, 2, 31, 0)
>>> x
masked_array (data=[-—-, 1, --, 2, 31,
mask=[True, False, True, False, False],
fill_value=0)
>>> ma.1ls_masked (x)
True
>>> x = ma.masked_equal ([0, 1, 0, 2, 31, 42)
>>> x
masked_array (data=[0, 1, 0, 2, 31,
mask=False,
fill value=42)
>>> ma.is_masked (x)
False

Always returns False if x isn’t a MaskedArray.

>>> x = [False, True, False]
>>> ma.1ls_masked (x)

False

>>> x = 'a string'

>>> ma.is_masked (x)
False

numpy .ma.is_mask (m)

Return True if m is a valid, standard mask.

This function does not check the contents of the input, only that the type is MaskType. In particular, this function
returns False if the mask has a flexible dtype.

Parameters
m [array_like] Array to test.
Returns
result [bool] True if m.dtype.type is MaskType, False otherwise.

See also:

isMaskedArray Test whether input is an instance of MaskedArray.

300

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> import numpy.ma as ma

>>> m = ma.masked_equal ([0, 1, 0, 2, 3]

>>> m

masked_array (data=[--, 1, —-—, 2, 31,
mask=[True, False, True,

fill_value=0)
>>> ma.1ls_mask (m)
False
>>> ma.is_mask (m.mask)
True

, 0)

False, False],

Input must be an ndarray (or have similar attributes)

for it to be considered a valid mask.

>>> m = [False, True, False]

>>> ma.is_mask (m)

False

>>> m = np.array([False, True, False])
>>> m

array ([False, True, Falsel])

>>> ma.is_mask (m)

True

Arrays with complex dtypes don’t return True.

>>> dtype = np.dtype({'names':['monty', 'pithon'],

c 'formats': [bool, bool]l})

>>> dtype

dtype ([("monty', 'Ibl'"), ('pithon', '|bl'")])

>>> m = np.array ([(True, False), (False, True), (True, False)],

. dtype=dtype)

>>> m

array ([(True, False), (False, True), (True, False)],
dtype=[('monty', '?'), ('pithon', '?2')])

>>> ma.is_mask (m)

False

ma.MaskedArray.data

Returns the underlying data, as a view of the masked
array.

ma.MaskedArray.mask

Current mask.

ma.MaskedArray.recordmask

Get or set the mask of the array if it has no named fields.

Manipulating a MaskedArray

Changing the shape

ma . ravel(self], order])

Returns a 1D version of self, as a view.

ma . reshape(a, new_shape[, order])

Returns an array containing the same data with a new
shape.

Continued on next page

1.7. Masked arrays

301

NumPy Reference, Release 1.17.0

Table 75 — continued from previous page

ma . resize(X, new_shape) Return a new masked array with the specified size and
shape.

ma.MaskedArray. flatten([order]) Return a copy of the array collapsed into one dimension.

ma.MaskedArray. ravel(self[, order]) Returns a 1D version of self, as a view.

ma.MaskedArray. reshape(self, \¥s, \¥**kwargs) Give a new shape to the array without changing its data.
ma.MaskedArray. resize(self, newshape[, ...])

numpy .ma . ravel (self, order="C’) = <numpy.ma.core._frommethod object>
Returns a 1D version of self, as a view.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] The elements of a are read using this index order. ‘C’
means to index the elements in C-like order, with the last axis index changing fastest, back
to the first axis index changing slowest. ‘F’ means to index the elements in Fortran-like
index order, with the first index changing fastest, and the last index changing slowest. Note
that the ‘C” and ‘F’ options take no account of the memory layout of the underlying array,
and only refer to the order of axis indexing. ‘A’ means to read the elements in Fortran-like
index order if m is Fortran contiguous in memory, C-like order otherwise. ‘K’ means to read
the elements in the order they occur in memory, except for reversing the data when strides
are negative. By default, ‘C’ index order is used.

Returns

MaskedArray Output view is of shape (self.size,) (or (np.ma.product (self.
shape),)).

Examples

>>> x = np.ma.array([[1,2,31,[4,5,6]1,[7,8,91]1, mask=[0] + [1,0]%4)
>>> x
masked_array (
data=[[1, --, 31,
[-——» 5, ——1,
(7, ——, 911,
mask=[[False, True, False],
[True, False, Truel,
[False, True, Falsel],
fill_value=999999)
>>> x.ravel ()
masked_array(data=[(1, --, 3, -—-, 5, ——, 7, ——, 91,
mask=[False, True, False, True, False, True, False, True,
False],
fill_value=999999)

numpy .ma . reshape (a, new_shape, order="C")
Returns an array containing the same data with a new shape.

Refer to MaskedArray. reshape for full documentation.

See also:
MaskedArray.reshape equivalent function

numpy .ma .resize (x, new_shape)
Return a new masked array with the specified size and shape.

302 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

This is the masked equivalent of the numpy . resize function. The new array is filled with repeated copies of
x (in the order that the data are stored in memory). If x is masked, the new array will be masked, and the new
mask will be a repetition of the old one.

See also:

numpy . resize Equivalent function in the top level NumPy module.

Examples

>>> import numpy.ma as ma
>>> a = ma.array ([[1l, 2]
al0, 1] = ma.masked

>>> a

3, 411)

>>>

masked_array (
data=[[1, --1,

[3,

417,

mask=[[False,
[False,

True]
False]

I

fill_value=999999)
>>> np.resize(a, (3,
masked_array (
data=[[1, 2, 3],
4, 1, 21,
(3, 4, 111,
mask=False,
fill_value=999999)
>>> ma.resize(a, (3,
masked_array (
data=[[1, --, 31,
4, 1, —-1,
3, 4, 111,
False,
False,
[False,
fill _value=999999)

mask=[

[
[
(
[

True,
False,
False,

3))

3))

False]
True]
False]

’

I

A MaskedArray is always returned, regardless of the input type.

>>> a = np.array ([[1,
>>> ma.resize(a, (3,
masked_array (
data=[[1, 2, 3],
(4, 1, 21,
(3, 4, 111,
mask=False,
fill _value=999999)

21,13,
3))

Modifying axes

ma . swapaxes(self, *args, ...)

Return a view of the array with axis!/ and axis2 inter-
changed.

ma.transpose(al, axes))

Permute the dimensions of an array.

Continued on next page

1.7. Masked arrays

303

NumPy Reference, Release 1.17.0

Table 76 — continued from previous page

Return a view of the array with axis/ and axis2 inter-
changed.

Returns a view of the array with axes transposed.

ma.MaskedArray.swapaxes(axisl, axis2)

ma.MaskedArray.transpose(*axes)

numpy .ma . swapaxes (self, *args, **params) a.swapaxes(axisl, axis2) = <numpy.ma.core.
_frommethod object>

Return a view of the array with axis/ and axis2 interchanged.
Refer to numpy . swapaxes for full documentation.

See also:
numpy . swapaxes equivalent function

numpy .ma.transpose (a, axes=None)
Permute the dimensions of an array.

This function is exactly equivalent to numpy . t ranspose.

See also:

numpy . transpose Equivalent function in top-level NumPy module.

Examples

>>> import numpy.ma as ma

>>> x = ma.arange (4) .reshape ((2,2))
>>> x[1, 1] = ma.masked
>>> x

masked_array (
data=[[0, 11,

[21 77]]!
mask=[[False, False],
[False, Truel],

fill _value=999999)

>>> ma.transpose (x)
masked_array (
data=[[0, 2],

[l/ __]]r
mask=[[False, False],
[False, Truell],

fill _value=999999)

Changing the number of dimensions

ma.atleast_1d(*args, **kwargs) Convert inputs to arrays with at least one dimension.
ma.atleast_2d(*args, **kwargs) View inputs as arrays with at least two dimensions.
ma.atleast_3d(*args, **kwargs) View inputs as arrays with at least three dimensions.
ma.expand_dims(a, axis) Expand the shape of an array.
Continued on next page
304 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 77 — continued from previous page

ma . squeeze(al, axis]) Remove single-dimensional entries from the shape of an
array.

ma.MaskedArray.squeeze([axis]) Remove single-dimensional entries from the shape of a.

ma . stack(*args, **kwargs) Join a sequence of arrays along a new axis.

ma.column_stack(*args, **kwargs) Stack 1-D arrays as columns into a 2-D array.

ma . concatenate(arrays[, axis]) Concatenate a sequence of arrays along the given axis.

ma . dstack(*args, **kwargs) Stack arrays in sequence depth wise (along third axis).

ma. hstack(*args, **kwargs) Stack arrays in sequence horizontally (column wise).

ma. hsplit(*args, **kwargs) Split an array into multiple sub-arrays horizontally
(column-wise).

ma.mr._ Translate slice objects to concatenation along the first
axis.

ma.row_stack(*args, **kwargs) Stack arrays in sequence vertically (row wise).

ma . vstack(*args, **kwargs) Stack arrays in sequence vertically (row wise).

numpy .ma.atleast_1d (*args,

**kwargs) = <numpy.ma.extras.

_fromnxfunction_allargs object>

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters
arysl, arys2, ... [array_like] One or more input arrays.
Returns

ret [ndarray] An array, or list of arrays, each with a.ndim >= 1. Copies are made only if

necessary.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_1d(1.0)

array ([1.])
>>> x = np.arange (9.0) .reshape (3, 3)
>>> np.atleast_1d(x)
array ([[0., 1., 2.1,
[3., 4., 5.1,
[6., 7., 8.11)
>>> np.atleast_1ld(x) is x
True

>>> np.atleast_1d(1, [3, 4])
l[array ([1]), array([3, 4])]

numpy .ma.atleast_2d (*args,

**kwargs) = <numpy.ma.extras.

_fromnxfunction_allargs object>

View inputs as arrays with at least two dimensions.

1.7. Masked arrays 305

NumPy Reference, Release 1.17.0

Parameters

arysl, arys2, ... [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have two or more dimensions are preserved.

Returns

res, res2,... [ndarray] An array, or list of arrays, each with a.ndim >= 2. Copies are
avoided where possible, and views with two or more dimensions are returned.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_2d(3.0)
array ([[3.11])

>>> x = np.arange (3.0)

>>> np.atleast_2d(x)

array ([[0., 1., 2.11)

>>> np.atleast_2d(x) .base is x
True

>>> np.atleast_2d(1, [1, 21, [[1, 211)
larray ([[1]11), array([[1, 2]]), array([[1, 2]])]
numpy .ma.atleast_3d (*args, *kkwargs) = <numpy.ma.extras.

_fromnxfunction_allargs object>

View inputs as arrays with at least three dimensions.

Parameters

arysl, arys2, ... [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have three or more dimensions are preserved.

Returns

resl, res2,... [ndarray] An array, or list of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are returned. For example,
a 1-D array of shape (N,) becomes a view of shape (1, N, 1), anda?2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> np.atleast_3d(3.0)
array ([[[3.]1]1])

306 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> x = np.arange (3.0)
>>> np.atleast_3d(x) .shape
(1, 3, 1)

>>> x = np.arange (12.0) .reshape (4, 3)
>>> np.atleast_3d(x) .shape

(4, 3, 1)

>>> np.atleast_3d(x) .base is x.base # x is a reshape, so not base itself
True

>>> for arr in np.atleast_3d([1, 2], [[1, 211, [[[1, 211]):

print (arr, arr.shape) # doctest: +SKIP

[1]

(2111 (1, 2, 1)
(001]

(2111 (1, 2, 1)
(eer 2111 (1, 1, 2)

numpy .ma .expand_dims (a, axis)
Expand the shape of an array.

Insert a new axis that will appear at the axis position in the expanded array shape.

Note: Previous to NumPy 1.13.0, neither axis < —a.ndim - 1 nor axis > a.ndim raised errors or
put the new axis where documented. Those axis values are now deprecated and will raise an AxisError in the
future.

Parameters

a [array_like] Input array.

axis [int] Position in the expanded axes where the new axis is placed.
Returns

res [ndarray] View of a with the number of dimensions increased by one.
See also:

squeeze The inverse operation, removing singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples

>>> x = np.array([1,2])
>>> x.shape
(2,)

The following is equivalent to x [np.newaxis, :] or x [np.newaxis]:

1.7. Masked arrays 307

NumPy Reference, Release 1.17.0

>>> y = np.expand_dims (x, axis=0)
>>> y
array ([[1, 2]11])
>>> y.shape
(1, 2)
>>> y = np.expand_dims (x, axis=1) # Equivalent to x[:,np.newaxis]
>>> y
array ([[1],
[211)
>>> y.shape
(2, 1)

Note that some examples may use None instead of np.newaxis. These are the same objects:

>>> np.newaxis is None
True

numpy .ma.squeeze (a, axis=None)

Remove single-dimensional entries from the shape of an array.
Parameters
a [array_like] Input data.
axis [None or int or tuple of ints, optional] New in version 1.7.0.

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns

squeezed [ndarray] The input array, but with all or a subset of the dimensions of length 1 re-
moved. This is always a itself or a view into a.

Raises
ValueError If axis is not None, and an axis being squeezed is not of length 1

See also:

expand_dims The inverse operation, adding singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> x = np.array ([[[0], [11, [2111)
>>> x.shape

(1, 3, 1)

>>> np.squeeze (x) .shape

(3,)

>>> np.squeeze (x, axis=0) .shape
(3, 1)

>>> np.squeeze (x, axis=1) .shape
Traceback (most recent call last):

ValueError: cannot select an axis to squeeze out which has size not equal to one

(continues on next page)

308

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> np.squeeze (x, axis=2) .shape
(1, 3)

numpy .ma . stack (*args, **kwargs) = <numpy.ma.extras._ fromnxfunction_seq object>
Join a sequence of arrays along a new axis.

The axis parameter specifies the index of the new axis in the dimensions of the result. For example,
if axis=0 it will be the first dimension and if axis=-1 it will be the last dimension.

New in version 1.10.0.

Parameters
arrays [sequence of array_like]

Each array must have the same shape.

axis [int, optional] The axis in the result array along which the input arrays are stacked.

out [ndarray, optional] If provided, the destination to place the result. The shape must
be correct, matching that of what stack would have returned if no out argument were
specified.

Returns

stacked [ndarray] The stacked array has one more dimension than the input arrays.
See also:
concatenate Join a sequence of arrays along an existing axis.
split Split array into a list of multiple sub-arrays of equal size.
block Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> arrays = [np.random.randn (3, 4) for _ in range(10)]
>>> np.stack (arrays, axis=0).shape

(10, 3, 4)

>>> np.stack (arrays, axis=1) .shape
(3, 10, 4)

>>> np.stack (arrays, axis=2).shape
(3, 4, 10)

1.7. Masked arrays 309

NumPy Reference, Release 1.17.0

>>> a = np.array([l, 2, 31)
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))
array ([[1, 2, 31,

(2, 3, 411)

>>> np.stack((a, b), axis=-1)

array ([[1, 2],
(2, 31,
(3, 411)
numpy .ma .column_stack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq

object>

Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are
stacked as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters

tup [sequence of 1-D or 2-D arrays.] Arrays to stack. All of them must have the same first
dimension.

Returns

stacked [2-D array] The array formed by stacking the given arrays.

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack ((a,b))
array ([[1, 21,

(2, 31,

(3, 411)

numpy .ma . concatenate (arrays, axis=0)
Concatenate a sequence of arrays along the given axis.

Parameters

arrays [sequence of array_like] The arrays must have the same shape, except in the dimension
corresponding to axis (the first, by default).

axis [int, optional] The axis along which the arrays will be joined. Default is 0.
Returns
result [MaskedArray] The concatenated array with any masked entries preserved.

See also:

numpy . concatenate Equivalent function in the top-level NumPy module.

310 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> import numpy.ma as ma

>>> a = ma.arange(3)

>>> al[l] = ma.masked

>>> b = ma.arange (2, 5)

>>> a

masked_array (data=[0, --, 2],

mask=[False, True, False],
fill_value=999999)
>>> Db
masked_array (data=[2, 3, 4],
mask=False,
fill_value=999999)
>>> ma.concatenate([a, b])
masked_array (data=[0, --, 2, 2, 3, 4],
mask=[False, True, False, False, False, False],
fill_value=999999)

numpy .ma .dstack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq
object>

Stack arrays in sequence depth wise (along third axis).

This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been
reshaped to (M,N,I) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays
divided by dsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D
or 2-D arrays must have the same shape.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 3-D.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack along first axis.

hstack Stack along second axis.

concatenate Join a sequence of arrays along an existing axis.

dsplit Split array along third axis.

Notes

The function is applied to both the _data and the _mask, if any.

1.7. Masked arrays

311

NumPy Reference, Release 1.17.0

Examples
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array ([[[1, 2],
(2, 31,
(3, 4111)
>>> a = np.array ([[1],[2]1,(311)
>>> b = np.array ([[2],[3],[4]11])
>>> np.dstack((a,b))
array ([[[1, 2]],
[z, 311,
(L3, 4111
numpy .ma . hstack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq
object>

Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates
along the first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the second axis,
except 1-D arrays which can be any length.

Returns

stacked [ndarray] The array formed by stacking the given arrays.
See also:

stack Join a sequence of arrays along a new axis.

vstack Stack arrays in sequence vertically (row wise).
dstack Stack arrays in sequence depth wise (along third axis).
concatenate Join a sequence of arrays along an existing axis.
hsplit Split array along second axis.

block Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

312 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> a = np.array((1,2,3))

>>> b = np.array((2,3,4))

>>> np.hstack((a,b))

array ([1, 2, 3, 2, 3, 41)

>>> a = np.array ([[1],[2]1,1[311)
>>> b = np.array ([[2],[3]1,[41])
>>> np.hstack((a,b))

array ([[1, 2],
[2 r 3] ’
(3, 411)
numpy .ma.hsplit (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_single
object>

Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is
always split along the second axis regardless of the array dimension.

See also:

split Split an array into multiple sub-arrays of equal size.

Notes

The function is applied to both the _data and the _mask, if any.

Examples
>>> x = np.arange (16.0) .reshape (4, 4)
>>> x
array ([[O., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.71,
[12., 13., 14., 15.11)
>>> np.hsplit(x, 2)
[array ([[0., 1.7,
[4., 5.1,
[8., 9.1,
[12., 13.11),
array ([[2., 3.1,
[6., 7.1,
[1o., 11.1,
[14., 15.11)]
>>> np.hsplit(x, np.array([3, 6]))
[array ([[O., 1., 2.1,
[4., 5., 6.1,
[8., 9., 10.1,
[12., 13., 14.11),
array ([[3.1,
[7.1,
[11.1,
[15.11),
array ([], shape=(4, 0), dtype=float64d)]

1.7. Masked arrays 313

NumPy Reference, Release 1.17.0

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange (8.0) .reshape (2, 2, 2)
>>> X
array ([[[0., 1.1,
(2., 3.11,
[f4., 5.1,
(6., 7.111)
>>> np.hsplit(x 2)
larray ([[[0., 11y
[[4]]J),
array([[[3 11,
[[6., L1101
numpy.ma.mr_ = <numpy.ma.extras.mr_class object>

Translate slice objects to concatenation along the first axis.
This is the masked array version of /ib.index_tricks.RClass.
See also:

lib.index_tricks.RClass

Examples

>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
masked_array (data=[1, 2, 3, ..., 4, 5, 6],
mask=False,
fill _value=999999)

numpy .ma.row_stack (*args, **kwargs) = <numpy.ma.extras._ fromnxfunction_seq

object>
Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been
reshaped to (1,N). Rebuilds arrays divided by vsplir.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and 1/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 2-D.
See also:

stack Join a sequence of arrays along a new axis.
hstack Stack arrays in sequence horizontally (column wise).
dstack Stack arrays in sequence depth wise (along third dimension).

concatenate Join a sequence of arrays along an existing axis.

314

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

vsplit Split array into a list of multiple sub-arrays vertically.

block Assemble arrays from blocks.

Notes

The function is applied to both the _data and the _mask, if any.

Examples
>>> a = np.array([1l, 2, 31)
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array ([[1, 2, 31,
(2, 3, 411)
>>> a = np.array ([[1], [2], [311)
>>> b = np.array([[2], [3], [411)
>>> np.vstack((a,b))
array ([[1],
(21,
(31,
(21,
[31,
[(411)
numpy .ma.vstack (*args, **kwargs) = <numpy.ma.extras._fromnxfunction_seq

object>

Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been
reshaped to (1,N). Rebuilds arrays divided by vsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-
data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions
concatenate, stack and block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns

stacked [ndarray] The array formed by stacking the given arrays, will be at least 2-D.
See also:

stack Join a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise).
dstack Stack arrays in sequence depth wise (along third dimension).
concatenate Join a sequence of arrays along an existing axis.
vsplit Split array into a list of multiple sub-arrays vertically.

block Assemble arrays from blocks.

1.7. Masked arrays 315

NumPy Reference, Release 1.17.0

Notes

The function is applied to both the _data and the _mask, if any.

Examples

>>> a = np.array([1, 2, 31)
>>> b = np.array([2, 3, 4])
>>> np.vstack ((a,b))
array ([[1, 2, 31,

[2, 3, 411)

>>> a = np.array ([[1],]
>>> b = np.array ([[2], [3], [4]1])
>>> np.vstack((a,b))

array ([[1],

Joining arrays

ma . stack(*args, **kwargs) Join a sequence of arrays along a new axis.
ma.column_stack(*args, **kwargs) Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays|, axis]) Concatenate a sequence of arrays along the given axis.
ma . append(a, b[, axis]) Append values to the end of an array.

ma . dstack(*args, **kwargs) Stack arrays in sequence depth wise (along third axis).
ma. hstack(*args, **kwargs) Stack arrays in sequence horizontally (column wise).
ma . vstack(*args, **kwargs) Stack arrays in sequence vertically (row wise).

numpy .ma . append (a, b, axis=None)
Append values to the end of an array.

New in version 1.9.0.
Parameters
a [array_like] Values are appended to a copy of this array.

b [array_like] These values are appended to a copy of a. It must be of the correct shape (the
same shape as a, excluding axis). If axis is not specified, b can be any shape and will be
flattened before use.

axis [int, optional] The axis along which v are appended. If axis is not given, both a and b are
flattened before use.

Returns

append [MaskedArray] A copy of a with b appended to axis. Note that append does not occur
in-place: a new array is allocated and filled. If axis is None, the result is a flattened array.

See also:

316 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

numpy . append Equivalent function in the top-level NumPy module.

Examples

>>> import numpy.ma as ma

>>> a = ma.masked_values([1l, 2, 31, 2)

>>> b = ma.masked_values ([[4, 5, 61, [7, 8, 911, 7)
>>> ma.append(a, b)

masked_array (data=[1, --, 3, 4, 5, 6, ——, 8, 9],
mask=[False, True, False, False, False, False, True, False,
False],

fill _value=999999)

Operations on masks

Creating a mask

ma . make_mask(ml[, copy, shrink, dtype]) Create a boolean mask from an array.

ma.make_mask_none(newshapel[, dtype]) Return a boolean mask of the given shape, filled with
False.

ma .mask_or(ml, m2[, copy, shrink]) Combine two masks with the 1ogical_or operator.

ma.make_mask_descr(ndtype) Construct a dtype description list from a given dtype.

numpy .ma .make_mask (m, copy=False, shrink=True, dtype=<class 'numpy.bool_">)

Create a boolean mask from an array.

Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence
that is convertible to integers, or nomask. Does not require that contents must be Os and 1s, values of O are
interepreted as False, everything else as True.

Parameters
m [array_like] Potential mask.
copy [bool, optional] Whether to return a copy of m (True) or m itself (False).
shrink [bool, optional] Whether to shrink m to nomask if all its values are False.

dtype [dtype, optional] Data-type of the output mask. By default, the output mask has a dtype
of MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored
when m is nomask, in which case nomask is always returned.

Returns

result [ndarray] A boolean mask derived from m.

Examples

>>> import numpy.ma as ma

>>> m = [True, False, True, True]
>>> ma.make_mask (m)
array ([True, False, True, True])

(continues on next page)

1.7. Masked arrays 317

NumPy Reference, Release 1.17.0

(continued from previous page)

>>m = [1, 0, 1, 1]

>>> ma.make_mask (m)

array ([True, False, True, Truel])
>>m = [1, 0, 2, -3]

>>> ma.make_mask (m)

array ([True, False, True, Truel])

Effect of the shrink parameter.

>>> m = np.zeros (4)

>>> m

array([0., 0., 0., 0.1])

>>> ma.make_mask (m)

False

>>> ma.make_mask (m, shrink=False)
array ([False, False, False, False])

Using a flexible dtype.

>>m = [1, 0, 1, 1]

>>> n = [0, 1, 0, O]

>>> arr = []

>>> for man, mouse in zip(m, n):
.. arr.append((man, mouse))
>>> arr

((x, o), (0, 1), (1, 0), (1, 0)]

>>> dtype = np.dtype({'names':['man', 'mouse'],

C 'formats':[np.int64, np.int64]})

>>> arr = np.array(arr, dtype=dtype)

>>> arr

array ([(1, 0), (0, 1), (1, 0), (1, 0)1,
dtype=[('man', '<i8'), ('mouse', '<i8")])

>>> ma.make_mask (arr, dtype=dtype)
array ([(True, False), (False, True), (True, False), (True, False)],
dtype=[('man', '|bl'"), ('mouse', '|bl')])

numpy .ma .make_mask_none (newshape, dtype=None)

Return a boolean mask of the given shape, filled with False.

This function returns a boolean ndarray with all entries False, that can be used in common mask manipulations.
If a complex dtype is specified, the type of each field is converted to a boolean type.

Parameters
newshape [tuple] A tuple indicating the shape of the mask.

dtype [{None, dtype}, optional] If None, use a MaskType instance. Otherwise, use a new
datatype with the same fields as dfype, converted to boolean types.

Returns
result [ndarray] An ndarray of appropriate shape and dtype, filled with False.

See also:

make_mask Create a boolean mask from an array.

make mask descr Construct a dtype description list from a given dtype.

318

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> import numpy.ma as ma
>>> ma.make_mask_none ((3,))
array ([False, False, Falsel])

Defining a more complex dtype.

>>> dtype = np.dtype({'names':['foo', 'bar'],

C. 'formats':[np.float32, np.int64]})
>>> dtype

dtype ([('"foo', '<f4'), ('bar', '<i8")])

>>> ma.make_mask_none ((3,), dtype=dtype)
array ([(False, False), (False, False), (False, False)],
dtype=[('foo', '|bl"'), ('bar', '|bl')])

numpy .ma .mask_or (ml, m2, copy=~False, shrink=True)
Combine two masks with the 1ogical_or operator.

The result may be a view on m or m2 if the other is nomask (i.e. False).
Parameters
ml, m2 [array_like] Input masks.

copy [bool, optional] If copy is False and one of the inputs is nomask, return a view of the
other input mask. Defaults to False.

shrink [bool, optional] Whether to shrink the output to nomask if all its values are False.
Defaults to True.

Returns
mask [output mask] The result masks values that are masked in either m/ or m2.
Raises

ValueError If m/ and m2 have different flexible dtypes.

Examples
>>> ml = np.ma.make_mask ([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])

>>> np.ma.mask_or (ml, m2)
array ([True, True, True, False])

numpy .ma .make_mask_descr (ndtype)
Construct a dtype description list from a given dtype.

Returns a new dtype object, with the type of all fields in ndtype to a boolean type. Field names are not altered.

Parameters
ndtype [dtype] The dtype to convert.
Returns

result [dtype] A dtype that looks like ndtype, the type of all fields is boolean.

1.7. Masked arrays

NumPy Reference, Release 1.17.0

Examples

>>> import numpy.ma as ma

'bar'],

np.int641]})

>>> dtype = np.dtype({'names':['foo",

C. 'formats':[np.float32,
>>> dtype

dtype ([("foo', '<f4'), ('bar', '<i8")])

>>> ma.make_mask_descr (dtype)

dtype ([('foo', '|Ibl'), ('bar', '|bl")1])

>>> ma.make_mask_descr (np.float32)
dtype ('bool"')

Accessing a mask

ma.

getmask(a)

Return the mask of a masked array, or nomask.

ma.

getmaskarray(arr)

Return the mask of a masked array, or full boolean array
of False.

ma.masked_array.mask

Current mask.

attribute

masked_array.mask

Current mask.

Finding masked data

ma.flatnotmasked contiguous(a) Find contiguous unmasked data in a masked array along
the given axis.

ma.flatnotmasked_edges(a) Find the indices of the first and last unmasked values.

ma.notmasked contiguous(a[, axis]) Find contiguous unmasked data in a masked array along
the given axis.

ma.notmasked edges(a[, axis]) Find the indices of the first and last unmasked values
along an axis.

ma.clump_masked(a) Returns a list of slices corresponding to the masked
clumps of a 1-D array.

ma.clump_unmasked(a) Return list of slices corresponding to the unmasked

clumps of a 1-D array.

numpy .ma . flatnotmasked_contiguous (a)

Parameters
a [narray] The input array.

Returns

Find contiguous unmasked data in a masked array along the given axis.

slice_list [list] A sorted sequence of slice objects (start index, end index).

..versionchanged:: 1.15.0 Now returns an empty list instead of None for a fully masked

array

See also:

320

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

flatnotmasked edges, notmasked_contiguous,
clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

notmasked_edges,

clump_masked,

>>> a = np.ma.arange (10)
>>> np.ma.flatnotmasked_contiguous (a)
[slice (0, 10, None)]

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> al[mask] = np.ma.masked

>>> np.array(al[~a.mask])

array ([3, 4, 6, 7, 81)

>>> np.ma.flatnotmasked_contiguous (a)
[slice (3, 5, None), slice(6, 9, None)]
>>> af:] = np.ma.masked

>>> np.ma.flatnotmasked_contiguous (a)

L]

numpy .ma . flatnotmasked_edges (a)

Find the indices of the first and last unmasked values.

Expects a 1-D MaskedArray, returns None if all values are masked.

Parameters
a [array_like] Input 1-D MaskedArray

Returns

edges [ndarray or None] The indices of first and last non-masked value in the array. Returns

None if all values are masked.

See also:

flatnotmasked contiguous, notmasked_contiguous, notmasked_edges, clump_masked,

clump_unmasked

Notes

Only accepts 1-D arrays.

Examples

>>> a = np.ma.arange (10)
>>> np.ma.flatnotmasked_edges (a)
array ([0, 9])

1.7. Masked arrays

321

NumPy Reference, Release 1.17.0

>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked

>>> np.array(al[~a.mask])

array ([3, 4, 6, 7, 81)

>>> np.ma.flatnotmasked_edges (a)
array ([3, 81])

>>> al[:] = np.ma.masked
>>> print (np.ma.flatnotmasked_edges(a))
None

numpy .ma.notmasked_contiguous (a, axis=None)

Find contiguous unmasked data in a masked array along the given axis.
Parameters
a [array_like] The input array.

axis [int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array, and this is the same as flatnotmasked_contiguous.

Returns
endpoints [list] A list of slices (start and end indexes) of unmasked indexes in the array.
If the input is 2d and axis is specified, the result is a list of lists.
See also:

flatnotmasked edges, flatnotmasked contiguous, notmasked _edges, clump_masked,
clump_unmasked

Notes

Only accepts 2-D arrays at most.

Examples

>>> a = np.arange (12) .reshape((3, 4))

>>> mask = np.zeros_like(a)

>>> mask([l:, :-1] = 1; mask([0, 1] = 1; mask[-1, 0] = O
>>> ma = np.ma.array(a, mask=mask)

>>> ma

masked_array (
data=[[0, --, 2, 3],
==y — — 71,
(8, ——, ——, 1111,
mask=[[False, True, False, False],
[True, True, True, False],
[False, True, True, Falsel],
fill value=999999)
>>> np.array (ma[~ma.mask])
array ([0, 2, 3, 7, 8, 111)

>>> np.ma.notmasked_contiguous (ma)
[slice (0, 1, None), slice (2, 4, None), slice(7, 9, None), slice(1l1l, 12, None)]

322

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> np.ma.notmasked_contiguous (ma, axis=0)
[[slice (0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3,
—None)]]

>>> np.ma.notmasked_contiguous (ma, axis=1)
[[slice (0, 1, None), slice(2, 4, None)], [slice(3, 4, None)l], [slice(0, 1, None),
—~slice (3, 4, None)]]

numpy .ma .notmasked_edges (a, axis=None)
Find the indices of the first and last unmasked values along an axis.

If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the
first and last unmasked values respectively.

Parameters
a [array_like] The input array.

axis [int, optional] Axis along which to perform the operation. If None (default), applies to a
flattened version of the array.

Returns

edges [ndarray or list] An array of start and end indexes if there are any masked data in the
array. If there are no masked data in the array, edges is a list of the first and last index.

See also:

flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous,
clump_masked, clump_ unmasked

Examples

>>> a = np.arange (9) .reshape ((3, 3))

>>> m = np.zeros_like(a)
>>> m[l:, 1:] =1
>>> am = np.ma.array(a, mask=m)

>>> np.array (am[~am.mask])
array ([0, 1, 2, 3, 61)

>>> np.ma.notmasked_edges (am)
array ([0, 6])

numpy .ma .clump_masked (a)
Returns a list of slices corresponding to the masked clumps of a 1-D array. (A “clump” is defined as a contiguous
region of the array).

Parameters
a [ndarray] A one-dimensional masked array.
Returns
slices [list of slice] The list of slices, one for each continuous region of masked elements in a.
See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges,
notmasked_contiguous, clump_unmasked

1.7. Masked arrays 323

NumPy Reference, Release 1.17.0

Notes

New in version 1.4.0.

Examples

>>> a = np.ma.masked_array (np.arange (10))
>>> afl[0, 1, 2, 6, 8, 9]] = np.ma.masked

>>> np.ma.clump_masked(a)
[slice (0, 3, None), slice(6, 7, None),

slice (8, 10, None)]

numpy .ma .clump_unmasked (a)
Return list of slices corresponding to the unmasked clumps of a 1-D array. (A “clump” is defined as a contiguous

region of the array).

Parameters

a [ndarray] A one-dimensional masked array.

Returns

slices [list of slice] The list of slices, one for each continuous region of unmasked elements in

a.

See also:

flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges,

notmasked_contiguous, clump_masked

Notes

New in version 1.4.0.

Examples

>>> a = np.ma.masked_array (np.arange (10))

>>> a[[0, 1, 2, 6, 8, 9]]
>>> np.ma.clump_unmasked(a
(

)
[slice (3, 6, None), slice(7, 8, None)]

np.ma.masked

Modifying a mask

ma.mask_cols(a[, axis]) Mask columns of a 2D array that contain masked values.
ma .mask_or(ml, m2[, copy, shrink]) Combine two masks with the 1ogical_or operator.
ma.mask_rowcols(a[, axis]) Mask rows and/or columns of a 2D array that contain
masked values.

ma.mask_rows(al, axis]) Mask rows of a 2D array that contain masked values.
ma . harden_mask(self) Force the mask to hard.
ma.soften_mask(self) Force the mask to soft.
ma.MaskedArray.harden_mask(self) Force the mask to hard.
ma.MaskedArray.soften_mask(self) Force the mask to soft.

Continued on next page

324 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 82 — continued from previous page
ma.MaskedArray.shrink_mask(self) Reduce a mask to nomask when possible.
ma.MaskedArray.unshare_mask(self) Copy the mask and set the sharedmask flag to False.

numpy .ma.mask_cols (a, axis=None)
Mask columns of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 1.

See also:

mask_rowcols Mask rows and/or columns of a 2D array.

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)

>>> af[l, 1] =1
>>> a
array ([[0, 0O, O],
(0, 1, 01,
[0, 0, 01D
>>> a = ma.masked_equal(a, 1)

>>> a
masked_array (
data=[[0, 0, 0],

[Ol T O]I

(0, 0, 011,
mask=[[False, False, False],

[False, True, False]

o~

[False, False, False]
fill_value=1)
>>> ma.mask_cols (a)
masked_array (

’

data=[[0, --, 0],
[0, ——, 01,
(0, ——, 011,
mask=[[False, True, False],
[False, True, False],
[False, True, False]]

4

fill_value=1)

numpy .ma .mask_rowcols (a, axis=None)
Mask rows and/or columns of a 2D array that contain masked values.

Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected
using the axis parameter.

o If axis is None, rows and columns are masked.
e If axis is 0, only rows are masked.

e If axis is 1 or -1, only columns are masked.

Parameters

1.7. Masked arrays 325

NumPy Reference, Release 1.17.0

a [array_like, MaskedArray] The array to mask. If not a MaskedArray instance (or if no array
elements are masked). The result is a MaskedArray with mask set to noma sk (False). Must
be a 2D array.

axis [int, optional] Axis along which to perform the operation. If None, applies to a flattened
version of the array.

Returns

a [MaskedArray] A modified version of the input array, masked depending on the value of the
axis parameter.

Raises

NotImplementedError If input array a is not 2D.
See also:

mask_rows Mask rows of a 2D array that contain masked values.
mask_cols Mask cols of a 2D array that contain masked values.

masked where Mask where a condition is met.

Notes

The input array’s mask is modified by this function.

Examples

>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)

>>> a[l, 1] =1
>>> g
array ([[0, O, O],
[0, 1, 01,
[0, 0, 01D
>>> a = ma.masked_equal(a, 1)
>>> a

masked_array (
data=[[0, 0, 0],
(0, ——, 01,
(0, 0, 011,
mask=[[False, False, False],
[False, True, False]
[False, False, False]
fill_value=1)
>>> ma.mask_rowcols (a)
masked_array (
data=[[0, --, 01,

o~

4

[——y —+ —1,

(0, ——, 011,
mask=[[False, True, False],

[True, True, True]

[False, True, False]
fill _value=1)

o~

4

326 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

numpy .ma .mask_rows (a, axis=None)
Mask rows of a 2D array that contain masked values.

This function is a shortcut to mask_rowcols with axis equal to 0.

See also:

mask_rowcols Mask rows and/or columns of a 2D array.

masked where Mask where a condition is met.

Examples

>>> import numpy.ma as ma

>>> a = np.zeros((3, 3), dtype=int)
>>> af[l, 1] =1
>>> a
array([[0, O, O],
[0, 1, 01,
[0, 0, 011)
>>> a = ma.masked_equal(a, 1)

>>> g
masked_array (
data=[[0, 0, 07,

[OI T O]I

[OI OI O]]I
mask=[[False, False, False],

[False, True, False]

o~

[False, False, False]
fill value=1)

’

>>> ma.mask_rows (a)
masked_array (
data=[[0, 0, 0],

Tr T 77]/

[,

(0, 0, 011,
mask=[[False, False, False],

[True, True, True]

o~

[False, False, False]
fill_value=1)

’

numpy .ma .harden_mask (self) = <numpy.ma.core._frommethod object>
Force the mask to hard.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. harden_mask
sets hardmask to True.

See also:
hardmask

numpy .ma .soften_mask (self) = <numpy.ma.core._frommethod object>
Force the mask to soft.

Whether the mask of a masked array is hard or soft is determined by its hardmask property. soften_mask
sets hardmask to False.

See also:

hardmask

1.7. Masked arrays 327

NumPy Reference, Release 1.17.0

Conversion operations

> to a masked array

ma.asarray(al, dtype, order]) Convert the input to a masked array of the given data-
type.

ma.asanyarray(al, dtype]) Convert the input to a masked array, conserving sub-
classes.

ma. fix_invalid(a[, mask, copy, fill_value]) Return input with invalid data masked and replaced by
a fill value.

ma.masked_equal(Xx, value[, copy]) Mask an array where equal to a given value.

ma.masked_greater(x, value[, copy]) Mask an array where greater than a given value.

ma.masked_greater_equal(Xx, value[, copy]) Mask an array where greater than or equal to a given
value.

ma.masked_inside(x, vl, v2[, copy]) Mask an array inside a given interval.

ma.masked_invalid(a[, copy]) Mask an array where invalid values occur (NaNs or
infs).

ma.masked_1less(x, value[, copy]) Mask an array where less than a given value.

ma.masked_less_equal(X, value[, copy]) Mask an array where less than or equal to a given value.

ma.masked_not_equal(x, value[, copy]) Mask an array where not equal to a given value.

ma.masked_ob ject(X, value[, copy, shrink]) Mask the array x where the data are exactly equal to
value.

ma.masked_outside(x, vl, v2[, copy]) Mask an array outside a given interval.

ma.masked_values(X, value[, rtol, atol, ...]) Mask using floating point equality.

ma .masked_where(condition, a[, copy]) Mask an array where a condition is met.

> to a ndarray

ma.

compress_cols(a)

Suppress whole columns of a 2-D array that contain
masked values.

ma.

compress_rowcols(X[, axis])

Suppress the rows and/or columns of a 2-D array that
contain masked values.

ma.

compress_rows(a)

Suppress whole rows of a 2-D array that contain masked
values.

ma.

compressed(X)

Return all the non-masked data as a 1-D array.

ma.

filled(a[, fill_value])

Return input as an array with masked data replaced by a
fill value.

ma.

MaskedArray.compressed(self)

Return all the non-masked data as a 1-D array.

ma

.MaskedArray. filled(self[, fill_value])

Return a copy of self, with masked values filled with a
given value.

numpy .ma.compress_cols (a)
Suppress whole columns of a 2-D array that contain masked values.

This is equivalent to np .ma.compress_rowcols (a,

tails.

See also:

1), see extras.compress_rowcols for de-

328

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

extras.compress_rowcols

numpy .ma.compress_rowcols (x, axis=None)
Suppress the rows and/or columns of a 2-D array that contain masked values.

The suppression behavior is selected with the axis parameter.
* If axis is None, both rows and columns are suppressed.
* If axis is 0, only rows are suppressed.

e If axis is 1 or -1, only columns are suppressed.

Parameters

x [array_like, MaskedArray] The array to operate on. If not a MaskedArray instance (or if no
array elements are masked), x is interpreted as a MaskedArray with mask set to nomask.
Must be a 2D array.

axis [int, optional] Axis along which to perform the operation. Default is None.
Returns

compressed_array [ndarray] The compressed array.

Examples
>>> x = np.ma.array (np.arange(9) .reshape (3, 3), mask=[[1, 0, 0],
[, o, 01,
(0, 0, 01D
>>> x
masked_array (
data=[[--, 1, 21,
[——, 4, 51,
(6, 7, 811,
mask=[[True, False, False],
[

True, False, False],
[False, False, False]],
fill_value=999999)

>>> np.ma.compress_rowcols (x)
array ([[7, 8]])
>>> np.ma.compress_rowcols (x, 0)
array ([[6, 7, 811)
>>> np.ma.compress_rowcols (x, 1)
array ([[1, 21,

(4, 51,

(7, 811

numpy .ma.compress_rows (a)
Suppress whole rows of a 2-D array that contain masked values.

This is equivalent to np.ma.compress_rowcols (a, 0), see extras.compress_rowcols for de-
tails.

See also:

extras.compress_rowcols

1.7. Masked arrays 329

NumPy Reference, Release 1.17.0

numpy .ma .compressed (x)
Return all the non-masked data as a 1-D array.

This function is equivalent to calling the “compressed” method of a MaskedArray, see MaskedArray.
compressed for details.

See also:
MaskedArray.compressed Equivalent method.
numpy .ma.filled (aq, fill_value=None)

Return input as an array with masked data replaced by a fill value.

If ais nota MaskedArray, a itself is returned. If a is a MaskedArray and fill_value is None, fill_value is
settoa.fill_value.

Parameters

a [MaskedArray or array_like] An input object.

fill_value [scalar, optional] Filling value. Default is None.
Returns

a [ndarray] The filled array.

See also:
compressed
Examples
>>> x = np.ma.array (np.arange(9) .reshape (3, 3), mask=[[1, 0, 0],
(1, 0, 01,
(0, 0, 01D
>>> x.filled()
array ([[999999, 1, 21,
[999999, 4, 5],
[6, 7, 811)

> to another object

ma.MaskedArray.tofile(self, fid[, sep, format]) Save a masked array to a file in binary format.

ma.MaskedArray.tolist(self], fill_value]) Return the data portion of the masked array as a hierar-

chical Python list.
ma.MaskedArray.torecords(self) Transforms a masked array into a flexible-type array.
ma.MaskedArray.tobytes(self[, fill_value, or- Return the array data as a string containing the raw bytes
der]) in the array.

Pickling and unpickling

ma . dump(a, F) Pickle a masked array to a file.
ma . dumps(a) Return a string corresponding to the pickling of a
masked array.

Continued on next page

330 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Table 86 — continued from previous page

ma . Ioad(F) Wrapper around cPickle.load which accepts either
a file-like object or a filename.
ma . loads(strg) Load a pickle from the current string.

numpy .ma .dump (a, F)
Pickle a masked array to a file.

This is a wrapper around cPickle.dump.
Parameters
a [MaskedArray] The array to be pickled.
F [str or file-like object] The file to pickle a to. If a string, the full path to the file.

numpy .ma . dumps (a)
Return a string corresponding to the pickling of a masked array.

This is a wrapper around cPickle.dumps.
Parameters

a [MaskedArray] The array for which the string representation of the pickle is returned.

numpy .ma . load (F)
Wrapper around cPickle.load which accepts either a file-like object or a filename.

Parameters
F [str or file] The file or file name to load.

See also:

dump Pickle an array

Notes

This is different from numpy . 1 oad, which does not use cPickle but loads the NumPy binary .npy format.

numpy .ma . loads (strg)
Load a pickle from the current string.

The result of cPickle.loads (strg) isreturned.
Parameters
strg [str] The string to load.

See also:

dumps Return a string corresponding to the pickling of a masked array.

Filling a masked array

ma.common_fill_value(a,b) Return the common filling value of two masked arrays,
if any.
ma.default_fill_value(obj) Return the default fill value for the argument object.

Continued on next page

1.7. Masked arrays 331

NumPy Reference, Release 1.17.0

Table 87 — continued from previous page

ma.maximum_f£ill_value(obj) Return the minimum value that can be represented by
the dtype of an object.

ma.maximum_f£1ill_value(obj) Return the minimum value that can be represented by
the dtype of an object.

ma.set_rill value(a, fill_value) Set the filling value of a, if a is a masked array.

ma.MaskedArray.get_fill_value(self) The filling value of the masked array is a scalar.

ma.MaskedArray.set_fill_value(self],

value])

numpy .ma.common_f£fill_ wvalue (a, b)
Return the common filling value of two masked arrays, if any.

Ifa.fill _value == b.fill_value, return the fill value, otherwise return None.
Parameters
a, b [MaskedArray] The masked arrays for which to compare fill values.
Returns

fill_value [scalar or None] The common fill value, or None.

Examples

>>> x = np.ma.array ([0, 1.], fill_value=3)
>>> y = np.ma.array ([0, 1.], fill_value=3)
>>> np.ma.common_fill_ value(x, V)

3.0

numpy .ma.default_£fill_ wvalue (0bj)
Return the default fill value for the argument object.

The default filling value depends on the datatype of the input array or the type of the input scalar:

datatype | default
bool True

int 999999
float 1.e20
complex 1.e20+0j
object ‘“r

string ‘N/A

For structured types, a structured scalar is returned, with each field the default fill value for its type.
For subarray types, the fill value is an array of the same size containing the default scalar fill value.
Parameters

obj [ndarray, dtype or scalar] The array data-type or scalar for which the default fill value is
returned.

Returns

fill_value [scalar] The default fill value.

332 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Examples

>>> np.ma.default_fill_value (1)

999999

>>> np.ma.default_fill_value(np.array([l1.1, 2., np.pil))
le+20

>>> np.ma.default_fill_value (np.dtype (complex))
(1e+20+07)

numpy .ma.maximum £ill value (0bj)

Return the minimum value that can be represented by the dtype of an object.
This function is useful for calculating a fill value suitable for taking the maximum of an array with a given dtype.
Parameters
obj [ndarray, dtype or scalar] An object that can be queried for it’s numeric type.
Returns
val [scalar] The minimum representable value.
Raises
TypeError If obj isn’t a suitable numeric type.

See also:

minimum_ £ill wvalue The inverse function.
set_fill value Set the filling value of a masked array.

MaskedArray.fill value Return current fill value.

Examples

>>> import numpy.ma as ma
>>> a = np.int8()

>>> ma.maximum_fill value (a)
-128

>>> a = np.int32 ()

>>> ma.maximum_fill value (a)
-2147483648

An array of numeric data can also be passed.

>>> a = np.array([1l, 2, 3], dtype=np.int8)
>>> ma.maximum_fill_value (a)

-128

>>> a = np.array([1l, 2, 3], dtype=np.float32)
>>> ma.maximum_fill_value (a)

—-inf

numpy .ma.set_£ill_wvalue (q, fill_value)

Set the filling value of a, if a is a masked array.

This function changes the fill value of the masked array a in place. If a is not a masked array, the function
returns silently, without doing anything.

Parameters

1.7. Masked arrays 333

NumPy Reference, Release 1.17.0

a [array_like] Input array.

fill_value [dtype] Filling value. A consistency test is performed to make sure the value is com-
patible with the dtype of a.

Returns
None Nothing returned by this function.

See also:

maximum_f£fill value Return the default fill value for a dtype.
MaskedArray.fill value Return current fill value.

MaskedArray.set_ fill value Equivalent method.

Examples

>>> import numpy.ma as ma

>>> a = np.arange (5)
>>> a
array ([0, 1, 2, 3, 41)
>>> a = ma.masked_where(a < 3, a)
>>> a
masked_array (data=[--, --, —-—, 3, 4],
mask=[True, True, True, False, False],

fill_value=999999)
>>> ma.set_fill value(a, -999)
>>> a
masked_array (data=[--, —-, ——, 3, 4],
mask=[True, True, True, False, False],
fill _value=-999)

Nothing happens if a is not a masked array.

>>> a = list (range(5))

>>> a

[o, 1, 2, 3, 4]

>>> ma.set_fill_value(a, 100)

>>> a
[o, 1, 2, 3, 4]

>>> a = np.arange (5)
>>> a

array ([0, 1, 2, 3, 41)

>>> ma.set_fill_value(a, 100)
>>> a

array ([0, 1, 2, 3, 4])

ma.MaskedArray.fill_value The filling value of the masked array is a scalar.

Masked arrays arithmetics

334 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Arithmetics

ma.

anom(self], axis, dtype])

Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma . anomalies(self[, axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma . average(al, axis, weights, returned]) Return the weighted average of array over the given
axis.

ma . conjugate(X, /[, out, where, casting, ...]) Return the complex conjugate, element-wise.

ma.corrcoef(x[,y, rowvar, bias, ...]) Return Pearson product-moment correlation coeffi-
cients.

ma . cov(x[, y, rowvar, bias, allow_masked, ddof]) Estimate the covariance matrix.

ma . cumsum(self[, axis, dtype, out]) Return the cumulative sum of the array elements over
the given axis.

ma . cumprod(self], axis, dtype, out]) Return the cumulative product of the array elements
over the given axis.

ma . mean(self], axis, dtype, out, keepdims]) Returns the average of the array elements along given
axis.

ma . median(al, axis, out, overwrite_input, ...]) Compute the median along the specified axis.

ma . power(a, b[, third]) Returns element-wise base array raised to power from

second array.

ma

. prod(self], axis, dtype, out, keepdims])

Return the product of the array elements over the given
axis.

ma . std(self[, axis, dtype, out, ddof, keepdims]) Returns the standard deviation of the array elements
along given axis.

ma . sum(self[, axis, dtype, out, keepdims]) Return the sum of the array elements over the given axis.

ma . var(self], axis, dtype, out, ddof, keepdims]) Compute the variance along the specified axis.

ma.MaskedArray.anom(self], axis, dtype]) Compute the anomalies (deviations from the arithmetic
mean) along the given axis.

ma.MaskedArray.cumprod(self[, axis, dtype, Return the cumulative product of the array elements

out]) over the given axis.

ma.MaskedArray.cumsum(self[, axis, dtype, out]) Return the cumulative sum of the array elements over
the given axis.

ma.MaskedArray.mean(self], axis, dtype, ...]) Returns the average of the array elements along given
axis.

ma.MaskedArray.prod(self], axis, dtype, ...]) Return the product of the array elements over the given
axis.

ma.MaskedArray.std(self, axis, dtype, out, ...]) Returns the standard deviation of the array elements
along given axis.

ma.MaskedArray. sum(self], axis, dtype, out, ...]) Return the sum of the array elements over the given axis.

ma.MaskedArray. var(self[, axis, dtype, out, ...]) Compute the variance along the specified axis.

numpy .ma . anom (self, axis=None, dtype=None)

= <numpy.ma.core._frommethod object>

Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed

along the given axis.

Parameters

axis [int, optional] Axis over which the anomalies are taken. The default is to use the mean of

the flattened array as reference.

dtype [dtype, optional]

1.7.

Masked arrays

335

NumPy Reference, Release 1.17.0

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

See also:

mean Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])

>>> a.anom/()

masked_array (data=[-1., 0., 1.1,

mask=False,
fill_value=1e+20)

numpy .ma.anomalies (self, axis=None, dtype=None) = <numpy.ma.core._frommethod

. object> L , .
Compute the anomalies (deviations from the arithmetic mean) along the given axis.

Returns an array of anomalies, with the same shape as the input and where the arithmetic mean is computed
along the given axis.

Parameters

axis [int, optional] Axis over which the anomalies are taken. The default is to use the mean of
the flattened array as reference.

dtype [dtype, optional]

Type to use in computing the variance. For arrays of integer type the default is
float32; for arrays of float types it is the same as the array type.

See also:

mean Compute the mean of the array.

Examples

>>> a = np.ma.array([1,2,3])

>>> a.anom/()

masked_array (data=[-1., 0., 1.1,

mask=False,
fill value=1e+20)

numpy .ma .average (a, axis=None, weights=None, returned=False)
Return the weighted average of array over the given axis.

Parameters

a [array_like] Data to be averaged. Masked entries are not taken into account in the computa-
tion.

axis [int, optional] Axis along which to average a. If None, averaging is done over the flattened
array.

weights [array_like, optional] The importance that each element has in the computation of the
average. The weights array can either be 1-D (in which case its length must be the size of
a along the given axis) or of the same shape as a. If weights=None, then all data in a

336 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

are assumed to have a weight equal to one. If weights is complex, the imaginary parts are
ignored.

returned [bool, optional] Flag indicating whether a tuple (result, sum of weights)
should be returned as output (True), or just the result (False). Default is False.

Returns

average, [sum_of_weights] [(tuple of) scalar or MaskedArray] The average along the specified
axis. When returned is True, return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is np.float64 if a is of integer type and
floats smaller than float64, or the input data-type, otherwise. If returned, sum_of _weights is
always float64.

Examples

>>> a = np.ma.array([l., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average (a, weights=[3, 1, 0, 0])
1.25

>>> x = np.ma.arange (6.) .reshape (3, 2)
>>> x
masked_array (

data=[[0., 1.7,
(2., 3.1,
(4., 5.11,

mask=False,

fill value=le+20)
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 31,
. returned=True)
>>> avg
masked_array (data=[2.6666666666666665, 3.6666666666666665],

mask=[False, False],
fill value=le+20)

numpy .ma.conjugate (x, /, out=None, *, where=True, casting='same_kind’, order="K’,

dtype=None, sub0k=True[, signature, extobj]) = <numpy.ma.core.

_MaskedUnaryOperation object>
Return the complex conjugate, element-wise.

The complex conjugate of a complex number is obtained by changing the sign of its imaginary part.
Parameters
x [array_like] Input value.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result. Elsewhere, the out array
will retain its original value. Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will remain uninitialized.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

1.7. Masked arrays 337

NumPy Reference, Release 1.17.0

y [ndarray] The complex conjugate of x, with same dtype as y. This is a scalar if x is a scalar.

Notes

conj is an alias for con jugate:

>>> np.conj is np.conjugate
True

Examples

>>> np.conjugate (1+273)
(1-273)

>>> x = np.eye(2) + 13 « np.eye(2)
>>> np.conjugate (x)
array ([[1.-1.73, 0.-0.31,

[0.-0.3, 1.-1.311)

numpy .ma .corrcoef (x, y=None, rowvar=True, bias=<no value>, allow_masked=True, ddof=<no

value>)])
Return Pearson product-moment correlation coefficients.

Except for the handling of missing data this function does the same as numpy . corrcoef. For more details
and examples, see numpy . corrcoef.

Parameters

x [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
X represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same shape as
X.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.10.0.

allow_masked [bool, optional] If True, masked values are propagated pair-wise: if a value is
masked in x, the corresponding value is masked in y. If False, raises an exception. Because
bias is deprecated, this argument needs to be treated as keyword only to avoid a warning.

ddof [_NoValue, optional] Has no effect, do not use.
Deprecated since version 1.10.0.

See also:

numpy . corrcoef Equivalent function in top-level NumPy module.

cov Estimate the covariance matrix.

338 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Notes

This function accepts but discards arguments bias and ddof. This is for backwards compatibility with previous
versions of this function. These arguments had no effect on the return values of the function and can be safely
ignored in this and previous versions of numpy.

numpy .ma . cov (x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None)
Estimate the covariance matrix.

Except for the handling of missing data this function does the same as numpy.cov. For more details and
examples, see numpy . cov.

By default, masked values are recognized as such. If x and y have the same shape, a common mask is allocated:
if x[1, 7] is masked, then y [1, j] will also be masked. Setting allow_masked to False will raise an exception
if values are missing in either of the input arrays.

Parameters

x [array_like] A 1-D or 2-D array containing multiple variables and observations. Each row of
X represents a variable, and each column a single observation of all those variables. Also see
rowvar below.

y [array_like, optional] An additional set of variables and observations. y has the same form as
X.

rowvar [bool, optional] If rowvar is True (default), then each row represents a variable, with
observations in the columns. Otherwise, the relationship is transposed: each column repre-
sents a variable, while the rows contain observations.

bias [bool, optional] Default normalization (False) is by (N—1), where N is the number of
observations given (unbiased estimate). If bias is True, then normalization is by N. This
keyword can be overridden by the keyword ddof in numpy versions >= 1.5.

allow_masked [bool, optional] If True, masked values are propagated pair-wise: if a value is
masked in x, the corresponding value is masked in y. If False, raises a ValueError exception
when some values are missing.

ddof [{None, int}, optional] If not None normalization is by (N - ddof), where N is the
number of observations; this overrides the value implied by bias. The default value is
None.

New in version 1.5.

Raises

See also:

ValueError Raised if some values are missing and allow_masked is False.

numpy.cov

numpy .ma . cumsum (self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod

object>

Return the cumulative sum of the array elements over the given axis.

Masked values are set to O internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Refer to numpy . cumsum for full documentation.

See also:

ndarray.cumsum corresponding function for ndarrays

1.7. Masked arrays

339

NumPy Reference, Release 1.17.0

numpy . cumsum equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

Examples

>>> marr = np.ma.array(np.arange(10), mask=[(0,0,0,1,1,1,0,0,0,01)
>>> marr.cumsum ()
masked_array (data=[(0, 1, 3, —, —, ——, 9, 16, 24, 33],
mask=[False, False, False, True, True, True, False, False,
False, False],
fill_value=999999)

numpy .ma . cumprod (self, axis=None, dtype=None, out=None) = <numpy.ma.core._frommethod

object>])
Return the cumulative product of the array elements over the given axis.

Masked values are set to 1 internally during the computation. However, their position is saved, and the result
will be masked at the same locations.

Refer to numpy . cumprod for full documentation.

See also:

ndarray.cumprod corresponding function for ndarrays
numpy . cumprod equivalent function

Notes

The mask is lost if out is not a valid MaskedArray !

Arithmetic is modular when using integer types, and no error is raised on overflow.

numpy .ma .mean (self, axis=None, dtype=None, out=None, keepdims=<no value>) = <numpy.ma.

core._frommethod object>
Returns the average of the array elements along given axis.

Masked entries are ignored, and result elements which are not finite will be masked.
Refer to numpy . mean for full documentation.

See also:

ndarray.mean corresponding function for ndarrays
numpy . mean Equivalent function

numpy.ma.average Weighted average.

Examples

340

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> a = np.ma.array([1l,2,3], mask=[False, False, True])
>>> a
masked_array (data=[1, 2, -1,
mask=[False, False, True],
fill _value=999999)
>>> a.mean ()
1.5

numpy .ma .median (a, axis=None, out=None, overwrite_input=False, keepdims=False)

Compute the median along the specified axis.
Returns the median of the array elements.
Parameters
a [array_like] Input array or object that can be converted to an array.

axis [int, optional] Axis along which the medians are computed. The default (None) is to com-
pute the median along a flattened version of the array.

out [ndarray, optional] Alternative output array in which to place the result. It must have the
same shape and buffer length as the expected output but the type will be cast if necessary.

overwrite_input [bool, optional] If True, then allow use of memory of input array (a) for calcu-
lations. The input array will be modified by the call to median. This will save memory when
you do not need to preserve the contents of the input array. Treat the input as undefined, but
it will probably be fully or partially sorted. Default is False. Note that, if overwrite_input is
True, and the input is not already an ndarray, an error will be raised.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

New in version 1.10.0.
Returns

median [ndarray] A new array holding the result is returned unless out is specified, in which
case a reference to out is returned. Return data-type is float64 for integers and floats smaller
than float64, or the input data-type, otherwise.

See also:
mean

Notes

Given a vector V with N non masked values, the median of V is the middle value of a sorted copy of V (Vs) - i.e.
Vs [(N-1)/2],whenNisodd,or {Vs[N/2 - 1] + Vs[N/2]}/2 when N is even.

Examples

>>> x = np.ma.array(np.arange (8), mask=[0]%4 + [1]=x4)
>>> np.ma.median (x)
1.5

1.7. Masked arrays 341

NumPy Reference, Release 1.17.0

>>> x = np.ma.array (np.arange (10) .reshape (2, 5), mask=[0]%6 + [1]x4)
>>> np.ma.median (x)
2.5

>>> np.ma.median(x, axis=-1, overwrite_input=True)
masked_array (data=[2.0, 5.0],
mask=[False, False],
fill value=1e+20)

numpy .ma . power (a, b, third=None)
Returns element-wise base array raised to power from second array.

This is the masked array version of numpy . power. For details see numpy . power.
See also:

numpy .power

Notes

The out argument to numpy . power is not supported, third has to be None.

numpy .ma .prod (self, axis=None, dtype=None, out=None, keepdims=<no value>) = <numpy.ma.

core._frommethod object>
Return the product of the array elements over the given axis.

Masked elements are set to 1 internally for computation.
Refer to numpy . prod for full documentation.

See also:

ndarray.prod corresponding function for ndarrays

numpy . prod equivalent function

Notes

Arithmetic is modular when using integer types, and no error is raised on overflow.

numpy .ma . std (self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) = <numpy.

ma.core._ frommethod object>))
Returns the standard deviation of the array elements along given axis.

Masked entries are ignored.
Refer to numpy . std for full documentation.

See also:

ndarray.std corresponding function for ndarrays
numpy . std Equivalent function

numpy .ma . sum (self, axis=None, dtype=None, out=None, keepdims=<no value>) = <numpy.ma.

core._frommethod object>]
Return the sum of the array elements over the given axis.

Masked elements are set to O internally.

Refer to numpy . sum for full documentation.

342 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

See also:

ndarray.sum corresponding function for ndarrays

numpy . sum equivalent function

Examples

>>> x = np.ma.array([[1,2,31,[4,5,6]1,[7,8,91]1, mask=[0] + [1,0]%4)
>>> x
masked_array (

data=[[1, --, 31,

[__r 5! __JI

[71 T 9]}!
mask=[[False, True, False],

[

True, False, True],
[False, True, Falsel],
fill_value=999999)
>>> x.sum()
25
>>> x.sum(axis=1)
masked_array (data=[4, 5, 16],
mask=[False, False, False],
fill_value=999999)
>>> x.sum(axis=0)
masked_array (data=[8, 5, 12],
mask=[False, False, False],
fill_value=999999)
>>> print (type (x.sum(axis=0, dtype=np.int64) [0]))
<class 'numpy.int64'>

numpy .ma . var (self, axis=None, dtype=None, out=None, ddof=0, keepdims=<no value>) = <numpy.

ma.core._frommethod object>
Compute the variance along the specified axis.

Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed
for the flattened array by default, otherwise over the specified axis.

Parameters

a [array_like] Array containing numbers whose variance is desired. If a is not an array, a con-
version is attempted.

axis [None or int or tuple of ints, optional] Axis or axes along which the variance is computed.
The default is to compute the variance of the flattened array.

New in version 1.7.0.

If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis
or all the axes as before.

dtype [data-type, optional] Type to use in computing the variance. For arrays of integer type
the default is float32; for arrays of float types it is the same as the array type.

out [ndarray, optional] Alternate output array in which to place the result. It must have the same
shape as the expected output, but the type is cast if necessary.

ddof [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N —
ddof, where N represents the number of elements. By default ddof is zero.

1.7. Masked arrays 343

NumPy Reference, Release 1.17.0

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
input array.

If the default value is passed, then keepdims will not be passed through to the var method
of sub-classes of ndarray, however any non-default value will be. If the sub-class’ method
does not implement keepdims any exceptions will be raised.

Returns

variance [ndarray, see dtype parameter above] If out=None, returns a new array containing
the variance; otherwise, a reference to the output array is returned.

See also:
std, mean, nanmean, nanstd, nanvar

numpy .doc.ufuncs Section “Output arguments”

Notes

The variance is the average of the squared deviations from the mean, i.e., var = mean (abs(x - x.

mean ()) **2).

The mean is normally calculated as x.sum () / N, where N = len (x). If, however, ddof is specified, the
divisor N — ddof is used instead. In standard statistical practice, ddof=1 provides an unbiased estimator
of the variance of a hypothetical infinite population. ddof=0 provides a maximum likelihood estimate of the

variance for normally distributed variables.

Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and

nonnegative.

For floating-point input, the variance is computed using the same precision the input has. Depending on the
input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a

higher-accuracy accumulator using the dt ype keyword can alleviate this issue.

Examples

>>> a = np.array ([[1l, 2], [3, 411])
>>> np.var(a)

1.25

>>> np.var (a, axis=0)

array ([1., 1.1)

>>> np.var (a, axis=1)

array ([0.25, 0.25])

In single precision, var() can be inaccurate:

>>> a = np.zeros((2, 512x512), dtype=np.float32)
>>> a0, :] = 1.0

>>> afl, :] = 0.1

>>> np.var (a)

0.20250003

Computing the variance in float64 is more accurate:

344 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

>>> np.var (a, dtype=np.float64)
0.20249999932944759 # may vary

>>> ((1-0.55)*+x2 + (0.1-0.55)x%2)/2

0.2025

Minimum/maximum

ma . argmax(selff, axis, fill_value, out]) Returns array of indices of the maximum values along
the given axis.

ma . argmin(self], axis, fill_value, out]) Return array of indices to the minimum values along the
given axis.

ma . max(obj[, axis, out, fill_value, keepdims]) Return the maximum along a given axis.

ma . min(obj[, axis, out, fill_value, keepdims]) Return the minimum along a given axis.

ma . pt p(objl, axis, out, fill_value, keepdims]) Return (maximum - minimum) along the given dimen-
sion (i.e.

ma.MaskedArray.argmax(self], axis, ...]) Returns array of indices of the maximum values along
the given axis.

ma.MaskedArray.argmin(self], axis, ...]) Return array of indices to the minimum values along the
given axis.

ma.MaskedArray.max(self[, axis, out, ...]) Return the maximum along a given axis.

ma.MaskedArray.min(self[, axis, out, ...]) Return the minimum along a given axis.

ma.MaskedArray.ptp(self], axis, out, ...]) Return (maximum - minimum) along the given dimen-

sion (i.e.

numpy .ma .argmax (self,
_frommethod object>

axis=None,

fill_value=None,

out=None) = <numpy.ma.core.

Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had

the value fill_value.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified

axis

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
maximum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns

index_array [{integer_array}]

Examples

>>> a = np.arange (6) .reshape (2, 3)
>>> a.argmax ()

5

>>> a.argmax (0)

array ([1, 1, 1])

>>> a.argmax (1)

array ([2, 2])

1.7.

Masked arrays

345

NumPy Reference, Release 1.17.0

numpy .ma .argmin (self, axis=None, fill_value=None, out=None) = <numpy.ma.core.

_ _frommethod object>)]
Return array of indices to the minimum values along the given axis.

Parameters

axis [{None, integer}] If None, the index is into the flattened array, otherwise along the specified
axis

fill_value [{var}, optional] Value used to fill in the masked values. If None, the output of
minimum_fill_value(self._data) is used instead.

out [{None, array}, optional] Array into which the result can be placed. Its type is preserved
and it must be of the right shape to hold the output.

Returns
ndarray or scalar If multi-dimension input, returns a new ndarray of indices to the minimum

values along the given axis. Otherwise, returns a scalar of index to the minimum values
along the given axis.

Examples

>>> x = np.ma.array (np.arange(4), mask=[1,1,0,0])
>>> x.shape = (2,2)

>>> x

masked_array (
data=[[--, —-1,
(2, 311,
mask=[[True, True],
[False, False]ll],
fill_value=999999)
>>> x.argmin (axis=0, fill_value=-1)
array ([0, 0])
>>> x.argmin(axis=0, fill_value=9)
array ([1, 11])

numpy .ma .max (obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the maximum along a given axis.

Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
maximum_fill_value().

Returns

amax [array_like] New array holding the result. If out was specified, out is returned.

See also:
maximum fill value Returns the maximum filling value for a given datatype.

numpy .ma .min (obj, axis=None, out=None, fill_value=None, keepdims=<no value>)
Return the minimum along a given axis.

346 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Parameters

axis [{None, int}, optional] Axis along which to operate. By default, axis is None and the
flattened input is used.

out [array_like, optional] Alternative output array in which to place the result. Must be of the
same shape and buffer length as the expected output.

fill_value [{var}, optional] Value used to fill in the masked values. If None, use the output of
minimum_fill_value.

Returns

amin [array_like] New array holding the result. If out was specified, out is returned.

See also:
minimum fill value Returns the minimum filling value for a given datatype.
numpy .ma . ptp (0bj, axis=None, out=None, fill_value=None, keepdims=<no value>)

Return (maximum - minimum) along the given dimension (i.e. peak-to-peak value).

Parameters

axis [{None, int}, optional] Axis along which to find the peaks. If None (default) the flattened
array is used.

out [{None, array_like}, optional] Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output but the type will be cast if
necessary.

fill_value [{var}, optional] Value used to fill in the masked values.

Returns

ptp [ndarray.] A new array holding the result, unless out was specified, in which case a refer-
ence to out is returned.

Sorting
ma . argsort(al, axis, kind, order, endwith, ...]) Return an ndarray of indices that sort the array along the
specified axis.
ma . sort(al, axis, kind, order, endwith, ...]) Sort the array, in-place

ma.MaskedArray.argsort(self], axis, kind, ...]) Return an ndarray of indices that sort the array along the
specified axis.
ma.MaskedArray.sort(self[, axis, kind, ...]) Sort the array, in-place

numpy .ma .argsort (a, axis=<no value>, kind=None, order=None, endwith=True, fill_value=None)

Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to
Sfill_value.

Parameters
axis [int, optional] Axis along which to sort. If None, the default, the flattened array is used.

Changed in version 1.13.0: Previously, the default was documented to be -1, but that was in
error. At some future date, the default will change to -1, as originally intended. Until then,
the axis should be given explicitly when arr.ndim > 1, to avoid a FutureWarning.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] The sorting algorithm used.

1.7. Masked arrays 347

NumPy Reference, Release 1.17.0

order [list, optional] When a is an array with fields defined, this argument specifies which fields
to compare first, second, etc. Not all fields need be specified.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
at the same extremes of the datatype, the ordering of these values and the masked values is
undefined.

fill_value [{var}, optional] Value used internally for the masked values. If £111_value is
not None, it supersedes endwith.

Returns

See also:

index_array [ndarray, int] Array of indices that sort a along the specified axis. In other words,
a[index_array] yields a sorted a.

MaskedArray. sort Describes sorting algorithms used.

lexsort Indirect stable sort with multiple keys.

ndarray.sort Inplace sort.

Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.ma.array([3,2,1], mask=[False, False, True])
>>> a
masked_array(data=[3, 2, —-1,
mask=[False, False, True],

fill value=999999)
>>> a.argsort ()
array ([1, 0, 21)

numpy .ma . sort (a, axis=-1, kind=None, order=None, endwith=True, fill_value=None)
Sort the array, in-place

Parameters

a [array_like] Array to be sorted.

axis [int, optional] Axis along which to sort. If None, the array is flattened before sorting. The
default is -1, which sorts along the last axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’ }, optional] The sorting algorithm used.

order [list, optional] When a is a structured array, this argument specifies which fields to com-
pare first, second, and so on. This list does not need to include all of the fields.

endwith [{True, False}, optional] Whether missing values (if any) should be treated as the
largest values (True) or the smallest values (False) When the array contains unmasked values
sorting at the same extremes of the datatype, the ordering of these values and the masked
values is undefined.

fill_value [{var}, optional] Value used internally for the masked values. If £i11_value is
not None, it supersedes endwith.

348

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Returns

sorted_array [ndarray] Array of the same type and shape as a.

See also:

ndarray.sort Method to sort an array in-place.
argsort Indirect sort.
lexsort Indirect stable sort on multiple keys.

searchsorted Find elements in a sorted array.

Notes

See sort for notes on the different sorting algorithms.

Examples
>>> a = np.ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # Default
>>> a.sort ()
>>> a
masked_array (data=[1, 3, 5, -—, —--1,
mask=[False, False, False, True, Truel],
fill_value=999999)
>>> a = np.ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # Put missing values in the front
>>> a.sort (endwith=False)
>>> a
masked_array (data=[--, --, 1, 3, 5],
mask=[True, True, False, False, False],
fill_value=999999)
>>> a = np.ma.array([1l, 2, 5, 4, 3],mask=[0, 1, 0, 1, 01])
>>> # fill value takes over endwith
>>> a.sort (endwith=False, fill_value=3)
>>> a
masked_array (data=[1, --, —--, 3, 5],
mask=[False, True, True, False, False],
fill_value=999999)
Algebra

ma.diag(vl, k]) Extract a diagonal or construct a diagonal array.

ma . dot(a, b, strict, out]) Return the dot product of two arrays.

ma.identity(n[, dtype]) Return the identity array.

ma.inner(a,b) Inner product of two arrays.

ma.innerproduct(a, b) Inner product of two arrays.

ma.outer(a,b) Compute the outer product of two vectors.

Continued on next page

1.7. Masked arrays 349

NumPy Reference, Release 1.17.0

Table 92 — continued from previous page

ma.outerproduct(a, b) Compute the outer product of two vectors.

ma . t race(self[, offset, axisl, axis2, ...]) Return the sum along diagonals of the array.
ma.transpose(al, axes]) Permute the dimensions of an array.
ma.MaskedArray.trace([offset, axisl, axis2, Return the sum along diagonals of the array.
D

ma.MaskedArray.transpose(*axes) Returns a view of the array with axes transposed.

numpy .ma .diag (v, k=0)

Extract a diagonal or construct a diagonal array.

This function is the equivalent of numpy . diag that takes masked values into account, see numpy . diag for
details.

See also:

numpy .diag Equivalent function for ndarrays.

numpy .ma .dot (a, b, strict=False, out=None)

Return the dot product of two arrays.

This function is the equivalent of numpy . dot that takes masked values into account. Note that strict and out
are in different position than in the method version. In order to maintain compatibility with the corresponding
method, it is recommended that the optional arguments be treated as keyword only. At some point that may be
mandatory.

Note: Works only with 2-D arrays at the moment.

Parameters
a, b [masked_array_like] Inputs arrays.

strict [bool, optional] Whether masked data are propagated (True) or set to O (False) for the
computation. Default is False. Propagating the mask means that if a masked value appears
in a row or column, the whole row or column is considered masked.

out [masked_array, optional] Output argument. This must have the exact kind that would be re-
turned if it was not used. In particular, it must have the right type, must be C-contiguous, and
its dtype must be the dtype that would be returned for dot(a,b). This is a performance fea-
ture. Therefore, if these conditions are not met, an exception is raised, instead of attempting
to be flexible.

New in version 1.10.2.
See also:

numpy . dot Equivalent function for ndarrays.

Examples

>>> a = np.ma.array([[1, 2, 3], [4, 5, 6]], mask=[[1, O, O], [O, O, O11])
>>> b = np.ma.array([[1, 2], [3, 41, [5, 611, mask=[[1, 0], [0, O], [0, 01])
>>> np.ma.dot (a, b)

masked_array (

(continues on next page)

350

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

data=[[21, 267,
[45, 64]1],
mask=[[False, False]

[False, False]ll],

fill _value=999999)
>>> np.ma.dot (a, b, strict=True)
masked_array (

data:[[,,, 77]!
[777 64]}/
mask=[[True, True]

4
[True, Falsel],
fill_value=999999)

numpy .ma.identity (n, dtype=None) = <numpy.ma.core._convert2ma object>
Return the identity array.

The identity array is a square array with ones on the main diagonal.
Parameters
n [int] Number of rows (and columns) in n X n output.
dtype [data-type, optional] Data-type of the output. Defaults to f1loat.
Returns

out [ndarray] n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> np.identity (3)

array ([[1l., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.11)

numpy .ma.inner (a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum
product over the last axes.

Parameters

a, b [array_like] If @ and b are nonscalar, their last dimensions must match.
Returns

out [ndarray] out.shape = a.shape[:-1] + b.shape[:-1]
Raises

ValueError If the last dimension of @ and b has different size.

See also:

tensordot Sum products over arbitrary axes.
dot Generalised matrix product, using second last dimension of b.

einsum Einstein summation convention.

1.7. Masked arrays 351

NumPy Reference, Release 1.17.0

Notes

Masked values are replaced by 0.

For vectors (1-D arrays) it computes the ordinary inner-product:

’np.inner(a, b) = sum(al:]1*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

’np.inner(a, b) = np.tensordot (a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[i0,...,ir-1,30, ..., 3s-1]
= sum(al[iO,...,ir-1,:1+b[j0,...,Js-1,:1)

In addition a or b may be scalars, in which case:

np.inner(a,b) = axb

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,0])
>>> np.inner(a, b)

2

A multidimensional example:

>>> a = np.arange (24) .reshape ((2,3,4))

>>> b = np.arange (4)
>>> np.inner(a, b)
array ([[14, 38, 62]

[86, 110, 13411)

An example where b is a scalar:

>>> np.inner (np.eye(2), 7)
array ([[7., 0.]
7

[0.,

numpy .ma.innerproduct (a, b)
Inner product of two arrays.

Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum

product over the last axes.
Parameters
a, b [array_like] If a and b are nonscalar, their last dimensions must match.
Returns
out [ndarray] out.shape = a.shape/[:-1] + b.shape[:-1]

Raises

352 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ValueError If the last dimension of a and b has different size.

See also:

tensordot Sum products over arbitrary axes.
dot Generalised matrix product, using second last dimension of b.

einsum Einstein summation convention.

Notes

Masked values are replaced by 0.

For vectors (1-D arrays) it computes the ordinary inner-product:

’np.inner(a, b) = sum(al[:]1*b[:])

More generally, if ndim(a) = r > 0 and ndim(b) = s > 0:

’np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

or explicitly:

np.inner(a, b)[(i0,...,1ir-1,30,...,3js-1]
= sum(af[i0,...,ir-1, :]1*b[J0, ..., Js—-1,:1)

In addition a or b may be scalars, in which case:

np.inner(a,b) = axb

Examples

Ordinary inner product for vectors:

>>> a = np.array([1,2,3])
>>> b = np.array([0,1,01])
>>> np.inner (a, b)

2

A multidimensional example:

>>> a = np.arange (24) .reshape ((2,3,4))
>>> b = np.arange (4)
>>> np.inner (a, b)
array ([[14, 38, 621,
[86, 110, 134711])

An example where b is a scalar:

>>> np.inner (np.eye(2), 7)
array ([[7., 0.]
[0., 7.]

1)

numpy .ma.outer (a, b)
Compute the outer product of two vectors.

1.7. Masked arrays 353

NumPy Reference, Release 1.17.0

Given two vectors, a = [a0, al, ..., aM] andb = [b0, bl, ., DbN], the outer product [1]
is:
[[a0*b0 al0xbl ... a0OxbN]
[al*bO0
... .
[aM*b0 aM+bN 1]
Parameters

a [(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

b [(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

out [(M, N) ndarray, optional] A location where the result is stored
New in version 1.9.0.
Returns

out [(M, N) ndarray] out [1, j] = ali]l * b[j]

See also:

inner

einsum einsum('i, j->1ij', a.ravel(), b.ravel ()) isthe equivalent.

ufunc.outer A generalization to N dimensions and other operations.
ravel (), b.ravel ()) isthe equivalent.

Notes

Masked values are replaced by 0.

References

(1]

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

np.multiply.outer (a.

>>> rl = np.outer (np.ones((5,)), np.linspace (-2, 2, 5))
>>> rl
array([[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.11)
>>> im = np.outer (lj*np.linspace(2, -2, 5), np.ones((5,)))
>>> im
array ([[0.+2.73, 0.+2.3, 0.+2.73, 0.+2.3, 0.+2.3],
[0.+1.3, O0.+1.3, O.+1.3, O0.+1.3, 0.+1.371,
[0.+0.3, 0.+40.3, 0.40.3, 0.+0.3, 0.+0.731,
(0.-1.3, 0.-1.3, 0.-1.3, 0.-1.3, 0.-1.371,
[0.-2.3, 0.-2.3, 0.-2.3, 0.-2.3, 0.-2.311)

(continues on next page)

354

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> grid = rl + im

>>> grid

array ([[-2.42.9, -1.42.5, 0.+2.5, 1.42.3, 2.+2.531,
[-2.41.5, -1.+#1.3, O0.+1.3, 1.+1.5, 2.+1.31,
[-2.40.9, -1.40.49, 0.+0.3, 1.40.3, 2.+0.41,
[-2.-1.4, -1.-1.3, 0.-1.5, 1.-1.3, 2.-1.41,
[-2.-2.9, -1.-2.3, 0.-2.5, 1.-2.3, 2.-2.411)

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)

>>> np.outer(x, [1, 2, 31)

array([['a', 'aa', 'aaa'],
[lbl’ 'bb', 'bbb'],
['c', 'cc', 'ccc']l], dtype=obiject)

numpy .ma .outerproduct (a, b)
Compute the outer product of two vectors.
Given two vectors, a = [a0, al, ..., aM]andb = [b0, bl, ..., DbN], the outer product [1]

1S:

[[a0+b0 al0+bl ... al0+«bN]
[al+b0
[... .
[aM*Db0 aM+bN]]
Parameters

a [(M,) array_like] First input vector. Input is flattened if not already 1-dimensional.

b [(N,) array_like] Second input vector. Input is flattened if not already 1-dimensional.

out [(M, N) ndarray, optional] A location where the result is stored
New in version 1.9.0.
Returns

out [(M, N) ndarray] out [1, j] = al[i] * b[7J]

See also:
inner

einsum einsum('i, j->1j', a.ravel(), b.ravel()) isthe equivalent.

ufunc.outer A generalization to N dimensions and other operations. np.multiply.outer (a.

ravel (), b.ravel ()) isthe equivalent.

Notes

Masked values are replaced by 0.

References

(1]

1.7. Masked arrays

355

NumPy Reference, Release 1.17.0

Examples

Make a (very coarse) grid for computing a Mandelbrot set:

>>> rl = np.outer (np.ones((5,)), np.linspace (-2, 2, 5))

>>> rl

array([[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.1,
[-2., -1., 0., 1., 2.11)

>>> im = np.outer (lj*np.linspace(2, -2, 5), np.ones((5,)))

>>> im

array ([[0.+2.3, 0.+2.3, 0.+2.73, 0.+2.3, 0.+2.3],
[0.+1.3, O0.+1.3, O.+1.3, O0.+1.3, 0.+1.371,
[0.+0.3, 0.40.3, 0.40.3, 0.+0.3, 0.+0.731,
(0.-1.3, 0.-1.3, 0.-1.3, 0.-1.3, 0.-1.371,
[0.-2.3, 0.-2.3, 0.-2.3, 0.-2.3, 0.-2.311)

>>> grid = rl + im

>>> grid

array([[-2.+2.3, -1.+2.3, O0.+2.3, 1.+2.3, 2.+2.31,
[-2.+1.3, -1.+1.73, 0.+1.73, 1.+1.3, 2.+1.371,
[-2.+40.73, -1.+0.73, 0.+0.7, 1.+0.3, 2.+0.37,
[-2.-1.3, -1.-1.3, O.-1.3, 1.-1.53, 2.-1.31,
[-2.-2.3, -1.-2.3, 0.-2.3, 1.-2.3, 2.-2.311)

An example using a “vector” of letters:

>>> x = np.array(['a', 'b', 'c'], dtype=object)

>>> np.outer(x, [1, 2, 31)

array([['a', 'aa', 'aaa'l,
['"b', 'bb', 'bbb'],
['c', 'cc', 'ccc']], dtype=obiject)

numpy .ma . trace (self, offset=0, axisl=0, axis2=1, dtype=None, out=None) a.trace(offset=0, axisl1=0,
axis2=1, dtype=None, out=None) = <numpy.ma.core._frommethod
object>

Return the sum along diagonals of the array.
Refer to numpy . t race for full documentation.

See also:

numpy . trace equivalent function

Polynomial fit

ma . vander(x[, n]) Generate a Vandermonde matrix.
ma.polyfit(x,y,deg[, rcond, full, w, cov]) Least squares polynomial fit.

numpy .ma .vander (x, n=None)
Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector

356 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

raised element-wise to the power of N — i — 1. Such a matrix with a geometric progression in each row is
named for Alexandre- Theophile Vandermonde.

Parameters
x [array_like] 1-D input array.

N [int, optional] Number of columns in the output. If N is not specified, a square array is
returned (N = len (x)).

increasing [bool, optional] Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.

New in version 1.9.0.
Returns

out [ndarray] Vandermonde matrix. If increasing is False, the first column is x~ (N-1), the
second x” (N-2) and so forth. If increasing is True, the columns are x~0, x*1, ...,
x~(N-1).

See also:

polynomial.polynomial.polyvander

Notes

Masked values in the input array result in rows of zeros.

Examples

>>> x = np.array([1l, 2, 3, 5])

>>> N = 3

>>> np.vander (x, N)

array ([[1, 1, 11,
[4, 2, 11,
[9, 3, 1],
[25 5 111)

14

’

>>> np.column

stack ([x** (N-1-1)

for i in range(N)])

array ([[1, 1, 11,

[4, 2, 11,

r s, 3, 11,

[25, 5, 111)
>>> x = np.array([1l, 2, 3, 51])
>>> np.vander (x)
array ([[1, 1, 1, 1],

[8, 4, 2, 171,

[27, 9, 3, 11,

[125, 25, 5, 111)
>>> np.vander (x, increasing=True)
array ([[1, 1, 1, 1],

[1, 2, 4, 8],

[1, 3, 9, 271,

[1, 5, 25, 125]1)

1.7.

Masked arrays

357

NumPy Reference, Release 1.17.0

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

>>> np.linalg.det (np.vander (x))
48.000000000000043 # may vary

>>> (5-3) % (5-2) # (5-1) *x (3-2) » (3-1) x (2-1)
48

numpy .ma .polyfit (x, y, deg, rcond=None, full=False, w=None, cov=False)

Least squares polynomial fit.

Fit a polynomial p (x) = p[0] » x*xdeg + ... + pl[deg] of degree deg to points (x, y). Returns a
vector of coefficients p that minimises the squared error in the order deg, deg-1, ... 0.

The Polynomial. fit class method is recommended for new code as it is more stable numerically. See the
documentation of the method for more information.

Parameters
x [array_like, shape (M,)] x-coordinates of the M sample points (x[1], y[i]).

y [array_like, shape (M,) or (M, K)] y-coordinates of the sample points. Several data sets of
sample points sharing the same x-coordinates can be fitted at once by passing in a 2D-array
that contains one dataset per column.

deg [int] Degree of the fitting polynomial

rcond [float, optional] Relative condition number of the fit. Singular values smaller than this
relative to the largest singular value will be ignored. The default value is len(x)*eps, where
eps is the relative precision of the float type, about 2e-16 in most cases.

full [bool, optional] Switch determining nature of return value. When it is False (the default)
just the coefficients are returned, when True diagnostic information from the singular value
decomposition is also returned.

w [array_like, shape (M,), optional] Weights to apply to the y-coordinates of the sample points.
For gaussian uncertainties, use 1/sigma (not 1/sigma**2).

cov [bool or str, optional] If given and not False, return not just the estimate but also its co-
variance matrix. By default, the covariance are scaled by chi2/sqrt(N-dof), i.e., the weights
are presumed to be unreliable except in a relative sense and everything is scaled such that
the reduced chi2 is unity. This scaling is omitted if cov="unscaled', as is relevant for
the case that the weights are 1/sigma**2, with sigma known to be a reliable estimate of the
uncertainty.

Returns

p [ndarray, shape (deg + 1,) or (deg + 1, K)] Polynomial coefficients, highest power first. If y
was 2-D, the coefficients for k-th data setareinp[:, k].

residuals, rank, singular_values, rcond Present only if full = True. Residuals of the least-
squares fit, the effective rank of the scaled Vandermonde coefficient matrix, its singular
values, and the specified value of rcond. For more details, see linalg.lstsq.

V [ndarray, shape (M,M) or (M,M,K)] Present only if full = False and cov‘=True. The covari-
ance matrix of the polynomial coefficient estimates. The diagonal of this matrix are the
variance estimates for each coefficient. If y is a 2-D array, then the covariance matrix for
the ‘k-th datasetareinV[:, :, k]

Warns

358

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

RankWarning The rank of the coefficient matrix in the least-squares fit is deficient. The warn-
ing is only raised if full = False.

The warnings can be turned off by

>>> import warnings
>>> warnings.simplefilter ('ignore', np.RankWarning)

See also:

polyval Compute polynomial values.
linalg.lstsqg Computes a least-squares fit.

scipy.interpolate.UnivariateSpline Computes spline fits.

Notes

Any masked values in x is propagated in y, and vice-versa.

The solution minimizes the squared error

k
E =Y |p(z;) - yjl
j=0
in the equations:
x[0]**n x p[0] + + * pln-1] + pln] = yI[0]
x[1]**n = p[0] + + * pln-1] + p[n] = y[1]
2[kl#*+n + p[0] + ... + x[k] * p[n-1] + pln] = yI[k]

The coefficient matrix of the coefficients p is a Vandermonde matrix.

polyfit issues a RankWarning when the least-squares fit is badly conditioned. This implies that the best fit
is not well-defined due to numerical error. The results may be improved by lowering the polynomial degree or
by replacing x by x - x.mean(). The rcond parameter can also be set to a value smaller than its default, but the
resulting fit may be spurious: including contributions from the small singular values can add numerical noise to
the result.

Note that fitting polynomial coefficients is inherently badly conditioned when the degree of the polynomial is
large or the interval of sample points is badly centered. The quality of the fit should always be checked in these
cases. When polynomial fits are not satisfactory, splines may be a good alternative.

References

(11, [2]

Examples

>>> import warnings

>>> x = np.array([0.0, 1.0, 2.0, 3
>>> y = np.array([0.0, 0.8, 0.9, O.
>>> z = np.polyfit(x, vy, 3)

>>> z

array ([0.08703704, -0.81349206, 1.69312169, -0.03968254]) # may vary

1.7. Masked arrays 359

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.UnivariateSpline.html#scipy.interpolate.UnivariateSpline

NumPy Reference, Release 1.17.0

It is convenient to use polyld objects for dealing with polynomials:

>>> p = np.polyld(z)

>>> p(0.5)

0.6143849206349179 # may vary
>>> p(3.5)

-0.34732142857143039 # may vary
>>> p(10)

22.579365079365115 # may vary

High-order polynomials may oscillate wildly:

>>> with warnings.catch_warnings():
warnings.simplefilter ('ignore', np.RankWarning)
p30 = np.polyld(np.polyfit(x, vy, 30))

>>> p30(4)

-0.80000000000000204 # may vary

>>> p30(5)

-0.99999999999999445 # may vary

>>> p30(4.5)

-0.10547061179440398 # may vary

I1lustration:

>>> import matplotlib.pyplot as plt
>>> xp = np.linspace (-2, 6, 100)

>>> _ = plt'pIOt(Xl Y '-'r Xpy p(Xp)l '7'1 XPy p30(xp)
>>> plt.ylim(-2,2)
(_21 2)

>>> plt.show()

’

2.0

1.5 4
1.0 1 —=
0.5 - V/d) 3
0.0 r's N\
—0.5 - / \ /
—-1.0 A /

—1.5 /

_2.0 T “ T T T T

Clipping and rounding

mu__—é———"

360

Chapter 1. Array objects

NumPy Reference, Release 1.17.0

ma . around(a, *args, *¥**kwargs) Round an array to the given number of decimals.

ma.clip(a, a_min, a_max[, out]) Clip (limit) the values in an array.

ma . round(a[, decimals, out]) Return a copy of a, rounded to ‘decimals’ places.

ma.MaskedArray.clip([min, max, out]) Return an array whose values are limited to [min,
max].

ma.MaskedArray . round(self[, decimals, out]) Return each element rounded to the given number of
decimals.

numpy .ma .around (a, *args, **kwargs) = <numpy.ma.core._MaskedUnaryOperation
object>

Round an array to the given number of decimals.

See also:
around equivalent function; see for details.

numpy .ma.clip (a, a_min, a_max, out=None, **kwargs)
Clip (limit) the values in an array.

Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1] is specified, values smaller than 0 become 0, and values larger than 1 become 1.

Equivalent to but faster than np.maximum (a_min, np.minimum(a, a_max)).No check is performed
toensure a_min < a_max.

Parameters
a [array_like] Array containing elements to clip.

a_min [scalar or array_like or None] Minimum value. If None, clipping is not performed on
lower interval edge. Not more than one of a_min and a_max may be None.

a_max [scalar or array_like or None] Maximum value. If None, clipping is not performed on
upper interval edge. Not more than one of a_min and a_max may be None. If a_min or
a_max are array_like, then the three arrays will be broadcasted to match their shapes.

out [ndarray, optional] The results will be placed in this array. It may be the input array for
in-place clipping. out must be of the right shape to hold the output. Its type is preserved.

**kwargs For other keyword-only arguments, see the ufunc docs.
New in version 1.17.0.
Returns

clipped_array [ndarray] An array with the elements of @, but where values < a_min are re-
placed with a_min, and those > a_max with a_max.

See also:

numpy .doc.ufuncs Section “Output arguments”

Examples

>>> a = np.arange (10)

>>> np.clip(a, 1, 8)

array([1, 1, 2, 3, 4, 5, 6, 7, 8, 81)
>>> a

(continues on next page)

1.7. Masked arrays 361

NumPy Reference, Release 1.17.0

(continued from previous page)

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> np.clip(a, 3, 6, out=a)

array ([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

>>> a = np.arange (10)

>>> a

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 91)

>>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 41, 8)
array ([3, 4, 2, 3, 4, 5, 6, 7, 8, 81)

numpy .ma . round (a, decimals=0, out=None)
Return a copy of a, rounded to ‘decimals’ places.

When ‘decimals’ is negative, it specifies the number of positions to the left of the decimal point. The real and
imaginary parts of complex numbers are rounded separately. Nothing is done if the array is not of float type and
‘decimals’ is greater than or equal to O.

Parameters
decimals [int] Number of decimals to round to. May be negative.

out [array_like] Existing array to use for output. If not given, returns a default copy of a.

Notes

If out is given and does not have a mask attribute, the mask of a is lost!

Miscellanea

ma.allequal(a,b[, fill_value]) Return True if all entries of a and b are equal, us-
ing fill_value as a truth value where either or both are
masked.

ma.allclose(a, b[, masked_equal, rtol, atol]) Returns True if two arrays are element-wise equal
within a tolerance.

ma.apply_along_axis(funcld, axis, arr, ...) Apply a function to 1-D slices along the given axis.

ma . arange([start,] stopl[, step,][, dtype]) Return evenly spaced values within a given interval.

ma . choose(indices, choices[, out, mode]) Use an index array to construct a new array from a set
of choices.

ma . ediff1d(arr[, to_end, to_begin]) Compute the differences between consecutive elements
of an array.

ma . indices(dimensions[, dtype, sparse]) Return an array representing the indices of a grid.

ma . where(condition[, x, y]) Return a masked array with elements from x or y, de-

pending on condition.

numpy .ma .allequal (a, b, fill_value=True)
Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.

Parameters
a, b [array_like] Input arrays to compare.

fill_value [bool, optional] Whether masked values in a or b are considered equal (True) or not
(False).

Returns

362 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

y [bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:

all, any, numpy.ma.allclose

Examples

>>> a = np.ma.array([lel0, le-7, 42.0], mask=[0, 0, 11)
>>> a
masked_array (data=[10000000000.0, le-07, --1,
mask=[False, False, True],
fill_value=1e+20)

>>> b = np.array([lel0, le-7, -42.01])

>>> b

array ([1.00000000e+10, 1.00000000e-07, —-4.20000000e+0117)
>>> np.ma.allequal(a, b, fill value=False)

False

>>> np.ma.allequal (a, b)

True

numpy .ma.allclose (a, b, masked_equal=True, rtol=1e-05, atol=1e-08)
Returns True if two arrays are element-wise equal within a tolerance.

This function is equivalent to a11close except that masked values are treated as equal (default) or unequal,
depending on the masked_equal argument.

Parameters
a, b [array_like] Input arrays to compare.

masked_equal [bool, optional] Whether masked values in a and b are considered equal (True)
or not (False). They are considered equal by default.

rtol [float, optional] Relative tolerance. The relative difference is equal to rtol * b. Default
is le-5.

atol [float, optional] Absolute tolerance. The absolute difference is equal to afol. Default is
le-8.

Returns

y [bool] Returns True if the two arrays are equal within the given tolerance, False otherwise. If
either array contains NaN, then False is returned.

See also:
all, any

numpy.allclose the non-masked allclose.

Notes

If the following equation is element-wise True, then al1close returns True:

absolute(Ta’ - "b’) <= (Tatol’ + ‘rtol® x absolute('b’))

Return True if all elements of @ and b are equal subject to given tolerances.

1.7. Masked arrays 363

NumPy Reference, Release 1.17.0

Examples

>>> a = np.ma.array([lel0, le-7, 42.0], mask=[0, 0, 11)
>>> g

masked_array (data=[10000000000.0, le-07, —--1,

mask=[False, False, True],
fill_value=1e+20)
>>> b = np.ma.array([lel0, 1le-8, -42.0], mask=[0, 0, 117)
>>> np.ma.allclose(a, b)
False

>>> a = np.ma.array([lel0, 1le-8, 42.0], mask=[0, 0, 11)

>>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1])
>>> np.ma.allclose(a, b)

True

>>> np.ma.allclose(a, b, masked_equal=False)

False

Masked values are not compared directly.

>>> a = np.ma.array([lel0, 1le-8, 42.0], mask=[0, 0, 11)

>>> b = np.ma.array([1.00001el0, le-9, 42.0], mask=[0, 0, 11])
>>> np.ma.allclose(a, b)

True

>>> np.ma.allclose(a, b, masked_equal=False)

False

numpy .ma .apply_along_ axis (funcld, axis, arr, *args, **kwargs)
Apply a function to 1-D slices along the given axis.

Execute funcld(a, *args) where funcld operates on 1-D arrays and a is a 1-D slice of arr along axis.

This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of 11, jJj, and kk to
a tuple of indices:

Ni, Nk = a.shape[:axis], a.shapel[axis+l:]
for ii in ndindex (Ni) :
for kk in ndindex (Nk) :
f = funcld(arr([ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex (Nj):
out[ii + jj + kk] = f£[37]

Equivalently, eliminating the inner loop, this can be expressed as:

Ni, Nk = a.shape[:axis], a.shapel[axis+l:]
for ii in ndindex (Ni) :
for kk in ndindex (Nk) :
out[ii + s_[...,] + kk] = funcld(arr[ii + s_[:,] + kk])

Parameters

funcld [function (M,) -> (Nj...)] This function should accept 1-D arrays. It is applied to 1-D
slices of arr along the specified axis.

axis [integer] Axis along which arr is sliced.

arr [ndarray (Ni..., M, Nk...)] Input array.

364 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

args [any] Additional arguments to funcld.
kwargs [any] Additional named arguments to funcld.
New in version 1.9.0.
Returns

out [ndarray (Ni..., Nj..., Nk...)] The output array. The shape of out is identical to the
shape of arr, except along the axis dimension. This axis is removed, and replaced with new
dimensions equal to the shape of the return value of funcld. So if funcld returns a scalar
out will have one fewer dimensions than arr.

See also:

apply_over_axes Apply a function repeatedly over multiple axes.

Examples

>>> def my_func(a):
"""Average first and last element of a 1-D array"""
- return (a[0] + a[-1]) % 0.5
>>> b = np.array([[1,2,3], [4,5,6]1, [7,8,911])
>>> np.apply_along_axis (my_func, 0, b)
array ([4., 5., 6.1)
>>> np.apply_along_axis (my_func, 1, b)
array([2., 5., 8.1)

For a function that returns a 1D array, the number of dimensions in outarr is the same as arr.

>>> b = np.array ([[8,1,7], [4,3,9], [5,2,6]1])
>>> np.apply_along_axis(sorted, 1, b)
array ([[1, 7, 81,

[3, 4, 91,

[2, 5, 6]1)

For a function that returns a higher dimensional array, those dimensions are inserted in place of the axis dimen-
sion.

>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)

array([[[1, 0, O],
(0, 2, 01,
(0, 0, 311,
(4, o, 01,
[0, 5, 01,
(0, 0, 611,
ez, 0, 01,
(0, 8, 01,

(0, 0, 9111)

numpy .ma.arange ([start], stop[, step], dtype=None) = <numpy.ma.core._convert2ma
object>

Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function,
but returns an ndarray rather than a list.

1.7. Masked arrays 365

NumPy Reference, Release 1.17.0

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use numpy .
1inspace for these cases.

Parameters

start [number, optional] Start of interval. The interval includes this value. The default start
value is 0.

stop [number] End of interval. The interval does not include this value, except in some cases
where step is not an integer and floating point round-off affects the length of out.

step [number, optional] Spacing between values. For any output out, this is the distance between
two adjacent values, out [1+1] — out [1i]. The default step size is 1. If step is specified
as a position argument, start must also be given.

dtype [dtype] The type of the output array. If dtype is not given, infer the data type from the
other input arguments.

Returns
arange [ndarray] Array of evenly spaced values.

For floating point arguments, the length of the result is ceil ((stop - start)/
step) . Because of floating point overflow, this rule may result in the last element of out
being greater than stop.

See also:

linspace Evenly spaced numbers with careful handling of endpoints.
ogrid Arrays of evenly spaced numbers in N-dimensions.

mgrid Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange (

array ([0, 1, 2

>>> np.arange (

array ([0., 1., 2.])
>>> np.arange (

array ([3, 4, 5

>>> np.arange (

array ([3, 5])

numpy .ma . choose (indices, choices, out=None, mode="raise’)
Use an index array to construct a new array from a set of choices.

Given an array of integers and a set of n choice arrays, this method will create a new array that merges each of
the choice arrays. Where a value in a is i, the new array will have the value that choices[i] contains in the same
place.

Parameters

a [ndarray of ints] This array must contain integers in [0, n-1], where n is the number of
choices.

choices [sequence of arrays] Choice arrays. The index array and all of the choices should be
broadcastable to the same shape.

out [array, optional] If provided, the result will be inserted into this array. It should be of the
appropriate shape and dtype.

366 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

mode [{‘raise’, ‘wrap’, ‘clip’ }, optional] Specifies how out-of-bounds indices will behave.
* ‘raise’ : raise an error
e ‘wrap’ : wrap around
 ‘clip’ : clip to the range
Returns
merged_array [array]

See also:

choose equivalent function

Examples

>>> choice = np.array([[1,1,1]1, [2,2,2], [3,3,3]11])
>>> a = np.array([2, 1, 0])
>>> np.ma.choose (a, choice)
masked_array (data=[3, 2, 1],
mask=False,
fill_value=999999)

numpy .ma .ediff1d (arr, to_end=None, to_begin=None)
Compute the differences between consecutive elements of an array.

This function is the equivalent of numpy.ediff1d that takes masked values into account, see numpy.
ediff1d for details.

See also:
numpy .ediffld Equivalent function for ndarrays.
numpy .ma . indices (dimensions, dtype=<class ’int’>, sparse=False)
Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values 0, 1, ... varying only along the corresponding axis.
Parameters
dimensions [sequence of ints] The shape of the grid.
dtype [dtype, optional] Data type of the result.

sparse [boolean, optional] Return a sparse representation of the grid instead of a dense repre-
sentation. Default is False.

New in version 1.17.
Returns

grid [one ndarray or tuple of ndarrays]

If sparse is False: Returns one array of grid indices, grid.shape =
(len(dimensions),) + tuple(dimensions).

If sparse is True: Returns a tuple of arrays, with grid[i] .shape = (1, ..., 1,
dimensions[i], 1, ..., 1) withdimensions[i]in the ith place

See also:

mgrid, ogrid, meshgrid

1.7. Masked arrays 367

NumPy Reference, Release 1.17.0

Notes

The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple
of dimensions, i.e. if dimensions is a tuple (r0, ..., rN-1) of length N, the output shape is (N, rO,
., rN-1).

The subarrays grid [k] contains the N-D array of indices along the k—th axis. Explicitly:

grid[k, 10, 11, ..., iN-1] = ik
Examples
>>> grid = np.indices((2, 3))
>>> grid.shape
(2, 2, 3)
>>> grid[0] # row indices
array ([[0, 0, 0],
(1, 1, 111
>>> grid[1] # column indices

array ([[0, 1, 2],
[0, 1, 211)

The indices can be used as an index into an array.

>>> x = np.arange (20) .reshape (5, 4)
>>> row, col = np.indices((2, 3))
>>> x[row, col]
array ([[0, 1, 21,

[4, 5, 6]1)

Note that it would be more straightforward in the above example to extract the required elements directly with
x[:2, :3].

If sparse is set to true, the grid will be returned in a sparse representation.

>>> i, j = np.indices((2, 3), sparse=True)
>>> 1i.shape
(2, 1)
>>> j.shape
(1, 3)
>>> i # row indices
array ([[0],
[111)
>>> # column indices
array ([[0, 1, 211)

numpy .ma . where (condition, x=<no value>, y=<no value>)
Return a masked array with elements from x or y, depending on condition.

Note: When only condition is provided, this function is identical to nonzero. The rest of this documentation
covers only the case where all three arguments are provided.

Parameters

condition [array_like, bool] Where True, yield x, otherwise yield y.

368 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

X,y [array_like, optional] Values from which to choose. x, y and condition need to be broad-
castable to some shape.

Returns

out [MaskedArray] An masked array with masked elements where the condition is masked,
elements from x where condition is True, and elements from y elsewhere.

See also:

numpy . where Equivalent function in the top-level NumPy module.

nonzero The function that is called when x and y are omitted

Examples

>>> x = np.ma.array(np.arange(9.) .reshape (3, 3), mask=[[0, 1, 0],
(1, 0, 11,

(o, 1, 01D

>>> x

masked_array (
data=[[0.0, —-—, 2.07],

-—, 4.0, —-1,

6.0, -—, 8.011,

mask=[[False, True, False],

[
[
[
[True, False, True],
[False, True, Falsel],
fill value=le+20)
>>> np.ma.where(x > 5, x, —3.1416)
masked_array (
data=[[-3.1416, --, -3.1416],
--, -3.1416, --1,
6.0, ——, 8.011,
False, True, False],
True, False, True],
[False, True, Falsel],
fill value=le+20)

mask=[

[
(
[
[

1.8 The Array Interface

Note: This page describes the numpy-specific API for accessing the contents of a numpy array from other C exten-
sions. PEP 3118 — The Revised Buffer Protocol introduces similar, standardized API to Python 2.6 and
3.0 for any extension module to use. Cython’s buffer array support uses the PEP 3118 API; see the Cython numpy
tutorial. Cython provides a way to write code that supports the buffer protocol with Python versions older than 2.6
because it has a backward-compatible implementation utilizing the array interface described here.

version 3

The array interface (sometimes called array protocol) was created in 2005 as a means for array-like Python objects to
re-use each other’s data buffers intelligently whenever possible. The homogeneous N-dimensional array interface is
a default mechanism for objects to share N-dimensional array memory and information. The interface consists of a
Python-side and a C-side using two attributes. Objects wishing to be considered an N-dimensional array in application

1.8. The Array Interface 369

https://www.python.org/dev/peps/pep-3118
https://docs.python.org/dev/c-api/buffer.html#c.PyObject_GetBuffer
http://cython.org/
https://www.python.org/dev/peps/pep-3118
https://github.com/cython/cython/wiki/tutorials-numpy
https://github.com/cython/cython/wiki/tutorials-numpy

NumPy Reference, Release 1.17.0

code should support at least one of these attributes. Objects wishing to support an N-dimensional array in application
code should look for at least one of these attributes and use the information provided appropriately.

This interface describes homogeneous arrays in the sense that each item of the array has the same “type”. This type
can be very simple or it can be a quite arbitrary and complicated C-like structure.

There are two ways to use the interface: A Python side and a C-side. Both are separate attributes.

1.8.1 Python side

This approach to the interface consists of the object havingan___array interface _ attribute.

__array_interface_
A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if
they are not provided.

The keys are:
shape (required)

Tuple whose elements are the array size in each dimension. Each entry is an integer (a Python int or
long). Note that these integers could be larger than the platform “int” or “long” could hold (a Python
int is a C long). It is up to the code using this attribute to handle this appropriately; either by raising
an error when overflow is possible, or by using Py_ LONG_LONG as the C type for the shapes.

typestr (required)

A string providing the basic type of the homogenous array The basic string format consists of 3 parts:
a character describing the byteorder of the data (<: little-endian, >: big-endian, |: not-relevant), a
character code giving the basic type of the array, and an integer providing the number of bytes the
type uses.

The basic type character codes are:

Object (i.e. the memory contains a pointer to PyOb ject)
String (fixed-length sequence of char)

Unicode (fixed-length sequence of Py_UNICODE)

Other (void * — each item is a fixed-size chunk of memory)

t | Bit field (following integer gives the number of bits in the bit field).
b | Boolean (integer type where all values are only True or False)
i | Integer

u | Unsigned integer

f | Floating point

c | Complex floating point

m | Timedelta

M | Datetime

0

S

U

\Y

descr (optional)

A list of tuples providing a more detailed description of the memory layout for each item in the
homogeneous array. Each tuple in the list has two or three elements. Normally, this attribute would
be used when typestr is V[0—-9] +, but this is not a requirement. The only requirement is that the
number of bytes represented in the typestr key is the same as the total number of bytes represented
here. The idea is to support descriptions of C-like structs that make up array elements. The elements
of each tuple in the list are

370 Chapter 1. Array objects

https://docs.python.org/dev/c-api/structures.html#c.PyObject
https://docs.python.org/dev/c-api/unicode.html#c.Py_UNICODE

NumPy Reference, Release 1.17.0

1. A string providing a name associated with this portion of the datatype. This could also be a tuple
of ('full name', 'basic_name') where basic name would be a valid Python variable
name representing the full name of the field.

2. Either a basic-type description string as in fypestr or another list (for nested structured types)

3. An optional shape tuple providing how many times this part of the structure should be repeated.
No repeats are assumed if this is not given. Very complicated structures can be described using
this generic interface. Notice, however, that each element of the array is still of the same data-
type. Some examples of using this interface are given below.

Default: [('', typestr)]
data (optional)

A 2-tuple whose first argument is an integer (a long integer if necessary) that points to the data-area
storing the array contents. This pointer must point to the first element of data (in other words any
offset is always ignored in this case). The second entry in the tuple is a read-only flag (true means
the data area is read-only).

This attribute can also be an object exposing the buffer interface which will be used to share
the data. If this key is not present (or returns None), then memory sharing will be done through the
buffer interface of the object itself. In this case, the offset key can be used to indicate the start of the
buffer. A reference to the object exposing the array interface must be stored by the new object if the
memory area is to be secured.

Default: None
strides (optional)

Either None to indicate a C-style contiguous array or a Tuple of strides which provides the number of
bytes needed to jump to the next array element in the corresponding dimension. Each entry must be
an integer (a Python int or 1ong). As with shape, the values may be larger than can be represented
by a C “int” or “long”; the calling code should handle this appropriately, either by raising an error, or
by using Py_ LONG_LONG in C. The default is None which implies a C-style contiguous memory
buffer. In this model, the last dimension of the array varies the fastest. For example, the default
strides tuple for an object whose array entries are 8 bytes long and whose shape is (10,20,30) would
be (4800, 240, 8)

Default: None (C-style contiguous)
mask (optional)

None or an object exposing the array interface. All elements of the mask array should be interpreted
only as true or not true indicating which elements of this array are valid. The shape of this object
should be “broadcastable” to the shape of the original array.

Default: None (All array values are valid)
offset (optional)

An integer offset into the array data region. This can only be used when data is None or returns a
buffer object.

Default: 0.
version (required)

An integer showing the version of the interface (i.e. 3 for this version). Be careful not to use this to
invalidate objects exposing future versions of the interface.

1.8. The Array Interface 371

https://docs.python.org/dev/c-api/objbuffer.html#c.PyObject_AsCharBuffer

NumPy Reference, Release 1.17.0

1.8.2 C-struct access

This approach to the array interface allows for faster access to an array using only one attribute lookup and a well-
defined C-structure.

__array_struct_
A :c:itype: PyCObject whose voidpt r member contains a pointer to a filled PyArrayInterface structure.
Memory for the structure is dynamically created and the PyCOb ject is also created with an appropriate de-
structor so the retriever of this attribute simply has to apply Py_DECREF to the object returned by this attribute
when it is finished. Also, either the data needs to be copied out, or a reference to the object exposing this at-
tribute must be held to ensure the data is not freed. Objects exposing the __array_struct___ interface must
also not reallocate their memory if other objects are referencing them.

The PyArraylInterface structure is defined in numpy/ndarrayobject.h as:

typedef struct {

int two; /* contains the integer 2 —- simple sanity check =/

int nd; /* number of dimensions «*/

char typekind; /+ kind in array —--—- character code of typestr =/

int itemsize; /* size of each element =/

int flags; /* flags indicating how the data should be interpreted »*/

/ * must set ARR_HAS DESCR bit to validate descr =*/
Py_intptr_t =xshape; /+ A length-nd array of shape information «*/
Py_intptr_t =xstrides; /+ A length-nd array of stride information =/

void xdata; /* A pointer to the first element of the array =/
PyObject =*descr; /+ NULL or data-description (same as descr key
of __array_interface__) —-—- must set ARR_HAS_DESCR

flag or this will be ignored. =/
} PyArrayInterface;

The flags member may consist of 5 bits showing how the data should be interpreted and one bit showing how
the Interface should be interpreted. The data-bits are CONTIGUOUS (0x1), FORTRAN (0x2), ALIGNED (0x100),
NOTSWAPPED (0x200), and WRITEABLE (0x400). A final flag ARR_HAS_DESCR (0x800) indicates whether or not
this structure has the arrdescr field. The field should not be accessed unless this flag is present.

New since June 16, 2006:

In the past most implementations used the “desc” member of the PyCObject itself (do not confuse this with the
“descr” member of the PyArrayInterface structure above — they are two separate things) to hold the pointer to
the object exposing the interface. This is now an explicit part of the interface. Be sure to own a reference to the object
when the PyCOb ject is created using PyCObject_FromVoidPtrAndDesc.

1.8.3 Type description examples
For clarity it is useful to provide some examples of the type description and corresponding ___array interface_
‘descr’ entries. Thanks to Scott Gilbert for these examples:

In every case, the ‘descr’ key is optional, but of course provides more information which may be important for various
applications:

» Float data
typestr == '>f4'
descr == [('','>f4")]

x Complex double

(continues on next page)

372 Chapter 1. Array objects

https://docs.python.org/dev/c-api/refcounting.html#c.Py_DECREF

NumPy Reference, Release 1.17.0

(continued from previous page)

typestr == '>c8'
descr == [('real','>f4"'), ('imag',6 '>f4")]

* RGB Pixel data
typestr == ' |V3'
descr == [(‘rlll‘ulv)’ (lgl,l‘ull), (lbl,l‘ull)]

» Mixed endian (weird but could happen) .
typestr == "|V8' (or '>u8'")
descr == [('big','>i4"), ('little','<id')]

x Nested structure
struct {
int ival;
struct {
unsigned short sval;
unsigned char bval;
unsigned char cval;
} sub;
}
typestr == '|V8' (or '<u8' if you want)
descr == [('ival','<id4"'"), ('sub', [('sval','<u2'), ('bval','|ul'), ('cval','lul")_

=1)]

* Nested array
struct {
int ival;
double datal[l6%4];
}
typestr == ' |V516’
descr == [('ival','>i4'"), ('data','>f8", (16,4))]

x Padded structure
struct {
int ival;
double dval;
}
typestr == ' |V16'
descr == [('ival','>i4"), ("', "|v4d"), ('dval', '>f8")]

It should be clear that any structured type could be described using this interface.

1.8.4 Differences with Array interface (Version 2)

The version 2 interface was very similar. The differences were largely aesthetic. In particular:
1. The PyArraylnterface structure had no descr member at the end (and therefore no flag ARR_HAS_DESCR)

2. The desc member of the PyCObject returned from __array_struct__ was not specified. Usually, it was the object
exposing the array (so that a reference to it could be kept and destroyed when the C-object was destroyed). Now
it must be a tuple whose first element is a string with “PyArrayInterface Version #” and whose second element
is the object exposing the array.

3. The tuple returned from __array_interface__[‘data’] used to be a hex-string (now it is an integer or a long
integer).

4. There was no __array_interface__ attribute instead all of the keys (except for version) in the __array_interface__

1.8. The Array Interface 373

NumPy Reference, Release 1.17.0

dictionary were their own attribute: Thus to obtain the Python-side information you had to access separately the
attributes:

e _ array_data__

e __ array_shape__
e _ array_strides__
e _ array_typestr__
e __ array_descr__
e __ array_offset__

e __array_mask__

1.9 Datetimes and Timedeltas

New in version 1.7.0.

Starting in NumPy 1.7, there are core array data types which natively support datetime functionality. The data type is
called “datetime64”, so named because “datetime” is already taken by the datetime library included in Python.

Note: The datetime API is experimental in 1.7.0, and may undergo changes in future versions of NumPy.

1.9.1 Basic Datetimes

The most basic way to create datetimes is from strings in ISO 8601 date or datetime format. The unit for internal
storage is automatically selected from the form of the string, and can be either a date unit or a time unit. The date
units are years (“Y’), months (‘M’), weeks (“W’), and days (‘D’), while the time units are hours (‘h’), minutes (‘m’),
seconds (‘s’), milliseconds (‘ms’), and some additional SI-prefix seconds-based units.

Example

A simple ISO date:

>>> np.datetime64 ('2005-02-25")
numpy .datetime64 ('2005-02-25")

Using months for the unit:

>>> np.datetime64 ('2005-02")
numpy .datetime64 ('2005-02")

Specifying just the month, but forcing a ‘days’ unit:

>>> np.datetime64 ('2005-02', 'D")
numpy .datetime64 ('2005-02-01")

From a date and time:

>>> np.datetime64 ('2005-02-25T03:30")
numpy.datetime64 ('2005-02-25T03:30")

374 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

When creating an array of datetimes from a string, it is still possible to automatically select the unit from the inputs,
by using the datetime type with generic units.

Example

>>> np.array(['2007-07-13', '2006-01-13", '2010-08-13"], dtype='datetime64"')
array (['2007-07-13"', '2006-01-13', '2010-08-13'], dtype='datetime64[D]")

>>> np.array(['2001-01-01T12:00', '2002-02-03T13:56:03.172"'], dtype='datetime6d"')
array (['2001-01-01T12:00:00.000-0600"', '2002-02-03T13:56:03.172-0600"], dtype=
—'datetime64 [ms] ")

The datetime type works with many common NumPy functions, for example arange can be used to generate ranges
of dates.

Example

All the dates for one month:

>>> np.arange ('2005-02"', '2005-03', dtype='datetime64[D]")

array(['2005-02-01"', '2005-02-02', '2005-02-03', '2005-02-04",
'2005-02-05"', '2005-02-06', '2005-02-07', '2005-02-08',
'2005-02-09', '2005-02-10', '2005-02-11', '2005-02-12'",
'2005-02-13"', '2005-02-14', '2005-02-15', '2005-02-1¢6"',
'2005-02-17', '2005-02-18', '2005-02-19', '2005-02-20"',
'2005-02-21"', '2005-02-22', '2005-02-23', '2005-02-24"',
'2005-02-25"', '2005-02-26', '2005-02-27', '2005-02-28'7],
dtype='datetime64 [D]")

The datetime object represents a single moment in time. If two datetimes have different units, they may still be
representing the same moment of time, and converting from a bigger unit like months to a smaller unit like days is
considered a ‘safe’ cast because the moment of time is still being represented exactly.

Example

>>> np.datetime64 ('2005') == np.datetime64 ('2005-01-01")

True

>>> np.datetime64 ('2010-03-14T15%2") == np.datetime64 ('2010-03-14T15:00:00.002")
True

1.9.2 Datetime and Timedelta Arithmetic

NumPy allows the subtraction of two Datetime values, an operation which produces a number with a time unit.
Because NumPy doesn’t have a physical quantities system in its core, the timedelta64 data type was created to com-
plement datetime64.

Datetimes and Timedeltas work together to provide ways for simple datetime calculations.

1.9. Datetimes and Timedeltas 375

NumPy Reference, Release 1.17.0

Example

>>> np.datetime64 ('2009-01-01") - np.datetime64 ('2008-01-01")
numpy .timedelta64 (366, 'D")

>>> np.datetime64 ('2009') + np.timedelta64 (20, 'D')
numpy .datetime64 ('2009-01-21")

>>> np.datetime64 ('2011-06-15T00:00") + np.timedelta64 (12, 'h')
numpy.datetime64 ('2011-06-15T12:00-0500")

>>> np.timedelta64 (1, 'W') / np.timedelta64(1l,'D")
7.0

>>> np.timedelta64d (1, 'W') % np.timedelta64d (10, 'D")
numpy .timedelta64 (7, 'D")

There are two Timedelta units (‘Y’, years and ‘M’, months) which are treated specially, because how much time they
represent changes depending on when they are used. While a timedelta day unit is equivalent to 24 hours, there is no
way to convert a month unit into days, because different months have different numbers of days.

Example

>>> a = np.timedelta64 (1, 'Y")

>>> np.timedelta64 (a, 'M')
numpy .timedelta64 (12, 'M")

>>> np.timedelta64 (a, 'D'")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Cannot cast NumPy timedelta64 scalar from metadata [Y] to [D] according to,
—the rule 'same_kind'

1.9.3 Datetime Units

The Datetime and Timedelta data types support a large number of time units, as well as generic units which can be
coerced into any of the other units based on input data.

Datetimes are always stored based on POSIX time (though having a TAI mode which allows for accounting of leap-
seconds is proposed), with an epoch of 1970-01-01T00:00Z. This means the supported dates are always a symmetric
interval around the epoch, called “time span” in the table below.

The length of the span is the range of a 64-bit integer times the length of the date or unit. For example, the time span
for ‘W’ (week) is exactly 7 times longer than the time span for ‘D’ (day), and the time span for ‘D’ (day) is exactly 24
times longer than the time span for ‘h’ (hour).

Here are the date units:

376 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

Code | Meaning | Time span (relative) | Time span (absolute)
Y year +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
M month +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
\%% week +/- 1.7e17 years [1.7e17 BC, 1.7¢17 AD]
D day +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
And here are the time units:
Code | Meaning Time span (relative) | Time span (absolute)
h hour +/- 1.0el5 years [1.0e15 BC, 1.0e15 AD]
m minute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
S second +/-2.9el1 years [2.9¢11 BC, 2.9¢e11 AD]
ms millisecond +/- 2.9e8 years [2.9e8 BC, 2.9¢8 AD]
us microsecond | +/- 2.9e5 years [290301 BC, 294241 AD]
ns nanosecond +/- 292 years [1678 AD, 2262 AD]
ps picosecond +/- 106 days [1969 AD, 1970 AD]
fs femtosecond | +/- 2.6 hours [1969 AD, 1970 AD]
as attosecond +/- 9.2 seconds [1969 AD, 1970 AD]

1.9.4 Business Day Functionality

To allow the datetime to be used in contexts where only certain days of the week are valid, NumPy includes a set of
“busday” (business day) functions.

The default for busday functions is that the only valid days are Monday through Friday (the usual business days). The
implementation is based on a “weekmask” containing 7 Boolean flags to indicate valid days; custom weekmasks are
possible that specify other sets of valid days.

The “busday” functions can additionally check a list of “holiday” dates, specific dates that are not valid days.

The function busday_offset allows you to apply offsets specified in business days to datetimes with a unit of ‘D’
(day).

Example

>>> np.busday_offset ('2011-06-23", 1)
numpy .datetime64 ('2011-06-24")

>>> np.busday_offset ('2011-06-23", 2)
numpy .datetime64 ('2011-06-27")

When an input date falls on the weekend or a holiday, busday_offset first applies a rule to roll the date to a valid
business day, then applies the offset. The default rule is ‘raise’, which simply raises an exception. The rules most
typically used are ‘forward’ and ‘backward’.

Example

>>> np.busday_offset ('2011-06-25", 2)

Traceback (most recent call last):
File "<stdin>", line 1,

ValueError: Non-business day date in busday_offset

in <module>

1.9. Datetimes and Timedeltas 377

NumPy Reference, Release 1.17.0

>>> np.busday_offset ('2011-06-25", 0, roll='forward")
numpy .datetime64 ('2011-06-27")

>>> np.busday_offset ('2011-06-25", 2, roll='forward")
numpy .datetime64 ('2011-06-29")

>>> np.busday_offset ('2011-06-25", 0, roll='backward")
numpy .datetime64 ('2011-06-24")

>>> np.busday_offset ('2011-06-25", 2, roll='backward")
numpy .datetime64 ('2011-06-28")

In some cases, an appropriate use of the roll and the offset is necessary to get a desired answer.

Example

The first business day on or after a date:

>>> np.busday_offset ('2011-03-20"', 0, roll='forward")
numpy .datetime64 ('2011-03-21"', 'D")
>>> np.busday_offset ('2011-03-22"', 0, roll='forward')
numpy .datetime64 ('2011-03-22"', 'D")

The first business day strictly after a date:

>>> np.busday_offset ('2011-03-20"'", 1, roll='backward")
numpy.datetime64 ('2011-03-21"','D")
>>> np.busday_offset ('2011-03-22"', 1, roll='backward")
numpy .datetime64 ('2011-03-23"', 'D")

The function is also useful for computing some kinds of days like holidays. In Canada and the U.S., Mother’s day is
on the second Sunday in May, which can be computed with a custom weekmask.

Example

>>> np.busday_offset ('2012-05", 1, roll='forward', weekmask='Sun')
numpy .datetime64 ('2012-05-13"', 'D")

When performance is important for manipulating many business dates with one particular choice of weekmask and
holidays, there is an object busdaycalendar which stores the data necessary in an optimized form.

np.is_busday():

To test a datetime64 value to see if it is a valid day, use i s_busday.

Example

>>> np.is_busday (np.datetime64 ('2011-07-15")) # a Friday
True

(continues on next page)

378 Chapter 1. Array objects

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> np.is_busday (np.datetime64 ('2011-07-16")) # a Saturday

False

>>> np.is_busday (np.datetime64 ('2011-07-16"), weekmask="Sat Sun")

True

>>> a = np.arange (np.datetime64 ('2011-07-11"), np.datetime64('2011-07-18"))
>>> np.is_busday (a)

array ([True, True, True, True, True, False, False], dtype='bool')

np.busday_count():

To find how many valid days there are in a specified range of datetime64 dates, use busday_count:

Example

>>> np.busday_count (np.datetime64 ('2011-07-11"), np.datetime64 ('2011-07-18"))
5
>>> np.busday_count (np.datetime64 ('2011-07-18"), np.datetime6d ('2011-07-11"))
-5

If you have an array of datetime64 day values, and you want a count of how many of them are valid dates, you can do
this:

Example

>>> a = np.arange (np.datetime64 ('2011-07-11"), np.datetime64('2011-07-18"))
>>> np.count_nonzero (np.is_busday(a))
5

Custom Weekmasks

Here are several examples of custom weekmask values. These examples specify the “busday” default of Monday
through Friday being valid days.

Some examples:

Positional sequences; positions are Monday through Sunday.
Length of the sequence must be exactly 7.

weekmask = [1, 1, 1, 1, 1, 0, O]

1list or other sequence; 0 == invalid day, 1 == valid day
weekmask = "1111100"

string '0' == invalid day, 'l' == valid day

string abbreviations from this 1list: Mon Tue Wed Thu Fri Sat Sun
weekmask = "Mon Tue Wed Thu Fri"

any amount of whitespace is allowed; abbreviations are case-sensitive.
weekmask = "MonTue Wed Thu\tFri"

1.9. Datetimes and Timedeltas 379

NumPy Reference, Release 1.17.0

1.9.5 Changes with NumPy 1.11

In prior versions of NumPy, the datetime64 type always stored times in UTC. By default, creating a datetime64 object
from a string or printing it would convert from or to local time:

old behavior
>>>> np.datetime64 ('2000-01-01T00:00:00")
numpy .datetime64 ('2000-01-01T00:00:00-0800") # note the timezone offset —-08:00

A consensus of datetime64 users agreed that this behavior is undesirable and at odds with how datetime64 is usually
used (e.g., by pandas). For most use cases, a timezone naive datetime type is preferred, similar to the datetime.
datetime type in the Python standard library. Accordingly, datetime64 no longer assumes that input is in local time,
nor does it print local times:

>>>> np.datetime64 ('2000-01-01T00:00:00")
numpy.datetime64 ('2000-01-01T00:00:00")

For backwards compatibility, datetime64 still parses timezone offsets, which it handles by converting to UTC. How-
ever, the resulting datetime is timezone naive:

>>> np.datetime64 ('2000-01-01T00:00:00-08")

DeprecationWarning: parsing timezone aware datetimes is deprecated; this will raise_,
—an error in the future

numpy.datetime64 ('2000-01-01T08:00:00")

As a corollary to this change, we no longer prohibit casting between datetimes with date units and datetimes with
timeunits. With timezone naive datetimes, the rule for casting from dates to times is no longer ambiguous.

1.9.6 Differences Between 1.6 and 1.7 Datetimes

The NumPy 1.6 release includes a more primitive datetime data type than 1.7. This section documents many of the
changes that have taken place.

String Parsing

The datetime string parser in NumPy 1.6 is very liberal in what it accepts, and silently allows invalid input without
raising errors. The parser in NumPy 1.7 is quite strict about only accepting ISO 8601 dates, with a few convenience
extensions. 1.6 always creates microsecond (us) units by default, whereas 1.7 detects a unit based on the format of the
string. Here is a comparison.:

NumPy 1.6.1

>>> np.datetime64 ('1979-03-22")
1979-03-22 00:00:00

NumPy 1.7.0

>>> np.datetime64 ('1979-03-22")
numpy .datetime64 ('1979-03-22")

NumPy 1.6.1, unit default microseconds

>>> np.datetime64 ('1979-03-22") .dtype

dtype ('datetime6d [us] ")

NumPy 1.7.0, unit of days detected from string
>>> np.datetime64 ('1979-03-22") .dtype

dtype ('<M8[D] ")

(continues on next page)

380 Chapter 1. Array objects

http://pandas.pydata.org

NumPy Reference, Release 1.17.0

(continued from previous page)

NumPy 1.6.1, ignores invalid part of string
>>> np.datetime64 ('1979-03-2corruptedstring')
1979-03-02 00:00:00
NumPy 1.7.0, raises error for invalid input
>>> np.datetime64 ('1979-03-2corruptedstring')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "1979-03-2corruptedstring” at position 8

NumPy 1.6.1, 'nat' produces today's date
>>> np.datetime64 ('nat')

2012-04-30 00:00:00

NumPy 1.7.0, 'nat' produces not-a-time
>>> np.datetime64 ('nat')

numpy .datetime64 ('NaT')

NumPy 1.6.1, 'garbage' produces today's date
>>> np.datetime64 ('garbage')
2012-04-30 00:00:00
NumPy 1.7.0, 'garbage' raises an exception
>>> np.datetime64 ('garbage')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: Error parsing datetime string "garbage" at position 0

NumPy 1.6.1, can't specify unit in scalar constructor
>>> np.datetime64 ('1979-03-22T19:00', 'h'")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function takes at most 1 argument (2 given)
NumPy 1.7.0, unit in scalar constructor
>>> np.datetime64 ('1979-03-22T719:00"', 'h'")
numpy .datetime64 ('1979-03-22T719:00-0500", 'h")

NumPy 1.6.1, reads ISO 8601 strings w/o TZ as UTC

>>> np.array(['1979-03-22T19:00'], dtype='M8[h]")

array ([1979-03-22 19:00:00], dtype=datetime64[h])

NumPy 1.7.0, reads ISO 8601 strings w/o TZ as local (ISO specifies this)
>>> np.array(['1979-03-22T19:00'], dtype='M8[h]")

array (['1979-03-22T19-0500"'], dtype='datetime6d[h]")

NumPy 1.6.1, doesn't parse all ISO 8601 strings correctly
>>> np.array(['1979-03-22T12"'], dtype='M8[h]")

array ([1979-03-22 00:00:00], dtype=datetime64[h])

>>> np.array(['1979-03-22T12:00"], dtype='M8[h]")

array ([1979-03-22 12:00:00], dtype=datetime64[h])

NumPy 1.7.0, handles this case correctly

>>> np.array (['1979-03-22T12"'], dtype='M8[h]")

array (['1979-03-22T12-0500"'], dtype='datetime6d[h]")

>>> np.array (['1979-03-22T12:00"], dtype='M8[h]")

array (['1979-03-22T12-0500"], dtype='datetime64[h]"')

Unit Conversion

The 1.6 implementation of datetime does not convert between units correctly.:

1.9. Datetimes and Timedeltas 381

NumPy Reference, Release 1.17.0

NumPy 1.6.1, the representation value is untouched

>>> np.array(['1979-03-22"'], dtype='M8[D]")

array ([1979-03-22 00:00:00], dtype=datetime64[D])

>>> np.array(['1979-03-22"], dtype='M8[D]") .astype ('M8[M]")
array ([2250-08-01 00:00:00], dtype=datetime64[M])

NumPy 1.7.0, the representation is scaled accordingly
>>> np.array(['1979-03-22"'], dtype='M8[D]")

array (['1979-03-22"], dtype='datetime64[D]")

>>> np.array(['1979-03-22"], dtype='M8[D]") .astype ('M8[M]")
array (['1979-03"], dtype='datetime6d[M]")

Datetime Arithmetic

The 1.6 implementation of datetime only works correctly for a small subset of arithmetic operations. Here we show
some simple cases.:

NumPy 1.6.1, produces invalid results if units are incompatible
>>> a = np.array(['1979-03-22T12"'], dtype='M8[h]")

>>> b = np.array ([3%x60], dtype='m8[m]")

>>> a + Db

array ([1970-01-01 00:00:00.080988], dtype=datetime64[us])

NumPy 1.7.0, promotes to higher-resolution unit

>>> a = np.array(['1979-03-22T12'], dtype='M8[h]")

>>> b = np.array([3%x60], dtype='m8[m]")

>>> a + b
array (['1979-03-22T15:00-0500"], dtype='datetime64[m]")

NumPy 1.6.1, arithmetic works if everything is microseconds
>>> a = np.array (['1979-03-22T12:00"], dtype='M8[us]")

>>> b = np.array ([3x60x60x1000000], dtype='m8[us]")

>>> a + b

array ([1979-03-22 15:00:00], dtype=datetime64[us])

NumPy 1.7.0

>>> a = np.array (['1979-03-22T12:00"], dtype='M8[us]")

>>> b = np.array ([3x60x60x1000000], dtype='m8[us]")

>>> a + b
array (['1979-03-22T15:00:00.000000-0500"], dtype='datetime64[us]")

382 Chapter 1. Array objects

CHAPTER
TWO

CONSTANTS

NumPy includes several constants:

numpy . Inf
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity, PINF and infty are aliases for i nf. For more details, see inf.
See Also
inf

numpy .Infinity
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity, PINF and infty are aliases for inf. For more details, see inf.
See Also
inf

numpy . NAN
IEEE 754 floating point representation of Not a Number (NaN).

NaN and NAN are equivalent definitions of nan. Please use nan instead of NAN.
See Also

nan

numpy . NINF
IEEE 754 floating point representation of negative infinity.

Returns

y [float] A floating point representation of negative infinity.

383

NumPy Reference, Release 1.17.0

See Also

isinf : Shows which elements are positive or negative infinity
isposinf : Shows which elements are positive infinity
isneginf : Shows which elements are negative infinity

isnan : Shows which elements are Not a Number

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a

Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity
is equivalent to positive infinity.

Examples

>>> np.NINF
—-inf

>>> np.log(0)
—-inf

numpy . NZERO
IEEE 754 floating point representation of negative zero.

Returns

y [float] A floating point representation of negative zero.

See Also

PZERO : Defines positive zero.

isinf : Shows which elements are positive or negative infinity.
isposinf : Shows which elements are positive infinity.
isneginf : Shows which elements are negative infinity.

isnan : Shows which elements are Not a Number.

isfinite [Shows which elements are finite - not one of] Not a Number, positive infinity and negative infinity.

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Negative zero is consid-
ered to be a finite number.

384 Chapter 2. Constants

NumPy Reference, Release 1.17.0

Examples

>>> np.NZERO
-0.0
>>> np.PZERO
0.0

>>> np.isfinite ([np.NZERO])
array ([Truel)

>>> np.isnan([np.NZERO])
array ([False])

>>> np.isinf ([np.NZERO])
array ([Falsel])

numpy . NaN
IEEE 754 floating point representation of Not a Number (NaN).

NaN and NAN are equivalent definitions of nan. Please use nan instead of NaN.

See Also

nan

numpy . PINF
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity, PINF and infty are aliases for inf. For more details, see inf.

See Also
inf

numpy . PZERO
IEEE 754 floating point representation of positive zero.

Returns

y [float] A floating point representation of positive zero.

See Also

NZERO : Defines negative zero.

isinf : Shows which elements are positive or negative infinity.
isposinf : Shows which elements are positive infinity.
isneginf : Shows which elements are negative infinity.

isnan : Shows which elements are Not a Number.

isfinite [Shows which elements are finite - not one of] Not a Number, positive infinity and negative infinity.

385

NumPy Reference, Release 1.17.0

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Positive zero is considered
to be a finite number.

Examples

>>> np.PZERO
0.0
>>> np.NZERO
-0.0

>>> np.isfinite ([np.PZERO])
array ([Truel)

>>> np.isnan([np.PZERO])
array ([Falsel])

>>> np.isinf ([np.PZERO])
array ([Falsel])

numpy . e

Euler’s constant, base of natural logarithms, Napier’s constant.

e = 2.71828182845904523536028747135266249775724709369995. ..

See Also

exp : Exponential function log : Natural logarithm

References

https://en.wikipedia.org/wiki/E_%?28mathematical_constant%?29

numpy .euler_ gamma

v = 0.5772156649015328606065120900824024310421...

References

https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

numpy .inf

IEEE 754 floating point representation of (positive) infinity.

Returns

y [float] A floating point representation of positive infinity.

See Also

isinf : Shows which elements are positive or negative infinity

isposinf : Shows which elements are positive infinity

386

Chapter 2. Constants

https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
https://en.wikipedia.org/wiki/Euler-Mascheroni_constant

NumPy Reference, Release 1.17.0

isneginf : Shows which elements are negative infinity
isnan : Shows which elements are Not a Number

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)

Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity
is equivalent to positive infinity.

Inf, Infinity, PINF and infty are aliases for inf.

Examples

>>> np.inf

inf
>>> np.array ([1]) / O.
array ([Inf])

numpy .infty
IEEE 754 floating point representation of (positive) infinity.

Use inf because Inf, Infinity, PINF and infty are aliases for inf. For more details, see inf.
See Also
inf

numpy .nan
IEEE 754 floating point representation of Not a Number (NaN).

Returns

y : A floating point representation of Not a Number.

See Also

isnan : Shows which elements are Not a Number.

isfinite : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity)
Notes

NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a
Number is not equivalent to infinity.

NaN and NAN are aliases of nan.

387

NumPy Reference, Release 1.17.0

Examples

>>> np.nan

nan

>>> np.log(-1)

nan

>>> np.log([-1, 1, 2])

array ([NaN, 0. , 0.693147187)

numpy .newaxis

A convenient alias for None, useful for indexing arrays.

See Also

numpy .doc.indexing

Examples

>>> newaxis is None

True

>>> x = np.arange (3)

>>> x

array ([0, 1, 2])

>>> x[:, newaxis]

array ([[0],

[11,

(211

>>> x[:, newaxis, newaxis]
array ([[[0]],

[L111,

[[2111)
>>> x[:,
array ([[
[0, 1, 2
[0, 2, 4

newaxis] * x

OI Ol O]I
]
]

1)

Outer product, same as outer (x, Vy):

>>> y = np.arange (3, 6)
>>> x[:, newaxis] * y
array ([[O, 0, 01,

[3, 4, 51,

[6, 8, 1011)

x [newaxis, :] isequivalentto x [newaxis] and x [None]:

>>> x[newaxis, :].shape
(1, 3)

>>> x[newaxis] .shape
(1, 3)

>>> x[None] .shape

(1, 3)

>>> x[:, newaxis] .shape
(3, 1)

388

Chapter 2. Constants

NumPy Reference, Release 1.17.0

numpy .pi
pi = 3.1415926535897932384626433...

References

https://en.wikipedia.org/wiki/Pi

389

https://en.wikipedia.org/wiki/Pi

NumPy Reference, Release 1.17.0

390 Chapter 2. Constants

CHAPTER
THREE

UNIVERSAL FUNCTIONS (UFUNC)

A universal function (or ufunc for short) is a function that operates on ndarrays in an element-by-element fashion,
supporting array broadcasting, type casting, and several other standard features. That is, a ufunc is a “vectorized”
wrapper for a function that takes a fixed number of specific inputs and produces a fixed number of specific outputs.

In NumPy, universal functions are instances of the numpy . ufunc class. Many of the built-in functions are imple-
mented in compiled C code. The basic ufuncs operate on scalars, but there is also a generalized kind for which the
basic elements are sub-arrays (vectors, matrices, etc.), and broadcasting is done over other dimensions. One can also
produce custom ufunc instances using the frompy func factory function.

3.1 Broadcasting

Each universal function takes array inputs and produces array outputs by performing the core function element-wise
on the inputs (where an element is generally a scalar, but can be a vector or higher-order sub-array for generalized
ufuncs). Standard broadcasting rules are applied so that inputs not sharing exactly the same shapes can still be usefully
operated on. Broadcasting can be understood by four rules:

1. All input arrays with ndim smaller than the input array of largest ndim, have 1’s prepended to their shapes.
2. The size in each dimension of the output shape is the maximum of all the input sizes in that dimension.

3. Aninput can be used in the calculation if its size in a particular dimension either matches the output size in that
dimension, or has value exactly 1.

4. If an input has a dimension size of 1 in its shape, the first data entry in that dimension will be used for all
calculations along that dimension. In other words, the stepping machinery of the ufunc will simply not step
along that dimension (the stride will be O for that dimension).

Broadcasting is used throughout NumPy to decide how to handle disparately shaped arrays; for example, all arithmetic
operations (+, —, x, ...) between ndarrays broadcast the arrays before operation.

A set of arrays is called “broadcastable” to the same shape if the above rules produce a valid result, i.e., one of the
following is true:

1. The arrays all have exactly the same shape.

2. The arrays all have the same number of dimensions and the length of each dimensions is either a common length
orl.

3. The arrays that have too few dimensions can have their shapes prepended with a dimension of length 1 to satisfy
property 2.

Example

391

NumPy Reference, Release 1.17.0

If a.shapeis (5,1), b.shapeis (1,6), c.shape is (6,) and d. shape is () so that d is a scalar, then a, b, ¢, and d
are all broadcastable to dimension (5,6); and

* g acts like a (5,6) array where a [:, 0] is broadcast to the other columns,
* b acts like a (5,6) array where b [0, :] is broadcast to the other rows,
e cacts like a (1,6) array and therefore like a (5,6) array where c [:] is broadcast to every row, and finally,

* d acts like a (5,6) array where the single value is repeated.

3.2 Output type determination

The output of the ufunc (and its methods) is not necessarily an ndarray, if all input arguments are not ndarrays.
Indeed, if any input defines an ___array ufunc__ method, control will be passed completely to that function, i.e.,
the ufunc is overridden.

If none of the inputs overrides the ufunc, then all output arrays will be passed to the __array prepare__ and
__array_wrap___ methods of the input (besides ndarrays, and scalars) that defines it and has the highest
__array_priority__ of any other input to the universal function. The default__array priority__ of the
ndarray is 0.0, and the default__array priority__ ofasubtypeis0.0. Matriceshave _array priority_
equal to 10.0.

All ufuncs can also take output arguments. If necessary, output will be cast to the data-type(s) of the provided output
array(s). If aclass withan ___array method is used for the output, results will be written to the object returned
by __array_ . Then, if the class also has an __array prepare__ method, it is called so metadata may be
determined based on the context of the ufunc (the context consisting of the ufunc itself, the arguments passed to
the ufunc, and the ufunc domain.) The array object returned by __ array prepare _ is passed to the ufunc for
computation. Finally, if the class also has an ___array_wrap___ method, the returned ndarray result will be
passed to that method just before passing control back to the caller.

3.3 Use of internal buffers

Internally, buffers are used for misaligned data, swapped data, and data that has to be converted from one data type to
another. The size of internal buffers is settable on a per-thread basis. There can be up to 2(7inputs + Moutputs) buffers
of the specified size created to handle the data from all the inputs and outputs of a ufunc. The default size of a buffer is
10,000 elements. Whenever buffer-based calculation would be needed, but all input arrays are smaller than the buffer
size, those misbehaved or incorrectly-typed arrays will be copied before the calculation proceeds. Adjusting the size of
the buffer may therefore alter the speed at which ufunc calculations of various sorts are completed. A simple interface
for setting this variable is accessible using the function

setbhufsize(size) Set the size of the buffer used in ufuncs.

numpy . setbufsize (size)
Set the size of the buffer used in ufuncs.

Parameters

size [int] Size of buffer.

392 Chapter 3. Universal functions (ufunc)

ufuncs.overrides

NumPy Reference, Release 1.17.0

3.4 Error handling

Universal functions can trip special floating-point status registers in your hardware (such as divide-by-zero). If avail-
able on your platform, these registers will be regularly checked during calculation. Error handling is controlled on a
per-thread basis, and can be configured using the functions

seterr([all, divide, over, under, invalid]) Set how floating-point errors are handled.
seterrcall(func) Set the floating-point error callback function or log ob-
ject.

numpy . seterr (all=None, divide=None, over=None, under=None, invalid=None)
Set how floating-point errors are handled.

Note that operations on integer scalar types (such as int 16) are handled like floating point, and are affected by
these settings.

Parameters

all [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Set treatment for all types of
floating-point errors at once:

* ignore: Take no action when the exception occurs.
e warn: Print a RuntimeWarning (via the Python warnings module).
* raise: Raise a FloatingPointError.
e call: Call a function specified using the seterrcall function.
e print: Print a warning directly to stdout.
* log: Record error in a Log object specified by seterrcall.
The default is not to change the current behavior.
divide [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for division by zero.

over [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for floating-point
overflow.

under [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for floating-point
underflow.

invalid [{‘ignore’, ‘warn’, ‘raise’, ‘call’, ‘print’, ‘log’}, optional] Treatment for invalid floating-
point operation.

Returns

old_settings [dict] Dictionary containing the old settings.

See also:
seterrcall Set a callback function for the ‘call’ mode.

geterr, geterrcall, errstate

Notes

The floating-point exceptions are defined in the IEEE 754 standard [1]:

* Division by zero: infinite result obtained from finite numbers.

3.4. Error handling 393

https://docs.python.org/dev/library/warnings.html#module-warnings

NumPy Reference, Release 1.17.0

* Overflow: result too large to be expressed.
e Underflow: result so close to zero that some precision was lost.

* Invalid operation: result is not an expressible number, typically indicates that a NaN was produced.

Examples

>>> old_settings = np.seterr(all='ignore') #seterr to known value

>>> np.seterr (over="'raise')

{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
>>> np.seterr (xxold_settings) # reset to default

{'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}

>>> np.intl6(32000) * np.intl6(3)
30464
>>> o0ld_settings = np.seterr(all='warn', over='raise')
>>> np.intl6(32000) * np.intl6(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FloatingPointError: overflow encountered in short_scalars

>>> from collections import OrderedDict

>>> o0ld_settings = np.seterr(all="print')
>>> OrderedDict (np.geterr())
OrderedDict ([('divide', 'print'), ('over', 'print'), ('under', 'print'), ('invalid

', 'print')])
>>> np.intl16(32000) * np.intl6(3)
30464

numpy . seterrcall (func)
Set the floating-point error callback function or log object.

There are two ways to capture floating-point error messages. The first is to set the error-handler to ‘call’, using
seterr. Then, set the function to call using this function.

The second is to set the error-handler to ‘log’, using seterr. Floating-point errors then trigger a call to the
‘write’ method of the provided object.

Parameters

func [callable f(err, flag) or object with write method] Function to call upon floating-point errors
(‘call’-mode) or object whose ‘write’ method is used to log such message (‘log’-mode).

The call function takes two arguments. The first is a string describing the type of error

LLIT 9%

(such as “divide by zero”, “overflow”, “underflow”, or “invalid value”), and the second is
the status flag. The flag is a byte, whose four least-significant bits indicate the type of error,

CLINT3 CLINNT3 CERNY3S

one of “divide”, “over”, “under”, “invalid”:

[0 0 0 0 divide over under invalid]

In other words, flags = divide + 2%over + 4+under + 8xinvalid.
If an object is provided, its write method should take one argument, a string.
Returns

h [callable, log instance or None] The old error handler.

394 Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

See also:

seterr, geterr, geterrcall

Examples

Callback upon error:

>>> def err_handler (type, flag):
print ("Floating point error (%s), with flag %s" % (type, flag))

>>> saved_handler = np.seterrcall (err_handler)
>>> save_err = np.seterr(all='call')
>>> from collections import OrderedDict

>>> np.array([1l, 2, 31) / 0.0
Floating point error (divide by zero), with flag 1
array ([inf, inf, inf])

>>> np.seterrcall (saved_handler)

<function err_handler at Ox...>

>>> OrderedDict (sorted(np.seterr (x+xsave_err) .items ()))

OrderedDict ([('divide', 'call'), ('invalid', 'call'), ('over', 'call'), ('under',
—'call")])

Log error message:

>>> class Log (object):
def write(self, msg):
print ("LOG: ¢s" % msqg)

>>> log = Log()
>>> saved_handler = np.seterrcall (log)
>>> save_err = np.seterr(all="log'")

>>> np.array([1, 2, 3]) / 0.0
LOG: Warning: divide by zero encountered in true_divide
array ([inf, inf, inf])

>>> np.seterrcall (saved_handler)

<numpy.core.numeric.Log object at 0x...>

>>> OrderedDict (sorted(np.seterr («+xsave_err) .items ()))

OrderedDict ([('divide', 'log'), ('invalid', 'log'), ('over', 'log'), ('under',
—'log')])

3.5 Casting Rules

Note: In NumPy 1.6.0, a type promotion API was created to encapsulate the mechanism for determining output types.
See the functions result_type, promote types,and min_scalar_type for more details.

3.5. Casting Rules 395

NumPy Reference, Release 1.17.0

At the core of every ufunc is a one-dimensional strided loop that implements the actual function for a specific type
combination. When a ufunc is created, it is given a static list of inner loops and a corresponding list of type signatures
over which the ufunc operates. The ufunc machinery uses this list to determine which inner loop to use for a particular
case. You can inspect the . t ypes attribute for a particular ufunc to see which type combinations have a defined inner
loop and which output type they produce (character codes are used in said output for brevity).

Casting must be done on one or more of the inputs whenever the ufunc does not have a core loop implementation for
the input types provided. If an implementation for the input types cannot be found, then the algorithm searches for an
implementation with a type signature to which all of the inputs can be cast “safely.” The first one it finds in its internal
list of loops is selected and performed, after all necessary type casting. Recall that internal copies during ufuncs (even
for casting) are limited to the size of an internal buffer (which is user settable).

Note: Universal functions in NumPy are flexible enough to have mixed type signatures. Thus, for example, a universal
function could be defined that works with floating-point and integer values. See 1dexp for an example.

By the above description, the casting rules are essentially implemented by the question of when a data type can be
cast “safely” to another data type. The answer to this question can be determined in Python with a function call:
can_cast (fromtype, totype). The Figure below shows the results of this call for the 24 internally supported
types on the author’s 64-bit system. You can generate this table for your system with the code given in the Figure.

Figure

Code segment showing the “can cast safely” table for a 32-bit system.

>>> def print_table(ntypes):
print 'X',
for char in ntypes: print char,
print
for row in ntypes:

print row,

for col in ntypes:

print int (np.can_cast (row, col)),

. print
>> print_table (np.typecodes

v -

['ALL1'])
X?2?bhilgpBHILQPefdgFDGSUVOMMNM
1111111111111 1111111111111
p01111110000001111111111100
hoo111110000000111111111100
iooo11110000000011011111100
l1000011100000000O11011111100
qgb00001110000000O0O110111111060
p0OO0O00O1110000O0OO0OO0OO0O1I1O01I11111CO00O0
po0oo601111111111111111111111¢00
KHo00O0O11110111110111111111100
rooooco1r110011110011011111100
roooobooo060001110011011111100
go0bo0o0O0O0OOO0O0OO0OO1T1I1I1O00110111111O00
pOoOoOOOOCOOOOO0O1I1I1001I1I011I1I1I11CO00
e0O0O00O0OO0COOODOOOOOII1I1I1II1II1I1I1I1I11CO0O0
f00000O00OO00OO0OO0OO0OO0OO1I1I1111111100
d00000000O0O0O0OO0OO0OO0CO0O1I1IO0111111O00
goo0b00O0OO0OO0OOODOOCOOOOOO1ITO0O01I1I1I1I1O00
FOOOOOOOOOOOOOOOOO1I1I11111O00
DoOOOOOOOOOOOOOOOOOOLII1I1I1I1I1O0O0
GoOOOOOOOOOOOOOOOOOOOLIII1I1I1O00

(continues on next page)

396 Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

(continued from previous page)

3 Ro<auwm
O O O O O O

O O O O O O

O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O O
O O O O O K
O O O O
O O P B
O O P BB
O P O O O O
= O O O O O

You should note that, while included in the table for completeness, the ‘S’, ‘U’, and ‘V’ types cannot be operated on
by ufuncs. Also, note that on a 32-bit system the integer types may have different sizes, resulting in a slightly altered

table.

Mixed scalar-array operations use a different set of casting rules that ensure that a scalar cannot “upcast” an array
unless the scalar is of a fundamentally different kind of data (i.e., under a different hierarchy in the data-type hierarchy)
than the array. This rule enables you to use scalar constants in your code (which, as Python types, are interpreted
accordingly in ufuncs) without worrying about whether the precision of the scalar constant will cause upcasting on
your large (small precision) array.

3.6

Overriding Ufunc behavior

Classes (including ndarray subclasses) can override how ufuncs act on them by defining certain special methods. For
details, see Standard array subclasses.

3.7

ufunc

3.7.1 Optional keyword arguments

All ufuncs take optional keyword arguments. Most of these represent advanced usage and will not typically be used.

out

where

New in version 1.6.

The first output can be provided as either a positional or a keyword parameter. Keyword ‘out’ arguments
are incompatible with positional ones.

New in version 1.10.

The ‘out’ keyword argument is expected to be a tuple with one entry per output (which can be None for
arrays to be allocated by the ufunc). For ufuncs with a single output, passing a single array (instead of a
tuple holding a single array) is also valid.

Passing a single array in the ‘out’ keyword argument to a ufunc with multiple outputs is deprecated, and
will raise a warning in numpy 1.10, and an error in a future release.

If ‘out’ is None (the default), a uninitialized return array is created. The output array is then filled with
the results of the ufunc in the places that the broadcast ‘where’ is True. If ‘where’ is the scalar True (the
default), then this corresponds to the entire output being filled. Note that outputs not explicitly filled are
left with their uninitialized values.

New in version 1.7.

3.6. Overriding Ufunc behavior

397

NumPy Reference, Release 1.17.0

Accepts a boolean array which is broadcast together with the operands. Values of True indicate to calculate
the ufunc at that position, values of False indicate to leave the value in the output alone. This argument
cannot be used for generalized ufuncs as those take non-scalar input.

Note that if an uninitialized return array is created, values of False will leave those values uninitialized.
axes
New in version 1.15.

A list of tuples with indices of axes a generalized ufunc should operate on. For instance, for a signature of

(i, 3), (3, k) —> (i, k) appropriate for matrix multiplication, the base elements are two-dimensional
matrices and these are taken to be stored in the two last axes of each argument. The corresponding axes
keyword would be [(-2, -1), (-2, -1), (-2, -1)]. For simplicity, for generalized ufuncs
that operate on 1-dimensional arrays (vectors), a single integer is accepted instead of a single-element
tuple, and for generalized ufuncs for which all outputs are scalars, the output tuples can be omitted.

axis
New in version 1.15.

A single axis over which a generalized ufunc should operate. This is a short-cut for ufuncs that operate
over a single, shared core dimension, equivalent to passing in axes with entries of (axis,) for each
single-core-dimension argument and () for all others. For instance, for a signature (i), (1) —-> (), itis
equivalent to passing in axes=[(axis,), (axis,), ()].

keepdims
New in version 1.15.

If this is set to True, axes which are reduced over will be left in the result as a dimension with size one,
so that the result will broadcast correctly against the inputs. This option can only be used for generalized
ufuncs that operate on inputs that all have the same number of core dimensions and with outputs that have
no core dimensions , i.e., with signatures like (i), (1) ->() or (m, m)—> (). If used, the location of
the dimensions in the output can be controlled with axes and axis.

casting
New in version 1.6.

May be ‘no’, ‘equiv’, ‘safe’, ‘same_kind’, or ‘unsafe’. See can_ cast for explanations of the parameter
values.

Provides a policy for what kind of casting is permitted. For compatibility with previous versions of
NumPy, this defaults to ‘unsafe’ for numpy < 1.7. In numpy 1.7 a transition to ‘same_kind’ was begun
where ufuncs produce a DeprecationWarning for calls which are allowed under the ‘unsafe’ rules, but not
under the ‘same_kind’ rules. From numpy 1.10 and onwards, the default is ‘same_kind’.

order
New in version 1.6.

Specifies the calculation iteration order/memory layout of the output array. Defaults to ‘K’. ‘C’ means
the output should be C-contiguous, ‘F’ means F-contiguous, ‘A’ means F-contiguous if the inputs are F-
contiguous and not also not C-contiguous, C-contiguous otherwise, and ‘K’ means to match the element
ordering of the inputs as closely as possible.

dtype
New in version 1.6.
Overrides the dtype of the calculation and output arrays. Similar to signature.

subok

398 Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

New in version 1.6.
Defaults to true. If set to false, the output will always be a strict array, not a subtype.
signature

Either a data-type, a tuple of data-types, or a special signature string indicating the input and output
types of a ufunc. This argument allows you to provide a specific signature for the 1-d loop to use in
the underlying calculation. If the loop specified does not exist for the ufunc, then a TypeError is raised.
Normally, a suitable loop is found automatically by comparing the input types with what is available and
searching for a loop with data-types to which all inputs can be cast safely. This keyword argument lets
you bypass that search and choose a particular loop. A list of available signatures is provided by the
types attribute of the ufunc object. For backwards compatibility this argument can also be provided as
sig, although the long form is preferred. Note that this should not be confused with the generalized ufunc
signature that is stored in the signature attribute of the of the ufunc object.

extobj

a list of length 1, 2, or 3 specifying the ufunc buffer-size, the error mode integer, and the error call-
back function. Normally, these values are looked up in a thread-specific dictionary. Passing them here
circumvents that look up and uses the low-level specification provided for the error mode. This may be
useful, for example, as an optimization for calculations requiring many ufunc calls on small arrays in a
loop.

3.7.2 Attributes

There are some informational attributes that universal functions possess. None of the attributes can be set.

__doc|_A docstring for each ufunc. The first part of the docstring is dynamically generated from the number of
outputs, the name, and the number of inputs. The second part of the docstring is provided at creation time
and stored with the ufunc.

_nan{le"me name of the ufunc.

ufunc.nin The number of inputs.
ufunc.nout The number of outputs.
ufunc.nargs The number of arguments.
ufunc.ntypes The number of types.
ufunc.types Returns a list with types grouped input->output.
ufunc.identity The identity value.
ufunc.signature Definition of the core elements a generalized ufunc op-
erates on.
attribute

ufunc.nin
The number of inputs.

Data attribute containing the number of arguments the ufunc treats as input.

Examples

>>> np.add.nin
2

(continues on next page)

3.7. ufunc 399

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> np.multiply.nin
2

>>> np.power.nin

2

>>> np.exp.nin

1

attribute

ufunc.nout
The number of outputs.

Data attribute containing the number of arguments the ufunc treats as output.

Notes

Since all ufuncs can take output arguments, this will always be (at least) 1.

Examples

>>> np.add.nout

>>> np.multiply.nout

>>> np.power.nout

>>> np.exp.nout

attribute

ufunc.nargs
The number of arguments.

Data attribute containing the number of arguments the ufunc takes, including optional ones.

Notes

Typically this value will be one more than what you might expect because all ufuncs take the optional “out”
argument.

Examples

>>> np.add.nargs
>>> np.multiply.nargs
>>> np.power.nargs

>>> np.exp.nargs

attribute

400 Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

ufunc.ntypes
The number of types.

The number of numerical NumPy types - of which there are 18 total - on which the ufunc can operate.
See also:

numpy.ufunc.types

Examples

>>> np.add.ntypes

18

>>> np.multiply.ntypes
18

>>> np.power.ntypes

17

>>> np.exp.ntypes

7

>>> np.remainder.ntypes
14

attribute

ufunc.types
Returns a list with types grouped input->output.

Data attribute listing the data-type “Domain-Range” groupings the ufunc can deliver. The data-types are given
using the character codes.

See also:

numpy.ufunc.ntypes

Examples

>>> np.add.types

[t??->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', '11->1"'",
'LL->L', 'gg->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG->G', '00->0"]

>>> np.multiply.types

["?2?2->?', 'bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->1', '11->1"',
'v->L.', 'gg->qgq', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D',
'GG—>G', 'OO0->0"']

>>> np.power.types

['bb->b', 'BB->B', 'hh->h', 'HH->H{', 'ii->i', 'II->1', 'll1->1', 'LL->L',
'qg->q', 'QQ->Q', 'ff->f', 'dd->d', 'gg->g', 'FF->F', 'DD->D', 'GG->G',
'00->0"]

>>> np.exp.types
[*f—>f', 'd->d', 'g->g', 'F->F', 'D->D', 'G->G', '0->0']

3.7. ufunc 401

NumPy Reference, Release 1.17.0

>>> np.remainder.types
['bb->b', 'BB->B', 'hh->h', 'HH->H', 'ii->i', 'II->I', '11->1', 'LL->L',
'qa->q', '00->Q', 'ff->f', 'dd->d', 'gg->g', '00->0']

attribute

ufunc.identity

The identity value.

Data attribute containing the identity element for the ufunc, if it has one. If it does not, the attribute value is
None.

Examples

>>> np.add.identity

0

>>> np.multiply.identity
1

>>> np.power.identity

1

>>> print (np.exp.identity)
None

attribute

ufunc.signature

Definition of the core elements a generalized ufunc operates on.
The signature determines how the dimensions of each input/output array are split into core and loop dimensions:

1. Each dimension in the signature is matched to a dimension of the corresponding passed-in array, starting
from the end of the shape tuple.

2. Core dimensions assigned to the same label in the signature must have exactly matching sizes, no broad-
casting is performed.

3. The core dimensions are removed from all inputs and the remaining dimensions are broadcast together,
defining the loop dimensions.

Notes
Generalized ufuncs are used internally in many linalg functions, and in the testing suite; the examples below are

taken from these. For ufuncs that operate on scalars, the signature is None, which is equivalent to ‘()" for every
argument.

Examples

>>> np.core.umath_tests.matrix_multiply.signature
'(m,n), (n,p)->(m,p)"’

>>> np.linalg._umath_linalg.det.signature
"(m,m)->()"

>>> np.add.signature is None

True # equivalent to '(), ()->()"'

402

Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

3.7.3 Methods

All ufuncs have four methods. However, these methods only make sense on scalar ufuncs that take two input arguments
and return one output argument. Attempting to call these methods on other ufuncs will cause a ValueError. The
reduce-like methods all take an axis keyword, a dtype keyword, and an out keyword, and the arrays must all have
dimension >= 1. The axis keyword specifies the axis of the array over which the reduction will take place (with
negative values counting backwards). Generally, it is an integer, though for ufunc. reduce, it can also be a tuple of
int to reduce over several axes at once, or None, to reduce over all axes. The dfype keyword allows you to manage
a very common problem that arises when naively using ufunc. reduce. Sometimes you may have an array of a
certain data type and wish to add up all of its elements, but the result does not fit into the data type of the array. This
commonly happens if you have an array of single-byte integers. The dfype keyword allows you to alter the data type
over which the reduction takes place (and therefore the type of the output). Thus, you can ensure that the output
is a data type with precision large enough to handle your output. The responsibility of altering the reduce type is
mostly up to you. There is one exception: if no dtype is given for a reduction on the “add” or “multiply” operations,
then if the input type is an integer (or Boolean) data-type and smaller than the size of the int__ data type, it will be
internally upcast to the int_ (or uint) data-type. Finally, the out keyword allows you to provide an output array (for
single-output ufuncs, which are currently the only ones supported; for future extension, however, a tuple with a single
argument can be passed in). If out is given, the drype argument is ignored.

Ufuncs also have a fifth method that allows in place operations to be performed using fancy indexing. No buffering
is used on the dimensions where fancy indexing is used, so the fancy index can list an item more than once and the
operation will be performed on the result of the previous operation for that item.

ufunc. reduce(al, axis, dtype, out, ...]) Reduces a’s dimension by one, by applying ufunc along
one axis.

ufunc.accumulate(array[, axis, dtype, out]) Accumulate the result of applying the operator to all el-
ements.

ufunc. reduceat(a, indices|, axis, dtype, out]) Performs a (local) reduce with specified slices over a
single axis.

ufunc.outer(A, B, **kwargs) Apply the ufunc op to all pairs (a, b) with ain A and b
in B.

ufunc.at(a, indices[, b]) Performs unbuffered in place operation on operand ‘a’

for elements specified by ‘indices’.

method

ufunc.reduce (a, axis=0, dtype=None, out=None, keepdims=False, initial=<no value>, where=True)
Reduces a’s dimension by one, by applying ufunc along one axis.

Let a.shape = (Ngy, ..., N;, ..., Nas—1). Then ufunc.reduce(a,axis = i)[ko, .., ki—1,kit1, .., kar—1] = the
result of iterating j over range(N;), cumulatively applying ufunc to each a[ko, .., k;—1, j, ki+1, .., kas—1]. Fora
one-dimensional array, reduce produces results equivalent to:

r = op.identity # op = ufunc
for i in range(len(dA)) :

r = op(r, A[i])
return r

For example, add.reduce() is equivalent to sum().
Parameters
a [array_like] The array to act on.

axis [None or int or tuple of ints, optional] Axis or axes along which a reduction is performed.
The default (axis = 0) is perform a reduction over the first dimension of the input array. axis
may be negative, in which case it counts from the last to the first axis.

3.7. ufunc 403

https://docs.python.org/dev/library/exceptions.html#ValueError
https://docs.python.org/dev/library/functions.html#int

NumPy Reference, Release 1.17.0

New in version 1.7.0.

If this is None, a reduction is performed over all the axes. If this is a tuple of ints, a reduction
is performed on multiple axes, instead of a single axis or all the axes as before.

For operations which are either not commutative or not associative, doing a reduction over
multiple axes is not well-defined. The ufuncs do not currently raise an exception in this
case, but will likely do so in the future.

dtype [data-type code, optional] The type used to represent the intermediate results. Defaults
to the data-type of the output array if this is provided, or the data-type of the input array if
no output array is provided.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__,if given as a keyword, this may be wrapped in a 1-element tuple.

Changed in version 1.13.0: Tuples are allowed for keyword argument.

keepdims [bool, optional] If this is set to True, the axes which are reduced are left in the result
as dimensions with size one. With this option, the result will broadcast correctly against the
original arr.

New in version 1.7.0.

initial [scalar, optional] The value with which to start the reduction. If the ufunc has no identity
or the dtype is object, this defaults to None - otherwise it defaults to ufunc.identity. If None
is given, the first element of the reduction is used, and an error is thrown if the reduction is
empty.

New in version 1.15.0.

where [array_like of bool, optional] A boolean array which is broadcasted to match the di-
mensions of a, and selects elements to include in the reduction. Note that for ufuncs like
minimum that do not have an identity defined, one has to pass in also initial.

New in version 1.17.0.
Returns

r [ndarray] The reduced array. If out was supplied, r is a reference to it.

Examples

>>> np.multiply.reduce([2,3,5])
30

A multi-dimensional array example:

>>> X = np.arange (8) .reshape((2,2,2))

>>> X
array ([[[0, 1],
(2, 311,
[r4, 51,
(6, 7111)
>>> np.add.reduce (X, 0)
array ([[4, 6],
[8, 1011)
>>> np.add.reduce (X) # confirm: default axis value is 0
array ([[4, 6],

(continues on next page)

404 Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

(continued from previous page)

[8, 1011)
>>> np.add.reduce (X, 1)
array ([[2, 41,

[10, 1211)
>>> np.add.reduce (X, 2)
array ([[1, 51,

[9, 1311)

You can use the initial keyword argument to initialize the reduction with a different value, and where to
select specific elements to include:

>>> np.add.reduce ([10], initial=)5)

15

>>> np.add.reduce (np.ones ((2, 2, 2)), axis=(0, 2), initial=10)
array ([14., 14.])

>>> a = np.array([10., np.nan, 10])

>>> np.add.reduce (a, where=~np.isnan(a))

20.0

Allows reductions of empty arrays where they would normally fail, i.e. for ufuncs without an identity.

>>> np.minimum.reduce ([], initial=np.inf)

inf

>>> np.minimum.reduce([[1., 2.1, [3., 4.]1]1, initial=10., where=[True, False])
array ([1., 10.])

>>> np.minimum.reduce ([])

Traceback (most recent call last):

ValueError: zero—-size array to reduction operation minimum which has no identity

method

ufunc.accumulate (array, axis=0, dtype=None, out=None)

Accumulate the result of applying the operator to all elements.

For a one-dimensional array, accumulate produces results equivalent to:

r = np.empty (len(A))
t op.identity # op = the ufunc being applied to A's elements
for i in range(len(A)) :
t = op(t, A[i])
rii] = t
return r

For example, add.accumulate() is equivalent to np.cumsum().

For a multi-dimensional array, accumulate is applied along only one axis (axis zero by default; see Examples
below) so repeated use is necessary if one wants to accumulate over multiple axes.

Parameters
array [array_like] The array to act on.
axis [int, optional] The axis along which to apply the accumulation; default is zero.

dtype [data-type code, optional] The data-type used to represent the intermediate results. De-
faults to the data-type of the output array if such is provided, or the the data-type of the input
array if no output array is provided.

3.7. ufunc 405

NumPy Reference, Release 1.17.0

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__,if given as a keyword, this may be wrapped in a 1-element tuple.

Changed in version 1.13.0: Tuples are allowed for keyword argument.
Returns

r [ndarray] The accumulated values. If out was supplied, r is a reference to out.

Examples

1-D array examples:

>>> np.add.accumulate ([2, 3, 5])
array ([2, 5, 101])

>>> np.multiply.accumulate([2, 3, 5])
array ([2, 6, 301)

2-D array examples:

>>> I = np.eye(2)

>>> T

array ([[1., 0.1,
[0., 1.11)

Accumulate along axis 0 (rows), down columns:

>>> np.add.accumulate (I, 0)

array ([[1l., 0.1,

[1., 1.101)
>>> np.add.accumulate (I) # no axis specified = axis zero
array ([[1l., 0.],

[1., 1.11)

Accumulate along axis 1 (columns), through rows:

>>> np.add.accumulate (I, 1)
array ([[1., 1.1,
[0., 1.11)

method

ufunc.reduceat (a, indices, axis=0, dtype=None, out=None)

Performs a (local) reduce with specified slices over a single axis.

For i in range (len (indices)), reduceat computes ufunc.
reduce (a[indices[i]:indices[i+1]]), which becomes the i-th generalized “row” parallel to
axis in the final result (i.e., in a 2-D array, for example, if axis = 0, it becomes the i-th row, but if axis = 1, it
becomes the i-th column). There are three exceptions to this:

e wheni = len(indices) - 1 (so forthe lastindex), indices[i+1] = a.shapelaxis].
e ifindices[i] >= indices[i + 1], thei-th generalized “row” is simply a [indices[1]].
e if indices[i] >= len(a) orindices[i] < 0, an error is raised.

The shape of the output depends on the size of indices, and may be larger than a (this happens if
len(indices) > a.shapelaxis]).

406

Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

Parameters
a [array_like] The array to act on.
indices [array_like] Paired indices, comma separated (not colon), specifying slices to reduce.
axis [int, optional] The axis along which to apply the reduceat.

dtype [data-type code, optional] The type used to represent the intermediate results. Defaults
to the data type of the output array if this is provided, or the data type of the input array if
no output array is provided.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result is
stored. If not provided or None, a freshly-allocated array is returned. For consistency with
ufunc.__call__,if given as a keyword, this may be wrapped in a 1-element tuple.

Changed in version 1.13.0: Tuples are allowed for keyword argument.
Returns

r [ndarray] The reduced values. If out was supplied, r is a reference to out.

Notes

A descriptive example:

If a is 1-D, the function ufunc.accumulate(a) is the same as ufunc.reduceat (a, indices) [::2]
where indices is range (len (array) — 1) with a zero placed in every other element: indices =
zeros (2 * len(a) - 1),indices[1l::2] = range(l, len(a)).

Don’t be fooled by this attribute’s name: reduceat(a) is not necessarily smaller than a.

Examples

To take the running sum of four successive values:

>>> np.add.reduceat (np.arange(8), [0,4, 1,5, 2,6, 3,7]1)[::2]
array ([6, 10, 14, 18])

A 2-D example:

>>> x = np.linspace (0, 15, 16).reshape(4,4)

>>> x

array ([[O., 1., 2., 3.7,
[4., 5., 6., 7.1,
[8., 9., 10., 11.71,
[12., 13., 14., 15.11)

reduce such that the result has the following five rows:

[rowl + row2 + row3]

[rowd]

[rowZ2]

[row3]

[rowl + row2 + row3 + row4]

>>> np.add.reduceat (x, [0, 3, 1, 2, 0])
array ([[12., 15., 18., 21.17,
[12., 13., 14., 15.7,

(continues on next page)

3.7. ufunc 407

NumPy Reference, Release 1.17.0

(continued from previous page)

[8., 9., 10., 11.1,
[24., 28., 32., 36.11)

reduce such that result has the following two columns:
[coll % col2 % col3, cold]

>>> np.multiply.reduceat (x, [0, 3], 1)

array ([[0., 3.1,
[120., 7.1,
[720., 11.1,
[2184., 15.11)
method

ufunc.outer (A, B, **kwargs)

Apply the ufunc op to all pairs (a, b) with ain A and b in B.

LetM = A.ndim, N = B.ndim. Then the result, C, of op.outer (A, B) isan array of dimension M + N
such that:

Clios .oy inf—15J0s s JN—1] = 0p(Alio, -, tar—1), Bljos -y In—1])

For A and B one-dimensional, this is equivalent to:

r = empty(len(A),len(B))
for i in range(len(Ad)) :
for j in range(len(B)):
r(i,j] = op(A[i]l, BI[jl) # op = ufunc in question

Parameters
A [array_like] First array
B [array_like] Second array

kwargs [any] Arguments to pass on to the ufunc. Typically dt ype or out.

Returns

r [ndarray] Output array

See also:

numpy.outer

Examples

>>> np.multiply.outer([1, 2, 3], [4, 5, 61])
array ([[4, 5, 61,

[8, 10, 127,

[12, 15, 18]11)

A multi-dimensional example:

408

Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

>>> A = np.array ([[1l, 2, 31, [4, 5, 611)
>>> A.shape

(2, 3)

>>> B = np.array ([[1l, 2, 3, 411])

>>> B.shape

(1, 4)

>>> C = np.multiply.outer (A, B)

>>> C.shape; C

(2, 3, 1, 4)
array ([[[[1, 2, 3, 417,
(r 2, 4, 6, 811,
(r 3, 6, 9, 12111,
[rr 4, 8, 12, 1611,
([5, 10, 15, 2011,
[[6, 12, 18, 241111)
method

ufunc.at (a, indices, b=None)

Performs unbuffered in place operation on operand ‘a’ for elements specified by ‘indices’. For addition ufunc,
this method is equivalent to a [indices] += b, except that results are accumulated for elements that are
indexed more than once. For example, a[[0,0]] += 1 will only increment the first element once because

of buffering, whereas add.at (a, [0,0], 1) willincrement the first element twice.
New in version 1.8.0.
Parameters
a [array_like] The array to perform in place operation on.

indices [array_like or tuple] Array like index object or slice object for indexing into first
operand. If first operand has multiple dimensions, indices can be a tuple of array like index
objects or slice objects.

b [array_like] Second operand for ufuncs requiring two operands. Operand must be broad-
castable over first operand after indexing or slicing.

Examples

Set items O and 1 to their negative values:

>>> a = np.array([1l, 2, 3, 4])
>>> np.negative.at(a, [0, 1])
>>> a

array([-1, -2, 3, 4])

Increment items O and 1, and increment item 2 twice:

>>> a = np.array([1l, 2, 3, 4])
>>> np.add.at(a, [0, 1, 2, 2], 1)
>>> a

array ([2, 3, 5, 4])

Add items 0 and 1 in first array to second array, and store results in first array:

>>> a = np.array([1l, 2, 3, 41)
>>> b = np.array([1l, 2])
>>> np.add.at(a, [0, 1], b)

(continues on next page)

3.7. ufunc

409

NumPy Reference, Release 1.17.0

(continued from previous page)

Warning: A reduce-like operation on an array with a data-type that has a range “too small” to handle the result
will silently wrap. One should use dt ype to increase the size of the data-type over which reduction takes place.

3.8 Available ufuncs

There are currently more than 60 universal functions defined in numpy on one or more types, covering a wide variety
of operations. Some of these ufuncs are called automatically on arrays when the relevant infix notation is used (e.g.,
add (a, b) iscalledinternally when a + D is written and a or b is an ndarray). Nevertheless, you may still want
to use the ufunc call in order to use the optional output argument(s) to place the output(s) in an object (or objects) of
your choice.

Recall that each ufunc operates element-by-element. Therefore, each scalar ufunc will be described as if acting on a

set of scalar inputs to return a set of scalar outputs.

Note: The ufunc still returns its output(s) even if you use the optional output argument(s).

3.8.1 Math operations

add(x1, x2, /[, out, where, casting, order, ...])

Add arguments element-wise.

subtract(xl, x2, /[, out, where, casting, ...])

Subtract arguments, element-wise.

multiply(xl, x2, /[, out, where, casting, ...])

Multiply arguments element-wise.

divide(x1, x2, /[, out, where, casting, ...])

Returns a true division of the inputs, element-wise.

logaddexp(x1, x2, /[, out, where, casting, ...])

Logarithm of the sum of exponentiations of the inputs.

logaddexp2(x1, X2, /[, out, where, casting, ...])

Logarithm of the sum of exponentiations of the inputs
in base-2.

true_divide(xl, x2, /[, out, where, ...])

Returns a true division of the inputs, element-wise.

floor_divide(xl,x2,/[, out, where, ...])

Return the largest integer smaller or equal to the division
of the inputs.

negat ive(x, /[, out, where, casting, order, ...])

Numerical negative, element-wise.

positive(x, /[, out, where, casting, order, ...])

Numerical positive, element-wise.

power(xl, x2, /[, out, where, casting, ...])

First array elements raised to powers from second array,
element-wise.

remainder(xl, x2, /[, out, where, casting, ...])

Return element-wise remainder of division.

mod(x1, x2, /[, out, where, casting, order, ...])

Return element-wise remainder of division.

fmod(x1, x2, /[, out, where, casting, ...])

Return the element-wise remainder of division.

divmod(x1, x2[, outl, out2], /[[, out, ...])

Return element-wise quotient and remainder simultane-
ously.

absolute(x, /[, out, where, casting, order, ...])

Calculate the absolute value element-wise.

fabs(x, /[, out, where, casting, order, ...])

Compute the absolute values element-wise.

rint(x, /[, out, where, casting, order, ...])

Round elements of the array to the nearest integer.

sign(x, /[, out, where, casting, order, ...])

Returns an element-wise indication of the sign of a num-
ber.

Continued on next page

410

Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

Table 5 — continued from previous page

heaviside(xl, x2, /[, out, where, casting, ...]) Compute the Heaviside step function.

conj(x, /[, out, where, casting, order, ...]) Return the complex conjugate, element-wise.

conjugate(x, /[, out, where, casting, ...]) Return the complex conjugate, element-wise.

exp(x, /[, out, where, casting, order, ...]) Calculate the exponential of all elements in the input
array.

exp2(x, /[, out, where, casting, order, ...]) Calculate 2**p for all p in the input array.

log(x, /[, out, where, casting, order, .. .]) Natural logarithm, element-wise.

log2(x, /[, out, where, casting, order, ...]) Base-2 logarithm of x.

loglO(x, /[, out, where, casting, order, ...]) Return the base 10 logarithm of the input array, element-
wise.

expml(x, /[, out, where, casting, order, ...]) Calculate exp (x) — 1 for all elements in the array.

loglp(x, /[, out, where, casting, order, ...]) Return the natural logarithm of one plus the input array,
element-wise.

sgrt(x, /[, out, where, casting, order, ...]) Return the non-negative square-root of an array,
element-wise.

square(x, /[, out, where, casting, order, ...]) Return the element-wise square of the input.

cbrt(x, /[, out, where, casting, order, ...]) Return the cube-root of an array, element-wise.

reciprocal(x, /[, out, where, casting, ...]) Return the reciprocal of the argument, element-wise.

gcd(x1, x2, /[, out, where, casting, order, ...]) Returns the greatest common divisor of |x1| and
| x2 |

lem(x1, x2, /[, out, where, casting, order, ...]) Returns the lowest common multiple of |x1| and
| %2 |

Tip: The optional output arguments can be used to help you save memory for large calculations. If your arrays are
large, complicated expressions can take longer than absolutely necessary due to the creation and (later) destruction of
temporary calculation spaces. For example, the expression G = a » b + cisequivalenttotl = A » B; G =
Tl + C; del t1l. It will be more quickly executed as G = A % B; add (G, C, G) which is the same as G
= A x B; G += C.

3.8.2 Trigonometric functions

All trigonometric functions use radians when an angle is called for. The ratio of degrees to radians is 180° /.

sin(x, /[, out, where, casting, order, ...]) Trigonometric sine, element-wise.

cos(x, /[, out, where, casting, order, . ..]) Cosine element-wise.

tan(x, /[, out, where, casting, order, ...]) Compute tangent element-wise.

arcsin(x, /[, out, where, casting, order, ...]) Inverse sine, element-wise.

arccos(x, /[, out, where, casting, order, ...]) Trigonometric inverse cosine, element-wise.

arctan(x, /[, out, where, casting, order, ...]) Trigonometric inverse tangent, element-wise.

arctan2(xl, x2, /[, out, where, casting, ...]) Element-wise arc tangent of x1/x2 choosing the quad-
rant correctly.

hypot(x1, X2, /[, out, where, casting, ...]) Given the “legs” of a right triangle, return its hy-
potenuse.

sinh(x, /[, out, where, casting, order, ...]) Hyperbolic sine, element-wise.

cosh(x, /[, out, where, casting, order, ...]) Hyperbolic cosine, element-wise.

tanh(x, /[, out, where, casting, order, ...]) Compute hyperbolic tangent element-wise.

arcsinh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic sine element-wise.

arccosh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic cosine, element-wise.

Continued on next page

3.8. Available ufuncs 411

NumPy Reference, Release 1.17.0

Table 6 — continued from previous page

arctanh(x, /[, out, where, casting, order, ...]) Inverse hyperbolic tangent element-wise.
deg2rad(x, /[, out, where, casting, order, ...]) Convert angles from degrees to radians.
rad2deg(x, /[, out, where, casting, order, ...]) Convert angles from radians to degrees.

3.8.3 Bit-twiddling functions

These function all require integer arguments and they manipulate the bit-pattern of those arguments.

bitwise and(xl, x2,/[, out, where, ...]) Compute the bit-wise AND of two arrays element-wise.

bitwise_or(xl, x2,/[, out, where, casting, ...]) Compute the bit-wise OR of two arrays element-wise.

bitwise xor(xl,x2,/[, out, where, ...]) Compute the bit-wise XOR of two arrays element-wise.

invert(X, /[, out, where, casting, order, ...]) Compute bit-wise inversion, or bit-wise NOT, element-
wise.

left_shift(xl, x2, /[, out, where, casting, ...]) Shift the bits of an integer to the left.

right_shift(xl, x2, /[, out, where, ...]) Shift the bits of an integer to the right.

3.8.4 Comparison functions

greater(xl, x2, /[, out, where, casting, ...]) Return the truth value of (x1 > x2) element-wise.
greater_equal(xl, x2, /[, out, where, ...]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2, /[, out, where, casting, ...]) Return the truth value of (x1 < x2) element-wise.
less_equal(xl, x2, /[, out, where, casting, ...]) Return the truth value of (x1 =< x2) element-wise.
not_equal(xl, x2, /[, out, where, casting, ...]) Return (x1 !=x2) element-wise.

equal(xl, x2, /[, out, where, casting, ...]) Return (x1 == x2) element-wise.

Warning: Do not use the Python keywords and and or to combine logical array expressions. These keywords
will test the truth value of the entire array (not element-by-element as you might expect). Use the bitwise operators
& and | instead.

logical_and(xl, x2, /[, out, where, ...]) Compute the truth value of x1 AND x2 element-wise.
logical_or(xl, x2,/[, out, where, casting, ...]) Compute the truth value of x1 OR x2 element-wise.
logical_xor(xl, x2,/[, out, where, ...]) Compute the truth value of x1 XOR x2, element-wise.
logical_not(x, /[, out, where, casting, ...]) Compute the truth value of NOT x element-wise.

Warning: The bit-wise operators & and | are the proper way to perform element-by-element array comparisons.
Be sure you understand the operator precedence: (a > 2) & (a < 5) is the proper syntax because a > 2
& a < 5 will result in an error due to the fact that 2 & a is evaluated first.

maximum(x1, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.

Tip: The Python function max () will find the maximum over a one-dimensional array, but it will do so using a
slower sequence interface. The reduce method of the maximum ufunc is much faster. Also, the max () method will

412 Chapter 3. Universal functions (ufunc)

NumPy Reference, Release 1.17.0

not give answers you might expect for arrays with greater than one dimension. The reduce method of minimum also
allows you to compute a total minimum over an array.

minimum(x1, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.

Warning: the behavior of maximum (a, b) is different than that of max (a, b). As aufunc, maximum (a,
b) performs an element-by-element comparison of a and b and chooses each element of the result according to
which element in the two arrays is larger. In contrast, max (a, b) treats the objects a and b as a whole, looks at
the (total) truth value of a > b and uses it to return either a or b (as a whole). A similar difference exists between
minimum(a, b) andmin(a, b).

fmax(x1, x2, /[, out, where, casting, ...]) Element-wise maximum of array elements.
fmin(x1, x2, /[, out, where, casting, ...]) Element-wise minimum of array elements.

3.8.5 Floating functions

Recall that all of these functions work element-by-element over an array, returning an array output. The description
details only a single operation.

isfinite(x, /[, out, where, casting, order, ...]) Test element-wise for finiteness (not infinity or not Not
a Number).

isinf(x, /[, out, where, casting, order, ...]) Test element-wise for positive or negative infinity.

1isnan(Xx, /[, out, where, casting, order, ...]) Test element-wise for NaN and return result as a
boolean array.

1isnat(x, /[, out, where, casting, order, ...]) Test element-wise for NaT (not a time) and return result
as a boolean array.

fabs(x, /[, out, where, casting, order, ...]) Compute the absolute values element-wise.

signbit(x, /[, out, where, casting, order, ...]) Returns element-wise True where signbit is set (less
than zero).

copysign(xl, x2, /[, out, where, casting, ...]) Change the sign of x1 to that of x2, element-wise.

nextafter(xl, x2, /[, out, where, casting, ...]) Return the next floating-point value after x1 towards x2,
element-wise.

spacing(x, /[, out, where, casting, order, ...]) Return the distance between x and the nearest adjacent
number.

modf(x[, outl, out2], / [[, out, where, ...]) Return the fractional and integral parts of an array,
element-wise.

Idexp(x1, x2, /[, out, where, casting, ...]) Returns x1 * 2**x2, element-wise.

frexp(x[, outl, out2], / [[, out, where, ...]) Decompose the elements of x into mantissa and twos
exponent.

fmod(x1, x2, /[, out, where, casting, ...]) Return the element-wise remainder of division.

floor(x, /[, out, where, casting, order, ...]) Return the floor of the input, element-wise.

ceil(x, /[, out, where, casting, order, ...]) Return the ceiling of the input, element-wise.

trunc(x, /[, out, where, casting, order, ...]) Return the truncated value of the input, element-wise.

3.8. Available ufuncs 413

NumPy Reference, Release 1.17.0

414 Chapter 3. Universal functions (ufunc)

CHAPTER
FOUR

ROUTINES

In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code,
which demonstrates basic usage of the routine. The examples assume that NumPy is imported with:

>>> import numpy as np

A convenient way to execute examples is the $doctest_mode mode of IPython, which allows for pasting of multi-

line examples and preserves indentation.

4.1 Array creation routines

See also:

Array creation

4.1.1 Ones and zeros

empt y(shape[, dtype, order])

Return a new array of given shape and type, without
initializing entries.

empty_11ike(prototype[, dtype, order, subok, ...])

Return a new array with the same shape and type as a
given array.

eve(N[, M, k, dtype, order])

Return a 2-D array with ones on the diagonal and zeros
elsewhere.

identity(n[, dtype])

Return the identity array.

ones(shapel, dtype, order])

Return a new array of given shape and type, filled with
ones.

ones__11ke(al, dtype, order, subok, shape])

Return an array of ones with the same shape and type as
a given array.

zeros(shapel[, dtype, order])

Return a new array of given shape and type, filled with
Zeros.

zeros_1ike(a[, dtype, order, subok, shape])

Return an array of zeros with the same shape and type
as a given array.

fulI(shape, fill_value[, dtype, order])

Return a new array of given shape and type, filled with
fill_value.

full_11ike(a, fill_value[, dtype, order, ...])

Return a full array with the same shape and type as a
given array.

numpy . empty (shape, dtype=float, order="C")

Return a new array of given shape and type, without initializing entries.

415

NumPy Reference, Release 1.17.0

Parameters
shape [int or tuple of int] Shape of the empty array, e.g., (2, 3) or 2.

dtype [data-type, optional] Desired output data-type for the array, e.g, numpy . int 8. Default
is numpy . float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns

out [ndarray] Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Object
arrays will be initialized to None.

See also:

empty like Return an empty array with shape and type of input.
ones Return a new array setting values to one.
zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

Notes

empty, unlike zeros, does not set the array values to zero, and may therefore be marginally faster. On the
other hand, it requires the user to manually set all the values in the array, and should be used with caution.

Examples

>>> np.empty ([2, 2])
array ([[—9.74499359e+001, 6.69583040e-309],
[2.13182611e-314, 3.06959433e-309]11) #uninitialized

>>> np.empty([2, 2], dtype=int)
array ([[-1073741821, -1067949133],
[496041986, 1924976011) #uninitialized

numpy .empty_like (prototype, dtype=None, order="K’, subok=True, shape=None)
Return a new array with the same shape and type as a given array.

Parameters

prototype [array_like] The shape and data-type of prototype define these same attributes of the
returned array.

dtype [data-type, optional] Overrides the data type of the result.
New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if prot ot ype is Fortran contiguous, ‘C’ otherwise.
‘K’ means match the layout of prototype as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

416 Chapter 4. Routines

NumPy Reference, Release 1.17.0

shape [int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.
Returns
out [ndarray] Array of uninitialized (arbitrary) data with the same shape and type as prototype.

See also:

ones_like Return an array of ones with shape and type of input.
zeros_like Return an array of zeros with shape and type of input.
full_ like Return a new array with shape of input filled with value.

empty Return a new uninitialized array.

Notes

This function does not initialize the returned array; to do that use zeros_1like or ones_1ike instead. It
may be marginally faster than the functions that do set the array values.

Examples

>>> a = ([1,2,31, [4,5,61) # a is array-like

>>> np.empty_like (a)

array ([[-1073741821, -1073741821, 3],
[0, 0, -107374182111])

>>> a = np.array([[1l., 2., 3.1,[4.,5.,6.11)

>>> np.empty_like (a)

array ([[—-2.00000715e+000, 1.48219694e-323, -2.00000572e+0007,
[4.38791518e-305, -2.00000715e+000, 4.17269252e-30911)

uninitialized

uninitialized

numpy . eye (N, M=None, k=0, dtype=<class 'float’>, order="C")

Return a 2-D array with ones on the diagonal and zeros elsewhere.
Parameters
N [int] Number of rows in the output.
M [int, optional] Number of columns in the output. If None, defaults to N.

k [int, optional] Index of the diagonal: O (the default) refers to the main diagonal, a positive
value refers to an upper diagonal, and a negative value to a lower diagonal.

dtype [data-type, optional] Data-type of the returned array.

order [{‘C’, ‘F’}, optional] Whether the output should be stored in row-major (C-style) or
column-major (Fortran-style) order in memory.

New in version 1.14.0.
Returns

I [ndarray of shape (N,M)] An array where all elements are equal to zero, except for the k-th
diagonal, whose values are equal to one.

See also:

4.1. Array creation routines 417

NumPy Reference, Release 1.17.0

identity (almost) equivalent function

diag diagonal 2-D array from a 1-D array specified by the user.

Examples

>>> np.eye (2, dtype=int)

array ([[1, 07,
[0, 111

>>> np.eye (3, k=1)

array ([[0., 1., 0.1,
(0., 0., 1.1,
[0., 0., 0.11)

numpy . identity (n, dtype=None)
Return the identity array.

The identity array is a square array with ones on the main diagonal.
Parameters
n [int] Number of rows (and columns) in n X n output.
dtype [data-type, optional] Data-type of the output. Defaults to f1oat.
Returns

out [ndarray] n x n array with its main diagonal set to one, and all other elements 0.

Examples

>>> np.identity (3)

array ([[1l., 0., 0.1,
[0., 1., 0.1,
[0., 0., 1.101)

numpy . ones (shape, dtype=None, order="C")
Return a new array of given shape and type, filled with ones.

Parameters
shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy . int 8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: C] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns
out [ndarray] Array of ones with the given shape, dtype, and order.

See also:

ones_like Return an array of ones with shape and type of input.
empty Return a new uninitialized array.
zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

418 Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples

>>> np.ones (5)
array([1., 1., 1., 1., 1.])

>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])

>>> np.ones ((2, 1))
array ([[1.1,
[1.11)

>>> 5 = (2,2)

>>> np.ones(s)

array ([[1., 1.1,
[1., 1.11)

Parameters

numpy .ones_1like (a, dtype=None, order="K’, subok=True, shape=None)
Return an array of ones with the same shape and type as a given array.

a [array_like] The shape and data-type of a define these same attributes of the returned array.

dtype [data-type, optional] Overrides the data type of the result.

New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’

means match the layout of a as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,

otherwise it will be a base-class array. Defaults to True.

shape [int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.

Returns

out [ndarray] Array of ones with the same shape and type as a.

See also:

empty like Return an empty array with shape and type of input.
zeros_like Return an array of zeros with shape and type of input.
full like Return a new array with shape of input filled with value.

ones Return a new array setting values to one.

Examples

4.1. Array creation routines

419

NumPy Reference, Release 1.17.0

>>> x = np.arange (6)
>>> x = x.reshape((2, 3))
>>> x

array ([[0, 1, 21,
[3, 4, 511)

>>> np.ones_like (x)

array ([[1, 1, 11,
(1, 1, 111

>>> y = np.arange (3, dtype=float)
>>> y

array ([0., 1., 2.1)

>>> np.ones_like (y)

array ([1l., 1., 1.1)

numpy . zeros (shape, dtype=float, order="C")

Return a new array of given shape and type, filled with zeros.
Parameters
shape [int or tuple of ints] Shape of the new array, e.g., (2, 3) or 2.

dtype [data-type, optional] The desired data-type for the array, e.g., numpy . int 8. Default is
numpy.float64.

order [{‘C’, ‘F’}, optional, default: ‘C’] Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in memory.

Returns
out [ndarray] Array of zeros with the given shape, dtype, and order.

See also:

zeros_like Return an array of zeros with shape and type of input.
empty Return a new uninitialized array.
ones Return a new array setting values to one.

full Return a new array of given shape filled with value.

Examples

>>> np.zeros (5)
array ([0., 0., 0., 0., 0.1)

>>> np.zeros((5,), dtype=int)
array ([0, 0, O, 0, 01)

>>> np.zeros((2, 1))

array ([[0.1,
[0.11)
>>> s = (2,2)
>>> np.zeros(s)
array ([[0., 0.1,
[0., 0.11)

420

Chapter 4. Routines

NumPy Reference, Release 1.17.0

>>> np.zeros((2,), dtype=[('x', 'i4"), ('y', '"i4'")]) # custom dtype
array ([(0, 0), (0, 0)1,
dtype=I[('x"', '<id4"), ('y', '<id")])

numpy . zeros_1like (a, dtype=None, order="K’, subok=True, shape=None)
Return an array of zeros with the same shape and type as a given array.

Parameters
a [array_like] The shape and data-type of a define these same attributes of the returned array.
dtype [data-type, optional] Overrides the data type of the result.
New in version 1.6.0.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible.

New in version 1.6.0.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

shape [int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.
Returns
out [ndarray] Array of zeros with the same shape and type as a.

See also:

empty Ilike Return an empty array with shape and type of input.
ones_Jlike Return an array of ones with shape and type of input.
full_ like Return a new array with shape of input filled with value.

zeros Return a new array setting values to zero.

Examples

>>> x = np.arange (6)

>>> x = x.reshape((2, 3))
>>> x

array ([[0, 1, 27,
[3, 4, 511)

>>> np.zeros_like (x)

array([[0, O, O],
[0, 0, 01D

>>> y = np.arange (3, dtype=float)
>>> y

array ([0., 1., 2.1)

>>> np.zeros_like (y)

array ([0., 0., 0.1)

4.1. Array creation routines 421

NumPy Reference, Release 1.17.0

numpy . £ull (shape, fill_value, dtype=None, order="C")
Return a new array of given shape and type, filled with fill_value.

Parameters
shape [int or sequence of ints] Shape of the new array, e.g., (2, 3) or 2.
fill_value [scalar] Fill value.
dtype [data-type, optional]

The desired data-type for the array The default, None, means
np.array(fill_value).dtype.

order [{‘C’, ‘F’}, optional] Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory.

Returns
out [ndarray] Array of fill_value with the given shape, dtype, and order.

See also:

full like Return a new array with shape of input filled with value.
empty Return a new uninitialized array.
ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

Examples
>>> np.full((2, 2), np.inf)
array ([[inf, inf],
[inf, inf]])
>>> np.full((2, 2), 10)

array ([[10, 107,
(10, 1011)

numpy . full_1like (a, fill_value, dtype=None, order="K’, subok=True, shape=None)
Return a full array with the same shape and type as a given array.

Parameters
a [array_like] The shape and data-type of a define these same attributes of the returned array.
fill_value [scalar] Fill value.
dtype [data-type, optional] Overrides the data type of the result.

order [{‘C’, ‘F’, ‘A’, or ‘K’}, optional] Overrides the memory layout of the result. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible.

subok [bool, optional.] If True, then the newly created array will use the sub-class type of ‘a’,
otherwise it will be a base-class array. Defaults to True.

shape [int or sequence of ints, optional.] Overrides the shape of the result. If order="K’ and the
number of dimensions is unchanged, will try to keep order, otherwise, order="C’ is implied.

New in version 1.17.0.

Returns

422 Chapter 4. Routines

NumPy Reference, Release 1.17.0

out [ndarray] Array of fill_value with the same shape and type as a.

See also:

empty Ilike Return an empty array with shape and type of input.
ones_like Return an array of ones with shape and type of input.
zeros_like Return an array of zeros with shape and type of input.

full Return a new array of given shape filled with value.

Examples

>>> x = np.arange (6, dtype=int)

>>> np.full_like(x, 1)

array([1, 1, 1, 1, 1, 117)

>>> np.full_like(x, 0.1)

array ([0, O, O, 0, 0, 0])

>>> np.full_like(x, 0.1, dtype=np.double)
array([(0.1, 0.1, 0.1, 0.1, 0.1, 0.11)

>>> np.full_like(x, np.nan, dtype=np.double)
array ([nan, nan, nan, nan, nan, nan])

>>> y = np.arange (6, dtype=np.double)
>>> np.full_like(y, 0.1)
array([0.1, 0.1, 0.1, 0.1, 0.1, 0.17])

4.1.2 From existing data

array(object[, dtype, copy, order, subok, ndmin]) Create an array.

asarray(al, dtype, order]) Convert the input to an array.

asanyarray(al, dtype, order]) Convert the input to an ndarray, but pass ndarray sub-
classes through.

ascontiguousarray(al, dtypel) Return a contiguous array (ndim >= 1) in memory (C
order).

asmatrix(data[, dtype]) Interpret the input as a matrix.

copy(a[, order]) Return an array copy of the given object.

frombuf fer(buffer[, dtype, count, offset]) Interpret a buffer as a 1-dimensional array.

fromfile(file[, dtype, count, sep, offset]) Construct an array from data in a text or binary file.

fromfunct ion(function, shape, **kwargs) Construct an array by executing a function over each
coordinate.

fromiter(iterable, dtype[, count]) Create a new 1-dimensional array from an iterable ob-
ject.

fromstring(string[, dtype, count, sep]) A new 1-D array initialized from text data in a string.

loadtxt(fname[, dtype, comments, delimiter, ...]) Load data from a text file.

numpy .array (object, dtype=None, copy=True, order="K’, subok=False, ndmin=0)
Create an array.

Parameters

object [array_like] An array, any object exposing the array interface, an object whose __array__
method returns an array, or any (nested) sequence.

4.1. Array creation routines 423

NumPy Reference, Release 1.17.0

dtype [data-type, optional] The desired data-type for the array. If not given, then the type will be
determined as the minimum type required to hold the objects in the sequence. This argument
can only be used to ‘upcast’ the array. For downcasting, use the .astype(t) method.

copy [bool, optional] If true (default), then the object is copied. Otherwise, a copy will only
be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to
satisfy any of the other requirements (dt ype, order, etc.).

order [{‘K’, ‘A’, ‘C’, ‘F’}, optional] Specify the memory layout of the array. If object is not
an array, the newly created array will be in C order (row major) unless ‘F’ is specified, in
which case it will be in Fortran order (column major). If object is an array the following

holds.
order | no copy copy=True
‘K unchanged | F & C order preserved, otherwise most similar order
‘A unchanged | F order if input is F and not C, otherwise C order
‘< C order C order
‘F F order F order

When copy=False and a copy is made for other reasons, the result is the same as if
copy=True, with some exceptions for A, see the Notes section. The default order is ‘K’.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
array will be forced to be a base-class array (default).

ndmin [int, optional] Specifies the minimum number of dimensions that the resulting array
should have. Ones will be pre-pended to the shape as needed to meet this requirement.

Returns
out [ndarray] An array object satisfying the specified requirements.

See also:

empty like Return an empty array with shape and type of input.
ones_like Return an array of ones with shape and type of input.
zeros_like Return an array of zeros with shape and type of input.
full like Return a new array with shape of input filled with value.
empty Return a new uninitialized array.

ones Return a new array setting values to one.

zeros Return a new array setting values to zero.

full Return a new array of given shape filled with value.

Notes

When order is ‘A’ and object is an array in neither ‘C’ nor ‘F’ order, and a copy is forced by a change in
dtype, then the order of the result is not necessarily ‘C’ as expected. This is likely a bug.

Examples

424

Chapter 4. Routines

https://docs.python.org/dev/library/functions.html#object

NumPy Reference, Release 1.17.0

>>> np.array([1, 2, 3])
array ([1, 2, 31)

Upcasting:

>>> np.array([1l, 2, 3.0])
array ([1., 2., 3.17)

More than one dimension:

>>> np.array ([[1, 2], [3, 411)
array ([[1, 21,
[3, 411)

Minimum dimensions 2:

>>> np.array([1l, 2, 3], ndmin=2)
array ([[1, 2, 3]11)

Type provided:

>>> np.array([l, 2, 3], dtype=complex)
array ([1.+40.3, 2.40.3, 3.40.31)

Data-type consisting of more than one element:

>>> x = np.array ([(1,2),(3,4)],dtype=[('a','<id"), ('b', '<id")])
>>> x['a']

array ([1, 31])

Creating an array from sub-classes:

>>> np.array(np.mat ('l 2; 3 4"))
array ([[1, 2],
[3, 411

>>> np.array(np.mat ('l 2; 3 4'), subok=True)
matrix ([[1, 21,
[3, 411)

numpy .asarray (a, dtype=None, order=None)
Convert the input to an array.

Parameters

a [array_like] Input data, in any form that can be converted to an array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

dtype [data-type, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (C-style) or column-major (Fortran-
style) memory representation. Defaults to ‘C’.

Returns

out [ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray
with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.

See also:

4.1. Array creation routines

NumPy Reference, Release 1.17.0

asanyarray Similar function which passes through subclasses.
ascontiguousarray Convertinput to a contiguous array.

asfarray Convert input to a floating point ndarray.

asfortranarray Convert input to an ndarray with column-major memory order.
asarray chkfinite Similar function which checks input for NaNs and Infs.
fromiter Create an array from an iterator.

fromfunction Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray (a)
array ([1, 21])

Existing arrays are not copied:

>>> a = np.array([1l, 2])
>>> np.asarray(a) is a
True

If dt ype is set, array is copied only if dtype does not match:

>>> a = np.array([1l, 2], dtype=np.float32)
>>> np.asarray (a, dtype=np.float32) is a
True

>>> np.asarray (a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass (np.recarray, np.ndarray)

True

>>> a = np.array ([(1.0, 2), (3.0, 4)], dtype='f4,1i4") .view(np.recarray)
>>> np.asarray(a) is a

False

>>> np.asanyarray(a) is a

True

numpy . asanyarray (a, dtype=None, order=None)
Convert the input to an ndarray, but pass ndarray subclasses through.

Parameters

a [array_like] Input data, in any form that can be converted to an array. This includes scalars,
lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.

dtype [data-type, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (C-style) or column-major (Fortran-
style) memory representation. Defaults to ‘C’.

Returns

426 Chapter 4. Routines

NumPy Reference, Release 1.17.0

out [ndarray or an ndarray subclass] Array interpretation of a. If a is an ndarray or a subclass
of ndarray, it is returned as-is and no copy is performed.

See also:

asarray Similar function which always returns ndarrays.
ascontiguousarray Convertinput to a contiguous array.

asfarray Convert input to a floating point ndarray.

asfortranarray Convert input to an ndarray with column-major memory order.
asarray chkfinite Similar function which checks input for NaNs and Infs.
fromiter Create an array from an iterator.

fromfunction Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asanyarray (a)
array ([1, 2])

Instances of ndarray subclasses are passed through as-is:

>>> a = np.array ([(1.0, 2), (3.0, 4)], dtype='f4,i4") .view(np.recarray)
>>> np.asanyarray(a) is a
True

numpy . ascontiguousarray (a, dtype=None)
Return a contiguous array (ndim >= 1) in memory (C order).

Parameters
a [array_like] Input array.
dtype [str or dtype object, optional] Data-type of returned array.
Returns
out [ndarray] Contiguous array of same shape and content as a, with type dt ype if specified.

See also:

asfortranarray Convert input to an ndarray with column-major memory order.
require Return an ndarray that satisfies requirements.

ndarray. flags Information about the memory layout of the array.

Examples

>>> x = np.arange (6) .reshape (2, 3)
>>> np.ascontiguousarray (x, dtype=np.float32)
array ([[0., 1., 2.1,

[3., 4., 5.]1], dtype=float32)

(continues on next page)

4.1. Array creation routines

427

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> x.flags['C_CONTIGUOUS']
True

Note: This function returns an array with at least one-dimension (1-d) so it will not preserve 0-d arrays.

numpy . copy (a, order="K’)
Return an array copy of the given object.

Parameters
a [array_like] Input data.

order [{‘C’, ‘F’, ‘A’, ‘’K’}, optional] Controls the memory layout of the copy. ‘C’ means C-
order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means
match the layout of a as closely as possible. (Note that this function and ndarray. copy
are very similar, but have different default values for their order= arguments.)

Returns
arr [ndarray] Array interpretation of a.

Notes

This is equivalent to:

>>> np.array (a, copy=True) #doctest: +SKIP

Examples

Create an array x, with a reference y and a copy z:

>>> x = np.array([l, 2, 31)
>>> y = X
>>> z = np.copy (x)

Note that, when we modify x, y changes, but not z:

>>> x[0] = 10
>>> x[0] == y[0]
True

>>> x[0] == z[0]
False

numpy . fErombuf fer (buffer, dtype=float, count=-1, offset=0)
Interpret a buffer as a 1-dimensional array.

Parameters
buffer [buffer_like] An object that exposes the buffer interface.
dtype [data-type, optional] Data-type of the returned array; default: float.
count [int, optional] Number of items to read. —1 means all data in the buffer.

offset [int, optional] Start reading the buffer from this offset (in bytes); default: 0.

428 Chapter 4. Routines

NumPy Reference, Release 1.17.0

Notes

If the buffer has data that is not in machine byte-order, this should be specified as part of the data-type, e.g.:

>>> dt = np.dtype (int)
>>> dt = dt.newbyteorder('>")
>>> np.frombuffer (buf, dtype=dt)

The data of the resulting array will not be byteswapped, but will be interpreted correctly.

Examples

>>> s = b'hello world'
>>> np.frombuffer (s, dtype='Sl', count=5, offset=6)
array([b'w', b'o', b'r', b'l', b'd'], dtype='|S1l")

>>> np.frombuffer (b'\x01\x02', dtype=np.uint8)

array ([1, 2], dtype=uint8)

>>> np.frombuffer (b'\x01\x02\x03\x04\x05', dtype=np.uint8, count=3)
array ([1, 2, 3], dtype=uint8)

numpy . fEromfile (file, dtype=float, count=-1, sep="", offset=0)
Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text
files. Data written using the fofile method can be read using this function.

Parameters
file [file or str or Path] Open file object or filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

dtype [data-type] Data type of the returned array. For binary files, it is used to determine the
size and byte-order of the items in the file.

count [int] Number of items to read. —1 means all items (i.e., the complete file).

(132]

sep [str] Separator between items if file is a text file. Empty (“”’) separator means the file should
be treated as binary. Spaces (" *‘) in the separator match zero or more whitespace characters.
A separator consisting only of spaces must match at least one whitespace.

offset [int] The offset (in bytes) from the file’s current position. Defaults to 0. Only permitted
for binary files.

New in version 1.17.0.
See also:
load, save, ndarray.tofile

loadtxt More flexible way of loading data from a text file.
Notes
Do not rely on the combination of fofile and fromfile for data storage, as the binary files generated are are

not platform independent. In particular, no byte-order or data-type information is saved. Data can be stored in
the platform independent . npy format using save and 1oad instead.

4.1. Array creation routines 429

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

Examples

Construct an ndarray:

>>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)1]),
C. ("temp', float)l])
>>> x = np.zeros((l,), dtype=dt)

>>> x['time'] ['min'] 10; x['temp'] = 98.25
>>> x
array ([((10, 0), 98.25)7,
dtype=[('time', [('min', '<i8'), ('sec', '<i8")]), ('temp', '<f8')1])

Save the raw data to disk:

>>> import tempfile
>>> fname = tempfile.mkstemp () [1]
>>> x.tofile (fname)

Read the raw data from disk:

>>> np.fromfile (fname, dtype=dt)
array ([((10, 0), 98.25)7,
dtype=[('time', [('min', '<i8'"), ('sec', '<i8")]), ('temp', '<£f8')1])

The recommended way to store and load data:

>>> np.save (fname, x)

>>> np.load(fname + '.npy')
array ([((10, 0), 98.25)],
dtype=[('time', [('min', '<i8'), ('sec', '<i8")]1), ('temp', '<£f8")1])

numpy . fromfunction (function, shape, **kwargs)
Construct an array by executing a function over each coordinate.

The resulting array therefore has a value fn (x, y, z) atcoordinate (x, y, z).
Parameters

function [callable] The function is called with N parameters, where N is the rank of shape.
Each parameter represents the coordinates of the array varying along a specific axis. For ex-
ample, if shape were (2, 2), then the parameters would be array ([[0, 0], [1,
11]1) and array ([[0, 11, [0, 111)

shape [(N,) tuple of ints] Shape of the output array, which also determines the shape of the
coordinate arrays passed to function.

dtype [data-type, optional] Data-type of the coordinate arrays passed to function. By default,
dt ype is float.

Returns

fromfunction [any] The result of the call to function is passed back directly. Therefore the
shape of fromfunction is completely determined by function. If function returns a scalar
value, the shape of fromfunction would not match the shape parameter.

See also:

indices, meshgrid

430 Chapter 4. Routines

NumPy Reference, Release 1.17.0

Notes

Keywords other than dt ype are passed to function.

Examples
>>> np.fromfunction (lambda i, j: i == 3, (3, 3), dtype=int)
array([[True, False, False],

[False, True, False],
[False, False, Truel])

>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array ([[0, 1, 21,

1, 2, 31,

(2, 3, 411)

numpy . fromiter (iterable, dtype, count=-1)
Create a new 1-dimensional array from an iterable object.

Parameters
iterable [iterable object] An iterable object providing data for the array.
dtype [data-type] The data-type of the returned array.

count [int, optional] The number of items to read from iterable. The default is -1, which means
all data is read.

Returns

out [ndarray] The output array.

Notes

Specify count to improve performance. It allows fromiter to pre-allocate the output array, instead of resizing
it on demand.

Examples

>>> iterable = (x*x for x in range (D))
>>> np.fromiter (iterable, float)
array ([0., 1., 4., 9., 16.1)

numpy . fromstring (string, dtype=float, count=-1, sep="")
A new 1-D array initialized from text data in a string.

Parameters
string [str] A string containing the data.

dtype [data-type, optional] The data type of the array; default: float. For binary input data, the
data must be in exactly this format.

count [int, optional] Read this number of dt ype elements from the data. If this is negative (the
default), the count will be determined from the length of the data.

4.1. Array creation routines 431

NumPy Reference, Release 1.17.0

sep [str, optional] The string separating numbers in the data; extra whitespace between elements
is also ignored.

Deprecated since version 1.14: Passing sep="'", the default, is deprecated since it will
trigger the deprecated binary mode of this function. This mode interprets st ring as bi-
nary bytes, rather than ASCII text with decimal numbers, an operation which is better spelt
frombuffer (string, dtype, count). If string contains unicode text, the bi-
nary mode of fromstring will first encode it into bytes using either utf-8 (python 3) or
the default encoding (python 2), neither of which produce sane results.

Returns
arr [ndarray] The constructed array.
Raises
ValueError If the string is not the correct size to satisfy the requested dt ype and count.
See also:

frombuffer, fromfile, fromiter

Examples

>>> np.fromstring ('l 2', dtype=int, sep=' ")
array ([1, 2])
>>> np.fromstring('l, 2', dtype=int, sep=',")
array ([1, 2])

numpy . loadtxt (fname, dtype=<class ’float’>, comments="#", delimiter=None, convert-
ers=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding="bytes’,

max_rows=None)
Load data from a text file.

Each row in the text file must have the same number of values.
Parameters

fname ([file, str, or pathlib.Path] File, filename, or generator to read. If the filename extension is
.gz or .bz?2, the file is first decompressed. Note that generators should return byte strings
for Python 3k.

dtype [data-type, optional] Data-type of the resulting array; default: float. If this is a structured
data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an
element of the array. In this case, the number of columns used must match the number of
fields in the data-type.

comments [str or sequence of str, optional] The characters or list of characters used to indicate
the start of a comment. None implies no comments. For backwards compatibility, byte
strings will be decoded as ‘latinl’. The default is ‘#’.

delimiter [str, optional] The string used to separate values. For backwards compatibility, byte
strings will be decoded as ‘latinl’. The default is whitespace.

converters [dict, optional] A dictionary mapping column number to a function that will parse
the column string into the desired value. E.g., if column O is a date string: converters =
{0: datestr2num}. Converters can also be used to provide a default value for missing
data (but see also genfromtxt): converters = {3: lambda s: float (s.
strip() or 0) }. Default: None.

skiprows [int, optional] Skip the first skiprows lines, including comments; default: 0.

432 Chapter 4. Routines

https://docs.python.org/dev/library/string.html#module-string
https://docs.python.org/dev/library/string.html#module-string

NumPy Reference, Release 1.17.0

usecols [int or sequence, optional] Which columns to read, with 0 being the first. For example,
usecols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None,
results in all columns being read.

Changed in version 1.11.0: When a single column has to be read it is possible to use an
integer instead of a tuple. E.g usecols = 3 reads the fourth column the same way as
usecols = (3,) would.

unpack [bool, optional] If True, the returned array is transposed, so that arguments may be
unpacked using x, y, z = loadtxt (...). When used with a structured data-type,
arrays are returned for each field. Default is False.

ndmin [int, optional] The returned array will have at least ndmin dimensions. Otherwise mono-
dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2.

New in version 1.6.0.

encoding [str, optional] Encoding used to decode the inputfile. Does not apply to input streams.
The special value ‘bytes’ enables backward compatibility workarounds that ensures you
receive byte arrays as results if possible and passes ‘latinl’ encoded strings to converters.
Override this value to receive unicode arrays and pass strings as input to converters. If set
to None the system default is used. The default value is ‘bytes’.

New in version 1.14.0.

max_rows [int, optional] Read max_rows lines of content after skiprows lines. The default is to
read all the lines.

New in version 1.16.0.
Returns
out [ndarray] Data read from the text file.
See also:
load, fromstring, fromregex
genfromtxt Load data with missing values handled as specified.

scipy.io.loadmat reads MATLAB data files

Notes

This function aims to be a fast reader for simply formatted files. The genfromtxt function provides more
sophisticated handling of, e.g., lines with missing values.
New in version 1.10.0.

The strings produced by the Python float.hex method can be used as input for floats.

Examples

>>> from io import StringIO # StringIO behaves like a file object
>>> ¢ = StringIO(u"0 1\n2 3")
>>> np.loadtxt (c)
array ([[0., 1.7,
[2., 3.11)

4.1. Array creation routines 433

https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html#scipy.io.loadmat

NumPy Reference, Release 1.17.0

>>> d = StringIO(u"M 21 72\nF 35 58")

>>> np.loadtxt (d, dtype={'names': ('gender', 'age', 'weight'),
C.. 'formats': ('S1l', 'i4d', 'f4')})
array ([(b'M', 21, 72.), (b'F', 35, 58.)1,

dtype=[('gender', 'S1l'), ('age', '<id'), ('weight', '<f4'")])

>>> ¢ = StringIO(u"1,0,2\n3,0,4")

>>> x, y = np.loadtxt (c, delimiter=',', usecols=(0, 2), unpack=True)
>>> x

array ([1., 3.1)

>>> y

array ([2., 4.])

4.1.3 Creating record arrays (numpy . rec)

Note: numpy . rec is the preferred alias for numpy.core.records.

core.records.array(obj[, dtype, shape, ...]) Construct a record array from a wide-variety of objects.
core.records. fromarrays(arrayList], dtype, create arecord array from a (flat) list of arrays

)

core.records. fromrecords(recList[, dtype, create arecarray from a list of records in text form
)]

core.records. fromstring(datastring[, dtype, create a (read-only) record array from binary data con-
D tained in a string

core.records. fromfile(fd], dtype, shape,...]) Create an array from binary file data

numpy .core.records.array (obj, dtype=None, shape=None, offset=0, strides=None, formats=None,

names=None, titles=None, aligned=False, byteorder=None, copy=True)
Construct a record array from a wide-variety of objects.

numpy.core.records.fromarrays (arrayList, dtype=None, shape=None, formats=None,

names=None, titles=None, aligned="False, byteorder=None)
create a record array from a (flat) list of arrays

>>> xl=np.array([1,2,3,41])

>>> x2=np.array(['a','dd','xyz"',"12"'])
>>> x3=np.array([1.1,2,3,41)
>>> r = np.core.records.fromarrays ([x1l,x2,x3],names="a,b,c'")

>>> print(r[1])

(2, 'dd', 2.0) # may vary
>>> x1[1]=34

>>> r.a

array ([1, 2, 3, 41)

numpy .core.records.fromrecords (recList, dtype=None, shape=None, formats=None,

names=None, titles=None, aligned=False, byteorder=None)
create a recarray from a list of records in text form

The data in the same field can be heterogeneous, they will be promoted to the highest data type. This
method is intended for creating smaller record arrays. If used to create large array without formats
defined

r=fromrecords([(2,3.,”abc’)]*100000)

434 Chapter 4. Routines

NumPy Reference, Release 1.17.0

it can be slow.

If formats is None, then this will auto-detect formats. Use list of tuples rather than list of lists for
faster processing.

>>> r=np.core.records.fromrecords ([(456, 'dbe',1.2),(2,'de"',1.3)1,
names='coll,col2,col3")
>>> print (r[0])
(456, 'dbe', 1.2)
>>> r.coll
array ([456, 21)
>>> r.col2
array (['dbe', 'de']l, dtype='<U3")
>>> import pickle
>>> pickle.loads (pickle.dumps (r))
rec.array ([(456, 'dbe', 1.2), (2, 'de', 1.3)],
dtype=[('coll', '<i8'), ('col2', '<U3'), ('col3', '<f8")1])

numpy .core.records. fromstring (datastring, dtype=None, shape=None, offset=0, formats=None,

names=None, titles=None, aligned=False, byteorder=None)
create a (read-only) record array from binary data contained in a string

numpy.core.records.fromfile (fd, dtype=None, shape=None, offset=0, formats=None,

names=None, titles=None, aligned=False, byteorder=None)
Create an array from binary file data

If file is a string or a path-like object then that file is opened, else it is assumed to be a file object. The file object

must support random access (i.e. it must have tell and seek methods).

>>> from tempfile import TemporaryFile
>>> a = np.empty (10,dtype="£8,14,a5")
>>> a[5] = (0.5,10, "abcde")

>>>

>>> fd=TemporaryFile ()

>>> a = a.newbyteorder('<")

>>> a.tofile (fd)

>>>

>>> = fd.seek (0)

>>> r=np.core.records.fromfile (fd, formats='f8,14,a5"', shape=10,
... byteorder='<")

>>> print (r[5])

(0.5, 10, 'abcde')

>>> r.shape

(10,)

4.1.4 Creating character arrays (numpy . char)

Note: numpy.char is the preferred alias for numpy . core.defchararray.

core.defchararray.array(obj[, itemsize, ...]) Createa chararray.

core.defchararray.asarray(obj[, itemsize, Convert the input to a chararray, copying the data

..D only if necessary.

numpy . core.defchararray.asarray (obj, itemsize=None, unicode=None, order=None)

4.1. Array creation routines

435

NumPy Reference, Release 1.17.0

Convert the input to a chararray, copying the data only if necessary.
Versus a regular NumPy array of type str or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values
3) vectorized string operations are provided as methods (e.g. strendswith) and infix operators (e.g. +,
*, %)
Parameters
obj [array of str or unicode-like]

itemsize [int, optional] itemsize is the number of characters per scalar in the resulting array. If
itemsize is None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If iremsize is provided and obj is of type str or unicode, then the 0bj string will
be chunked into itemsize pieces.

unicode [bool, optional] When true, the resulting chararray can contain Unicode characters,
when false only 8-bit characters. If unicode is None and obj is one of the following:

* achararray,

* an ndarray of type str or ‘unicode*

* a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

order [{‘C’, ‘F’}, optional] Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the
returned array will be in Fortran-contiguous order (first-index varies the fastest).

4.1.5 Numerical ranges

arange([start,] stop[, step,][, dtype]) Return evenly spaced values within a given interval.

1inspace(start, stop[, num, endpoint, ...]) Return evenly spaced numbers over a specified interval.

logspace(start, stop[, num, endpoint, base, ...]) Return numbers spaced evenly on a log scale.

geomspace(start, stop[, num, endpoint, ...]) Return numbers spaced evenly on a log scale (a geomet-
ric progression).

meshgrid(\¥xi, **kwargs) Return coordinate matrices from coordinate vectors.

mgrid nd_grid instance which returns a dense multi-
dimensional “meshgrid”.

ogrid nd_grid instance which returns an open multi-

dimensional “meshgrid”.

numpy .arange ([start], stop[, step], dtype=None)
Return evenly spaced values within a given interval.

Values are generated within the half-open interval [start, stop) (in other words, the interval including
start but excluding stop). For integer arguments the function is equivalent to the Python built-in range function,
but returns an ndarray rather than a list.

When using a non-integer step, such as 0.1, the results will often not be consistent. It is better to use numpy .
1inspace for these cases.

Parameters

436 Chapter 4. Routines

NumPy Reference, Release 1.17.0

start [number, optional] Start of interval. The interval includes this value. The default start
value is 0.

stop [number] End of interval. The interval does not include this value, except in some cases
where step is not an integer and floating point round-off affects the length of out.

step [number, optional] Spacing between values. For any output out, this is the distance between
two adjacent values, out [1+1] — out [1]. The default step size is 1. If step is specified
as a position argument, start must also be given.

dtype [dtype] The type of the output array. If dt ype is not given, infer the data type from the
other input arguments.

Returns
arange [ndarray] Array of evenly spaced values.

For floating point arguments, the length of the result is ceil ((stop - start)/
step) . Because of floating point overflow, this rule may result in the last element of out
being greater than stop.

See also:

linspace Evenly spaced numbers with careful handling of endpoints.
ogrid Arrays of evenly spaced numbers in N-dimensions.

mgrid Grid-shaped arrays of evenly spaced numbers in N-dimensions.

Examples

>>> np.arange (

array ([0, 1, 2

>>> np.arange (
array ([0., 1., 2.1)
>>> np.arange (

array ([3, 4, 5

>>> np.arange (

array ([3, 5])

numpy . linspace (start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)
Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Changed in version 1.16.0: Non-scalar start and stop are now supported.
Parameters
start [array_like] The starting value of the sequence.

stop [array_like] The end value of the sequence, unless endpoint is set to False. In that case,
the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is
excluded. Note that the step size changes when endpoint is False.

num [int, optional] Number of samples to generate. Default is 50. Must be non-negative.

endpoint [bool, optional] If True, stop is the last sample. Otherwise, it is not included. Default
is True.

4.1. Array creation routines 437

NumPy Reference, Release 1.17.0

retstep [bool, optional] If True, return (samples, step), where step is the spacing between sam-
ples.

dtype [dtype, optional] The type of the output array. If dt ype is not given, infer the data type
from the other input arguments.

New in version 1.9.0.

axis [int, optional] The axis in the result to store the samples. Relevant only if start or stop are
array-like. By default (0), the samples will be along a new axis inserted at the beginning.
Use -1 to get an axis at the end.

New in version 1.16.0.
Returns

samples [ndarray] There are num equally spaced samples in the closed interval [start,
stop] or the half-open interval [start, stop) (depending on whether endpoint is
True or False).

step [float, optional] Only returned if retstep is True
Size of spacing between samples.

See also:

arange Similarto 1 inspace, but uses a step size (instead of the number of samples).
geomspace Similar to 11inspace, but with numbers spaced evenly on a log scale (a geometric progression).

logspace Similar to geomspace, but with the end points specified as logarithms.

Examples

0, num=5)
2.75, 3. 1)

>>> np.linspace (2.0, .
r
.0, num=5, endpoint=False)

3
array ([2. , 2.25, 2.5
>>> np.linspace (2.0, 3
array ([2. , 2.2, 2.4, 2.0, 2.81)

>>> np.linspace (2.0, 3.0, num=5, retstep=True)
(array ([2. , 2.25, 2.5, 2.75, 3. 1), 0.25)

Graphical illustration:

>>> import matplotlib.pyplot as plt

>>> N = 8

>>> y = np.zeros (N)

>>> x1 = np.linspace (0, 10, N, endpoint=True)
>>> x2 = np.linspace (0, 10, N, endpoint=False)

>>> plt.plot(xl, y, 'o')
[<matplotlib.lines.Line2D object at 0Ox...>]
>>> plt.plot(x2, y + 0.5, 'o")
[<matplotlib.lines.Line2D object at Ox...>]
>>> plt.ylim([-0.5, 17])

(-0.5, 1)

>>> plt.show ()

numpy . logspace (start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)
Return numbers spaced evenly on a log scale.

In linear space, the sequence starts at base *x start (base to the power of start) and ends with base *x
stop (see endpoint below).

438 Chapter 4. Routines

NumPy Reference, Release 1.17.0

1.0

0.8 +
0.6
0.4 +
0.2 +
004 @ o o o o o o o

—-0.2 1

—-0.4

Changed in version 1.16.0: Non-scalar start and stop are now supported.
Parameters
start [array_like] base %+ start is the starting value of the sequence.

stop [array_like] base =+ stop is the final value of the sequence, unless endpoint is False.
In that case, num + 1 values are spaced over the interval in log-space, of which all but the
last (a sequence of length num) are returned.

num [integer, optional] Number of samples to generate. Default is 50.

endpoint [boolean, optional] If true, stop is the last sample. Otherwise, it is not included.
Default is True.

base [float, optional] The base of the log space. The step size between the elements in
In(samples) / 1n(base) (or log_base (samples)) is uniform. Default is 10.0.

dtype [dtype] The type of the output array. If dt ype is not given, infer the data type from the
other input arguments.

axis [int, optional] The axis in the result to store the samples. Relevant only if start or stop are
array-like. By default (0), the samples will be along a new axis inserted at the beginning.
Use -1 to get an axis at the end.

New in version 1.16.0.
Returns
samples [ndarray] num samples, equally spaced on a log scale.
See also:
arange Similar to linspace, with the step size specified instead of the number of samples. Note that, when
used with a float endpoint, the endpoint may or may not be included.
linspace Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space.

geomspace Similar to logspace, but with endpoints specified directly.

. Array creation routines 439

NumPy Reference, Release 1.17.0

Notes

Logspace is equivalent to the code

>>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
doctest: +SKIP

>>> power (base, y) .astype (dtype)
doctest: +SKIP

Examples

>>> np.logspace (2.0, 3.0, num=4)

array ([100. , 215.443469 , 464.15888336, 1000. 1)
>>> np.logspace (2.0, 3.0, num=4, endpoint=False)

array ([100. , 177.827941 , 316.22776602, 562.34132519])
>>> np.logspace (2.0, 3.0, num=4, base=2.0)

array ([4. , 5.0396842 , 6.34960421, 8. 1)

Graphical illustration:

>>> import matplotlib.pyplot as plt

>>> N = 10

>>> x1 = np.logspace(0.1, 1, N, endpoint=True)
>>> x2 = np.logspace(0.1, 1, N, endpoint=False)
>>> y = np.zeros (N)

>>> plt.plot(xl, y, 'o")
[<matplotlib.lines.Line2D object at Ox...>]
>>> plt.plot(x2, y + 0.5, 'o")
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 11)

(-0.5, 1)

>>> plt.show ()

1.0
0.8
0.6
0.4
0.2
oo 000 ® 6 O o (] o o
—0.2 -

_04 -

numpy . geomspace (start, stop, num=>50, endpoint=True, dtype=None, axis=0)
Return numbers spaced evenly on a log scale (a geometric progression).

440 Chapter 4. Routines

NumPy Reference, Release 1.17.0

This is similar to 1ogspace, but with endpoints specified directly. Each output sample is a constant multiple
of the previous.

Changed in version 1.16.0: Non-scalar start and stop are now supported.
Parameters
start [array_like] The starting value of the sequence.

stop [array_like] The final value of the sequence, unless endpoint is False. In that case, num +
1 values are spaced over the interval in log-space, of which all but the last (a sequence of
length num) are returned.

num [integer, optional] Number of samples to generate. Default is 50.

endpoint [boolean, optional] If true, stop is the last sample. Otherwise, it is not included.
Default is True.

dtype [dtype] The type of the output array. If dt ype is not given, infer the data type from the
other input arguments.

axis [int, optional] The axis in the result to store the samples. Relevant only if start or stop are
array-like. By default (0), the samples will be along a new axis inserted at the beginning.
Use -1 to get an axis at the end.

New in version 1.16.0.
Returns
samples [ndarray] num samples, equally spaced on a log scale.

See also:

logspace Similar to geomspace, but with endpoints specified using log and base.
linspace Similar to geomspace, but with arithmetic instead of geometric progression.

arange Similar to linspace, with the step size specified instead of the number of samples.

Notes

If the inputs or dtype are complex, the output will follow a logarithmic spiral in the complex plane. (There are
an infinite number of spirals passing through two points; the output will follow the shortest such path.)

Examples

>>> np.geomspace (1, 1000, num=4)

array ([1., 10., 100., 1000.7)

>>> np.geomspace (1, 1000, num=3, endpoint=False)

array ([1., 10., 100.17)

>>> np.geomspace (1, 1000, num=4, endpoint=False)

array ([1. , 5.62341325, 31.6227766 , 177.827941 1)
>>> np.geomspace (1, 256, num=9)

array ([1., 2., 4., 8., 16., 32., 64., 128., 256.])

Note that the above may not produce exact integers:

4.1. Array creation routines 441

NumPy Reference, Release 1.17.0

>>> np.geomspace (1, 256,
array ([1, 2, 4, 7, le, 32, 63, 127, 256])
>>> np.around(np.geomspace (1, 256, num=9)) .astype (int)
array ([1, 2, 4, 8, 16, 32, 64, 128, 256])

num=9, dtype=int)

Negative, decreasing, and complex inputs are allowed:

>>> np.geomspace (1000, 1, num=4)

array ([1000., 100., 10., 1.1)

>>> np.geomspace (-1000, -1, num=4)

array ([-1000., -100., -10., -1.7)

>>> np.geomspace (1j, 10003, num=4) # Straight line

array ([0. +1.3, 0. +10.3, 0. +100.3, 0.4+1000.737])

>>> np.geomspace (-1+03j, 1+0j, num=5) # Circle

array ([-1.00000000e+00+1.22464680e-167,
6.12323400e-17+1.00000000e+007,
1.00000000e+00+0.00000000e+0071])

-7.07106781e-01+7.07106781e-0173,
7.07106781e-01+7.07106781e-017,

Graphical illustration of endpoint parameter:

>>> import matplotlib.pyplot as plt
>>> N = 10

[<matplotlib.lines.Line2D object
>>> plt.axis([0.5, 2000, O, 31)
[0.5, 2000, 0, 3]

>>> plt.grid(True,
>>> plt.show()

at 0x...>]

color='0.7", linestyle='-', which='both',

>>> y = np.zeros (N)

>>> plt.semilogx (np.geomspace(l, 1000, N, endpoint=True), y + 1, 'o')
[<matplotlib.lines.Line2D object at Ox...>]

>>> plt.semilogx (np.geomspace(l, 1000, N, endpoint=False), y + 2, 'o'")

axis="both'")

3.0
2.5
2.0
1.5 A
1.0

0.5

0.0 ML | T L T L T T
10° 10! 10?2 103

numpy .meshgrid (*xi, **kwargs)
Return coordinate matrices from coordinate vectors.

Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-

dimensional coordinate arrays x1, x2,..., Xn.

442

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Changed in version 1.9: 1-D and 0-D cases are allowed.
Parameters
x1, x2,..., xn [array_like] 1-D arrays representing the coordinates of a grid.

indexing [{‘xy’, ‘ij’}, optional] Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See
Notes for more details.

New in version 1.7.0.

sparse [bool, optional] If True a sparse grid is returned in order to conserve memory. Default
is False.

New in version 1.7.0.

copy [bool, optional] If False, a view into the original arrays are returned in order to conserve
memory. Default is True. Please note that sparse=False, copy=False will likely
return non-contiguous arrays. Furthermore, more than one element of a broadcast array may
refer to a single memory location. If you need to write to the arrays, make copies first.

New in version 1.7.0.
Returns

X1, X2,..., XN [ndarray] For vectors x/, x2,..., ‘xn’ with lengths Ni=1len (xi) ,return (N1,
N2, N3, ...Nn) shaped arrays if indexing="ij’ or (N2, N1, N3, ...Nn) shaped ar-
rays if indexing="xy’ with the elements of xi repeated to fill the matrix along the first di-
mension for x/, the second for x2 and so on.

See also:

index_tricks.mgrid Construct a multi-dimensional “meshgrid” using indexing notation.

index_tricks.ogrid Construct an open multi-dimensional “meshgrid” using indexing notation.

Notes

This function supports both indexing conventions through the indexing keyword argument. Giving the string ‘ij’
returns a meshgrid with matrix indexing, while ‘xy’ returns a meshgrid with Cartesian indexing. In the 2-D case
with inputs of length M and N, the outputs are of shape (N, M) for ‘xy’ indexing and (M, N) for ‘ij’ indexing.
In the 3-D case with inputs of length M, N and P, outputs are of shape (N, M, P) for ‘xy’ indexing and (M, N, P)
for ‘ij’ indexing. The difference is illustrated by the following code snippet:

xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij'")
for i in range(nx):
for j in range (ny):
treat xv([i,j], yv[i, j]

xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
for i in range(nx):
for j in range (ny):
treat xv([j,1], yv[j, 1]

In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

4.1.

Array creation routines 443

NumPy Reference, Release 1.17.0

Examples

>>> nx, ny = (3, 2)

>>> x = np.linspace (0, 1, nx)
>>> y = np.linspace (0, 1, ny)
>>> xv, yv = np.meshgrid(x, vy)

>>> xv
array ([[O0. , 0.5, 1. 1,
[0. , 0.5, 1. 11)
>>> yv
array ([[0., 0., 0.1,
(1., 1., 1.11)
>>> xv, yv = np.meshgrid(x, y, sparse=True) # make sparse output arrays
>>> XV

array ([[O0. , 0.5, 1. 11)
>>> yv
array ([[0.],

[1.11)

meshgrid is very useful to evaluate functions on a grid.

>>> import matplotlib.pyplot as plt

>>> x = np.arange (-5, 5, 0.1)

>>> y = np.arange (-5, 5, 0.1)

>>> xx, yy = np.meshgrid(x, y, sparse=True)

>>> 7z = nNp.sin(xx*+2 + yy**2) / (XX*%2 + yy*+*2)
>>> h = plt.contourf(x,v,z)

>>> plt.show ()

numpy .mgrid = <numpy.lib.index_ tricks.MGridClass object>

nd_grid instance which returns a dense multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an dense (or fleshed out) mesh-grid
when indexed, so that each returned argument has the same shape. The dimensions and number of the output
arrays are equal to the number of indexing dimensions. If the step length is not a complex number, then the stop
is not inclusive.

444

Chapter 4. Routines

NumPy Reference, Release 1.17.0

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid ‘ndarrays‘ all of the same dimensions

See also:

numpy.lib.index_tricks.nd_grid class of ogrid and mgrid objects
ogrid like mgrid but returns open (not fleshed out) mesh grids

¥ array concatenator

Examples
>>> np.mgrid[0:5,0:5]
array ([[[0O, O, O, O, O],
(., 1, 1, 1, 11,
(2, 2, 2, 2, 21,
(3, 3, 3, 3, 31,
(4, 4, 4, 4, 417,
rro, 1, 2, 3, 43,
(o, 1, 2, 3, 41,
(o, 1, 2, 3, 41,
(o, 1, 2, 3, 41,
(0, 1, 2, 3, 4111)
>>> np.mgrid[-1:1:57]
array([-1. , -0.5, 0. , 0.5, 1 1)

numpy .ogrid = <numpy.lib.index_tricks.OGridClass object>

nd_grid instance which returns an open multi-dimensional “meshgrid”.

An instance of numpy.lib.index_tricks.nd_grid which returns an open (i.e. not fleshed out) mesh-
grid when indexed, so that only one dimension of each returned array is greater than 1. The dimension and
number of the output arrays are equal to the number of indexing dimensions. If the step length is not a complex
number, then the stop is not inclusive.

However, if the step length is a complex number (e.g. 5j), then the integer part of its magnitude is interpreted
as specifying the number of points to create between the start and stop values, where the stop value is inclusive.

Returns
mesh-grid ndarrays with only one dimension not equal to 1

See also:

np.lib.index_tricks.nd_grid class of ogrid and mgrid objects
mgrid like ogrid but returns dense (or fleshed out) mesh grids

r _ array concatenator

Examples

4.1. Array creation routines

445

NumPy Reference, Release 1.17.0

>>> from numpy import ogrid

>>> ogrid[-1:1:57]

array([-1. , -0.5, 0. , 0.5, 1. 1)
>>> ogrid[0:5,0:5]

larray ([[0]
1]
2]
3]
4]

(11,
[4
[4
(411), array([[0O, 1, 2, 3, 4]])]

4.1.6 Building matrices

diag(vl, k]) Extract a diagonal or construct a diagonal array.

diagflat(v],k]) Create a two-dimensional array with the flattened input
as a diagonal.

tri(N[, M, k, dtype]) An array with ones at and below the given diagonal and
zeros elsewhere.

tril(ml[,k]) Lower triangle of an array.

t riu(ml, kJ]) Upper triangle of an array.

vander(x[, N, increasing]) Generate a Vandermonde matrix.

numpy .diag (v, k=0)

Extract a diagonal or construct a diagonal array.

See the more detailed documentation for numpy . diagonal if you use this function to extract a diagonal and
wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you
are using.

Parameters

v [array_like] If v is a 2-D array, return a copy of its k-th diagonal. If v is a 1-D array, return a
2-D array with v on the k-th diagonal.

k [int, optional] Diagonal in question. The default is 0. Use k>0 for diagonals above the main
diagonal, and k<0 for diagonals below the main diagonal.

Returns
out [ndarray] The extracted diagonal or constructed diagonal array.

See also:

diagonal Return specified diagonals.

diagflat Create a 2-D array with the flattened input as a diagonal.
trace Sum along diagonals.

triu Upper triangle of an array.

tril Lower triangle of an array.

Examples

446

Chapter 4. Routines

NumPy Reference, Release 1.17.0

>>> x = np.arange (9) .reshape ((3,3))
>>> x
array ([[0, 1, 21,

[3, 4, 51,

(6, 7, 811)

>>> np.diag(x)

array ([0, 4, 8])

>>> np.diag(x, k=1)
array ([1, 5])

>>> np.diag(x, k=-1)
array ([3, 7])

>>> np.diag(np.diag(x))

(
array ([[0, 0, 0],
[O’ 4, O]’
[0, O, 811)

numpy .diagflat (v, k=0)

Create a two-dimensional array with the flattened input as a diagonal.

Parameters

v [array_like] Input data, which is flattened and set as the k-th diagonal of the output.

k [int, optional] Diagonal to set; 0, the default, corresponds to the “main” diagonal, a positive
(negative) k giving the number of the diagonal above (below) the main.

Returns
out [ndarray] The 2-D output array.

See also:

diag MATLAB work-alike for 1-D and 2-D arrays.
diagonal Return specified diagonals.

trace Sum along diagonals.

Examples

>>> np.diagflat ([[1

array ([[1, 0, 0, O]
[0, 2, 0, 01,
[0, 0, 3, 0]
[0, 0, 0, 4]

14 4

>>> np.diagflat([1,2]1, 1)
array ([[0, 1, 0],

(o, o, 21,

[0, 0, 011)

numpy . tri (N, M=None, k=0, dtype=<class 'float’>)
An array with ones at and below the given diagonal and zeros elsewhere.

Parameters

N [int] Number of rows in the array.

4.1. Array creation routines

447

NumPy Reference, Release 1.17.0

M [int, optional] Number of columns in the array. By default, M is taken equal to N.

k [int, optional] The sub-diagonal at and below which the array is filled. k = 0 is the main
diagonal, while k < 0 is below it, and k > 0 is above. The default is 0.

dtype [dtype, optional] Data type of the returned array. The default is float.
Returns

tri [ndarray of shape (N, M)] Array with its lower triangle filled with ones and zero elsewhere;
in other words T[i, j] == 1lfori <= j + k, O otherwise.

Examples
>>> np.tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, O],
(1, 1, 1, 1, 01,
(1, 1, 1, 1, 111)
>>> np.tri(3, 5, -1)
array ([[0., 0., 0., 0., 0.1,
., 0., 0., 0., 0.7,
(t., 1., 0., 0., 0.11)

numpy .tril (m, k=0)
Lower triangle of an array.

Return a copy of an array with elements above the k-th diagonal zeroed.
Parameters
m [array_like, shape (M, N)] Input array.

k [int, optional] Diagonal above which to zero elements. k = O (the default) is the main diagonal,
k < 01is below it and k > 0 is above.

Returns
tril [ndarray, shape (M, N)] Lower triangle of m, of same shape and data-type as m.

See also:

triu same thing, only for the upper triangle

Examples
>>> np.tril([[1,2,3],[4,5,61,17,8,9]1,[10,11,12]], -1)
array([[0, 0, 0],

[4’ OV OJV

[7! 8! OJI

(10, 11, 1211)

numpy . triu (m, k=0)
Upper triangle of an array.

Return a copy of a matrix with the elements below the k-th diagonal zeroed.
Please refer to the documentation for t 1 1 for further details.

See also:

448 Chapter 4. Routines

NumPy Reference, Release 1.17.0

tril lower triangle of an array

Examples

>>> np.triu(([1,2,3]1,[4,5,61,17,8,91,(10,11,1211, -1)
array([[1, 2, 37,

[4, 5, 61,

[0, 8, 91,

[0, 0, 1211)

numpy . vander (x, N=None, increasing=False)

Generate a Vandermonde matrix.

The columns of the output matrix are powers of the input vector. The order of the powers is determined by the
increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector
raised element-wise to the power of N — i — 1. Such a matrix with a geometric progression in each row is
named for Alexandre- Theophile Vandermonde.

Parameters
x [array_like] 1-D input array.

N [int, optional] Number of columns in the output. If N is not specified, a square array is
returned (N = len (x)).

increasing [bool, optional] Order of the powers of the columns. If True, the powers increase
from left to right, if False (the default) they are reversed.

New in version 1.9.0.
Returns

out [ndarray] Vandermonde matrix. If increasing is False, the first column is x~ (N-1), the
second x”~ (N-2) and so forth. If increasing is True, the columns are x*0, x~1, ...,
x™ (N=-1).

See also:

polynomial.polynomial.polyvander

Examples

>>> x = np.array([1l, 2, 3,
>>> N = 3

>>> np.vander (x,

array ([[

[
[
[

2

ll
4,
9/
5

14

(
17
2,
3/
5

’

array ([[

[
[
[

2

>>> np.column

ll
4,
9/
5

4

stack ([x** (N-1-1)

g w N e
SN N
e e
~

~

for i in range(N)])

4.1. Array creation routines

449

NumPy Reference, Release 1.17.0

>>> x = np.array([1l, 2, 3, 51)
>>> np.vander (x)
array ([[1, 1, 1, 1],

[8, 4, 2, 17,

[27, 9, 3, 11,

[125, 25, 5, 111)
>>> np.vander (x, increasing=True)
array ([[1, 1, 1, 1],
[1, 2, 4, 8],
[1, 3, 9, 271,
[1 5, 25, 125]1)

4

The determinant of a square Vandermonde matrix is the product of the differences between the values of the
input vector:

>>> np.linalg.det (np.vander (x))
48.000000000000043 # may vary

>>> (5-3) % (5-2) # (5-1) # (3-2) » (3-1) x (2-1)
48

4.1.7 The Matrix class

mat(data[, dtype]) Interpret the input as a matrix.
bmat(obj[, 1dict, gdict]) Build a matrix object from a string, nested sequence, or
array.

numpy .mat (data, dtype=None)
Interpret the input as a matrix.

Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to
matrix (data, copy=False).

Parameters

data [array_like] Input data.

dtype [data-type] Data-type of the output matrix.
Returns

mat [matrix] data interpreted as a matrix.

Examples

’>>> x = np.array ([[1, 2], [3, 411)

’>>> m = np.asmatrix (x)
>>> x[0,0] = 5
>>> m
matrix ([[5, 2],
(3, 411)

450 Chapter 4. Routines

NumPy Reference, Release 1.17.0

4.2 Array manipulation routines

4.2.1 Basic operations

copyto(dst, src[, casting, where]) Copies values from one array to another, broadcasting
as necessary.

numpy . copyto (dst, src, casting="same_kind’, where=True)
Copies values from one array to another, broadcasting as necessary.

Raises a TypeError if the casting rule is violated, and if where is provided, it selects which elements to copy.
New in version 1.7.0.
Parameters
dst [ndarray] The array into which values are copied.
src [array_like] The array from which values are copied.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur when copying.

* ‘no’ means the data types should not be cast at all.
* ‘equiv’ means only byte-order changes are allowed.
* ‘safe’ means only casts which can preserve values are allowed.

» ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

where [array_like of bool, optional] A boolean array which is broadcasted to match the dimen-
sions of dst, and selects elements to copy from src to dst wherever it contains the value
True.

4.2.2 Changing array shape

reshape(a, newshape[, order]) Gives a new shape to an array without changing its data.
ravel(a[, order]) Return a contiguous flattened array.

ndarray.flat A 1-D iterator over the array.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.

numpy . reshape (a, newshape, order="C’)
Gives a new shape to an array without changing its data.

Parameters
a [array_like] Array to be reshaped.

newshape [int or tuple of ints] The new shape should be compatible with the original shape. If
an integer, then the result will be a 1-D array of that length. One shape dimension can be -1.
In this case, the value is inferred from the length of the array and remaining dimensions.

order [{‘C’, ‘F’, ‘A’}, optional] Read the elements of a using this index order, and place the
elements into the reshaped array using this index order. ‘C’ means to read / write the ele-

4.2. Array manipulation routines 451

NumPy Reference, Release 1.17.0

ments using C-like index order, with the last axis index changing fastest, back to the first
axis index changing slowest. ‘F’ means to read / write the elements using Fortran-like index
order, with the first index changing fastest, and the last index changing slowest. Note that
the ‘C’ and ‘F’ options take no account of the memory layout of the underlying array, and
only refer to the order of indexing. ‘A’ means to read / write the elements in Fortran-like
index order if a is Fortran contiguous in memory, C-like order otherwise.

Returns

reshaped_array [ndarray] This will be a new view object if possible; otherwise, it will be a
copy. Note there is no guarantee of the memory layout (C- or Fortran- contiguous) of the
returned array.

See also:

ndarray.reshape Equivalent method.

Notes

It is not always possible to change the shape of an array without copying the data. If you want an error to be
raised when the data is copied, you should assign the new shape to the shape attribute of the array:

>>> a = np.zeros ((10, 2))

A transpose makes the array non-contiguous
>>> b = a.T

Taking a view makes it possible to modify the shape without modifying
the initial object.

>>> ¢ = b.view()

>>> c.shape = (20)

Traceback (most recent call last):

AttributeError: incompatible shape for a non-contiguous array

The order keyword gives the index ordering both for fetching the values from a, and then placing the values into
the output array. For example, let’s say you have an array:

>>> a = np.arange (6) .reshape ((3, 2))
>>> g
array ([[0, 11,

(2, 31,

(4, 511)

You can think of reshaping as first raveling the array (using the given index order), then inserting the elements
from the raveled array into the new array using the same kind of index ordering as was used for the raveling.

>>> np.reshape(a, (2, 3)) # C-like index ordering
array ([[0, 1, 21,
[3, 4, 511)

>>> np.reshape (np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
array ([[0, 1, 21,

[3, 4, 5]1)
>>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
array ([[0, 4, 31,

[2, 1, 5]1)

>>> np.reshape (np.ravel (a, order='F'), (2, 3), order='F")

(continues on next page)

452

Chapter 4. Routines

NumPy Reference, Release 1.17.0

(continued from previous page)

array ([[0, 4, 31,
(2, 1, 511)
Examples

>>> a = np.array ([[1,2,3]1, [4,5,6]])
>>> np.reshape(a, 6)

array ([1, 2, 3, 4, 5, 6])

>>> np.reshape(a, 6, order='F")
array([1, 4, 2, 5, 3, 6])

>>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2
array ([[1, 21,

[3, 41,

[5, 611])

numpy . ravel (a, order="C’)
Return a contiguous flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array
will be returned for a masked array input)

Parameters

a [array_like] Input array. The elements in a are read in the order specified by order, and packed
as a 1-D array.

order [{‘C’JF’, ‘A’, ‘’K’}, optional] The elements of a are read using this index order. ‘C’
means to index the elements in row-major, C-style order, with the last axis index changing
fastest, back to the first axis index changing slowest. ‘F’ means to index the elements in
column-major, Fortran-style order, with the first index changing fastest, and the last index
changing slowest. Note that the ‘C’ and ‘F’ options take no account of the memory layout
of the underlying array, and only refer to the order of axis indexing. ‘A’ means to read
the elements in Fortran-like index order if a is Fortran contiguous in memory, C-like order
otherwise. ‘K’ means to read the elements in the order they occur in memory, except for
reversing the data when strides are negative. By default, ‘C’ index order is used.

Returns

y [array_like] y is an array of the same subtype as a, with shape (a.size,). Note that
matrices are special cased for backward compatibility, if a is a matrix, then y is a 1-D
ndarray.

See also:

ndarray. flat 1-D iterator over an array.
ndarray.flatten 1-D array copy of the elements of an array in row-major order.

ndarray.reshape Change the shape of an array without changing its data.

4.2. Array manipulation routines 453

NumPy Reference, Release 1.17.0

Notes

In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the
quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along
the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-
style index ordering.

When a view is desired in as many cases as possible, arr.reshape (-1) may be preferable.

Examples

It is equivalent to reshape (-1, order=order).

>>> x = np.array([[1, 2, 31, [4, 5, 611)
>>> np.ravel (x)
array([1, 2, 3, 4, 5, 6])

>>> x.reshape (-1)
array ([1, 2, 3, 4, 5, 6])

>>> np.ravel (x, order='F")
array ([1, 4, 2, 5, 3, 6])

When order is ‘A’ it will preserve the array’s ‘C’ or ‘F’ ordering:

>>> np.ravel (x.T)

array([1l, 4, 2, 5, 3, 6])
>>> np.ravel (x.T, order='A")
array ([1, 2, 3, 4, 5, 6])

When order is ‘K’, it will preserve orderings that are neither ‘C’ nor ‘F’, but won’t reverse axes:

>>> a = np.arange(3)[::-1]; a
array([2, 1, 01)

>>> a.ravel (order='C")
array([2, 1, 0])

>>> a.ravel (order="'K")
array([2, 1, 0])

>>> a = np.arange(1l2) .reshape(2,3,2) .swapaxes(1,2); a
array ([[[O, 2, 47,

(1, 3, 511,

([6, 8, 1071,

L7, 9 11111)
>>> a.ravel (order='C")
array ([0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 111])
>>> a.ravel (order="'K")
array([O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111)

4.2.3 Transpose-like operations

moveaxis(a, source, destination) Move axes of an array to new positions.

Continued on next page

454

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Table 10 — continued from previous page

rollaxis(a, axis|, start]) Roll the specified axis backwards, until it lies in a given
position.

swapaxes(a, axisl, axis2) Interchange two axes of an array.

ndarray.T The transposed array.

transpose(al, axes]) Permute the dimensions of an array.

numpy .moveaxis (a, source, destination)
Move axes of an array to new positions.

Other axes remain in their original order.
New in version 1.11.0.
Parameters
a [np.ndarray] The array whose axes should be reordered.
source [int or sequence of int] Original positions of the axes to move. These must be unique.

destination [int or sequence of int] Destination positions for each of the original axes. These
must also be unique.

Returns

result [np.ndarray] Array with moved axes. This array is a view of the input array.

See also:

transpose Permute the dimensions of an array.

swapaxes Interchange two axes of an array.

Examples

>>> x = np.zeros((3, 4, 5))

>>> np.moveaxis(x, 0, -1).shape
(4, 5, 3)

>>> np.moveaxis(x, -1, 0).shape
(5, 3, 4)

These all achieve the same result:

>>> np.transpose (x) .shape

(5, 4, 3)

>>> np.swapaxes (x, 0, -1).shape

(5, 4, 3)

>>> np.moveaxis(x, [0, 1], [-1, -2]).shape

(5, 4, 3)

>>> np.moveaxis(x, [0, 1, 21, [-1, -2, —31).shape
(5, 4, 3)

numpy .rollaxis (a, axis, start=0)
Roll the specified axis backwards, until it lies in a given position.

This function continues to be supported for backward compatibility, but you should prefer moveaxis. The
moveaxis function was added in NumPy 1.11.

Parameters

4.2. Array manipulation routines 455

NumPy Reference, Release 1.17.0

a [ndarray] Input array.

axis [int] The axis to roll backwards. The positions of the other axes do not change relative to
one another.

start [int, optional] The axis is rolled until it lies before this position. The default, 0, results in
a “complete” roll.

Returns

res [ndarray] For NumPy >=1.10.0 a view of a is always returned. For earlier NumPy versions
a view of a is returned only if the order of the axes is changed, otherwise the input array is
returned.

See also:

moveaxis Move array axes to new positions.

roll Roll the elements of an array by a number of positions along a given axis.

Examples

>>> a = np.ones((3,4,5,6))

>>> np.rollaxis(a, 3, 1).shape
(3, 6, 4, 5)

>>> np.rollaxis(a, 2).shape
(5, 3, 4, 6)

>>> np.rollaxis(a, 1, 4).shape
(3, 5, 6, 4)

numpy . swapaxes (a, axisl, axis2)
Interchange two axes of an array.

Parameters
a [array_like] Input array.
axisl [int] First axis.
axis2 [int] Second axis.
Returns

a_swapped [ndarray] For NumPy >= 1.10.0, if a is an ndarray, then a view of a is returned;
otherwise a new array is created. For earlier NumPy versions a view of a is returned only if
the order of the axes is changed, otherwise the input array is returned.

Examples
>>> x = np.array([[1,2,3]])
>>> np.swapaxes (x,0,1)
array ([[1],
(271,
[311)
>>> x = np.array ([[[0,1],[2,31],[([(4,5],[06,7111)
>>> x
array ([[[0, 1],

(continues on next page)

456 Chapter 4. Routines

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> np.swapaxes (x,0,2)
array ([[[0, 41,

(2, 611,
[[1, 5]
[3, 7]

’

1)

numpy . transpose (a, axes=None)
Permute the dimensions of an array.

Parameters
a [array_like] Input array.

axes [list of ints, optional] By default, reverse the dimensions, otherwise permute the axes ac-
cording to the values given.

Returns
p [ndarray] a with its axes permuted. A view is returned whenever possible.
See also:

moveaxis, argsort

Notes

Use transpose(a, argsort(axes)) to invert the transposition of tensors when using the axes keyword argument.

Transposing a 1-D array returns an unchanged view of the original array.

Examples

>>> x = np.arange (4) .reshape((2,2))
>>> x
array ([[0, 17,

(2, 311

>>> np.transpose (x)

array ([[0, 21,
(1, 311
>>> x = np.ones((1, 2, 3))
>>> np.transpose(x, (1, 0, 2)).shape
(2, 1, 3)

4.2.4 Changing number of dimensions

atleast_1d(*arys) Convert inputs to arrays with at least one dimension.
Continued on next page

4.2. Array manipulation routines 457

NumPy Reference, Release 1.17.0

Table 11 — continued from previous page

atleast_2d(*arys)

View inputs as arrays with at least two dimensions.

atleast_ 3d(*arys)

View inputs as arrays with at least three dimensions.

broadcast

Produce an object that mimics broadcasting.

broadcast_to(array, shape[, subok])

Broadcast an array to a new shape.

broadcast_arrays(*args, **kwargs)

Broadcast any number of arrays against each other.

expand_dims(a, axis)

Expand the shape of an array.

squeeze(al, axis])

Remove single-dimensional entries from the shape of an
array.

numpy .atleast_1d (*arys)

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters

arysl, arys2, ... [array_like] One or more input arrays.

Returns

ret [ndarray] An array, or list of arrays, each with a.ndim >= 1. Copies are made only if

necessary.
See also:

atleast_2d, atleast_3d

Examples

>>> np.atleast_1d(1.0)
array ([1.])

>>> x = np.arange(9.0) .reshape (3, 3)
>>> np.atleast_1d(x)
array ([[0., 1., 2.1,
[3., 4., 5.1,
[6., 7., 8.11)
>>> np.atleast_1d(x) is x
True

>>> np.atleast_1d(1, [3, 4])
l[array ([1]), array([3, 4])]

numpy .atleast_2d (*arys)
View inputs as arrays with at least two dimensions.

Parameters

arysl, arys2, ... [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have two or more dimensions are preserved.

Returns

res, res2,... [ndarray] An array, or list of arrays, each with a.ndim >= 2. Copies are
avoided where possible, and views with two or more dimensions are returned.

See also:

atleast_1d, atleast_3d

458

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples

>>> np.atleast_2d(3.0)
array ([[3.11)

>>> x = np.arange (3.0)

>>> np.atleast_2d(x)

array ([[0., 1., 2.11)

>>> np.atleast_2d(x) .base is x

True

>>> np.atleast_2d(1, [

1, 21, [I1, 211)
larray ([[1]]), array([[1,

2]11), array([[1, 2]1])]

numpy .atleast_3d (*arys)
View inputs as arrays with at least three dimensions.

Parameters

arysl, arys2, ... [array_like] One or more array-like sequences. Non-array inputs are con-
verted to arrays. Arrays that already have three or more dimensions are preserved.

Returns

resl, res2, ... [ndarray] An array, or list of arrays, each with a.ndim >= 3. Copies are
avoided where possible, and views with three or more dimensions are returned. For example,
a 1-D array of shape (N,) becomes a view of shape (1, N, 1),anda2-D array of shape
(M, N) becomes a view of shape (M, N, 1).

See also:

atleast_1d, atleast_2d

Examples

>>> np.atleast_3d(3.0)
array ([[[3.]111])

>>> x = np.arange (3.0)

>>> np.atleast_3d(x) .shape

(1, 3, 1)

>>> x = np.arange (12.0) .reshape (4, 3)

>>> np.atleast_3d(x) .shape

(4, 3, 1)

>>> np.atleast_3d(x) .base is x.base # x is a reshape, so not base itself
True

>>> for arr in np.atleast_3d([1l, 2], [I[1,

doctest:

211,
+SKIP

print (arr, arr.shape)

4.2. Array manipulation routines

459

NumPy Reference, Release 1.17.0

numpy .broadcast_to (array, shape, subok=False)
Broadcast an array to a new shape.

Parameters
array [array_like] The array to broadcast.
shape [tuple] The shape of the desired array.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
array will be forced to be a base-class array (default).

Returns

broadcast [array] A readonly view on the original array with the given shape. It is typically
not contiguous. Furthermore, more than one element of a broadcasted array may refer to a
single memory location.

Raises

ValueError If the array is not compatible with the new shape according to NumPy’s broadcast-
ing rules.

Notes

New in version 1.10.0.

Examples

>>> x = np.array([l, 2, 31)
>>> np.broadcast_to(x, (3, 3))
array ([[1, 2, 31,

[1, 2, 31,

(1, 2, 311)

numpy .broadcast_arrays (*args, **kwargs)
Broadcast any number of arrays against each other.

Parameters
‘“*args‘ [array_likes] The arrays to broadcast.

subok [bool, optional] If True, then sub-classes will be passed-through, otherwise the returned
arrays will be forced to be a base-class array (default).

Returns

broadcasted [list of arrays] These arrays are views on the original arrays. They are typically
not contiguous. Furthermore, more than one element of a broadcasted array may refer to a
single memory location. If you need to write to the arrays, make copies first. While you can
set the writable flag True, writing to a single output value may end up changing more
than one location in the output array.

Deprecated since version 1.17: The output is currently marked so that if written to, a dep-
recation warning will be emitted. A future version will set the writable flag False so
writing to it will raise an error.

460 Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples

>>> x = np.array([[1,2,3]1])

>>>y = np.array ([[4], [5]])

>>> np.broadcast_arrays(x, V)

l[array ([[1, 2, 31,
[1, 2, 311), array([[4, 4, 41,
[5, 5, 5111

Here is a useful idiom for getting contiguous copies instead of non-contiguous views.

>>> [np.array(a) for a in np.broadcast_arrays(x, V)]
[array ([[1, 2, 3],
[1, 2, 311

511)

, array([[4, 4, 4],
]

numpy .expand_dims (a, axis)

Expand the shape of an array.

Insert a new axis that will appear at the axis position in the expanded array shape.

Note: Previous to NumPy 1.13.0, neither axis < —a.ndim - 1 nor axis > a.ndim raised errors or
put the new axis where documented. Those axis values are now deprecated and will raise an AxisError in the
future.

Parameters

a [array_like] Input array.

axis [int] Position in the expanded axes where the new axis is placed.
Returns

res [ndarray] View of a with the number of dimensions increased by one.
See also:

squeeze The inverse operation, removing singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

doc.indexing, atleast_1d, atleast_2d, atleast_3d

Examples

>>> x = np.array([1,2])
>>> x.shape
(2,)

The following is equivalent to x [np.newaxis, :] or x[np.newaxis]:

>>> y = np.expand_dims (x, axis=0)

>>> vy
array ([[1, 2]1)
>>> y.shape

(1, 2)

4.2. Array manipulation routines 461

NumPy Reference, Release 1.17.0

>>> y = np.expand_dims (x, axis=1) # Equivalent to x[:,np.newaxis]
>>> y
array ([[1],
[2]1])
>>> y.shape
(2, 1)

Note that some examples may use None instead of np . newaxis. These are the same objects:

>>> np.newaxis is None
True

numpy . squeeze (a, axis=None)
Remove single-dimensional entries from the shape of an array.

Parameters
a [array_like] Input data.
axis [None or int or tuple of ints, optional] New in version 1.7.0.

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with
shape entry greater than one, an error is raised.

Returns

squeezed [ndarray] The input array, but with all or a subset of the dimensions of length 1 re-
moved. This is always a itself or a view into a.

Raises
ValueError If axis is not None, and an axis being squeezed is not of length 1

See also:

expand_dims The inverse operation, adding singleton dimensions

reshape Insert, remove, and combine dimensions, and resize existing ones

Examples

>>> x = np.array ([[[0], [1], [2]1])
>>> x.shape

(1, 3, 1)

>>> np.squeeze (x) .shape

(3,)

>>> np.squeeze (x, axis=0) .shape

(3, 1)

>>> np.squeeze (x, axis=1) .shape
Traceback (most recent call last):

ValueError: cannot select an axis to squeeze out which has size not equal to one
>>> np.squeeze (x, axis=2) .shape
(1, 3)

4.2.5 Changing kind of array

462 Chapter 4. Routines

NumPy Reference, Release 1.17.0

asarray(al, dtype, order])

Convert the input to an array.

asanyarray(al, dtype, order])

Convert the input to an ndarray, but pass ndarray sub-
classes through.

asmatrix(data[, dtype])

Interpret the input as a matrix.

asfarray(al, dtype])

Return an array converted to a float type.

asfortranarray(al, dtypel)

Return an array (ndim >= 1) laid out in Fortran order in
memory.

ascontiguousarray(al, dtypel)

Return a contiguous array (ndim >= 1) in memory (C
order).

asarray_chkfinite(al, dtype, order])

Convert the input to an array, checking for NaNs or Infs.

asscalar(a)

Convert an array of size 1 to its scalar equivalent.

require(al, dtype, requirements])

Return an ndarray of the provided type that satisfies re-
quirements.

numpy .asfarray (a, dtype=<class 'numpy.float64’>)
Return an array converted to a float type.

Parameters

a [array_like] The input array.

dtype [str or dtype object, optional] Float type code to coerce input array a. If dt ype is one of
the ‘int’ dtypes, it is replaced with float64.

Returns

out [ndarray] The input a as a float ndarray.

Examples

>>> np.asfarray([2, 3])

array([2., 3.1)

>>> np.asfarray([2, 3], dtype='float')
array([2., 3.])

>>> np.asfarray([2, 3], dtype='int8")
array([2., 3.])

numpy .asfortranarray (a, dtype=None)

Return an array (ndim >= 1) laid out in Fortran order in memory.

Parameters

a [array_like] Input array.

dtype [str or dtype object, optional] By default, the data-type is inferred from the input data.

Returns

out [ndarray] The input a in Fortran, or column-major, order.

See also:

ascontiguousarray Convert input to a contiguous (C order) array.

asanyarray Convert input to an ndarray with either row or column-major memory order.

require Return an ndarray that satisfies requirements.

ndarray. flags Information about the memory layout of the array.

4.2. Array manipulation routines

463

NumPy Reference, Release 1.17.0

Examples

>>> x = np.arange (6) .reshape (2, 3)
>>> y = np.asfortranarray (x)

>>> x.flags['F_CONTIGUOUS']

False

>>> y.flags['F_CONTIGUOUS']

True

Note: This function returns an array with at least one-dimension (1-d) so it will not preserve 0-d arrays.

numpy .asarray_chkfinite (a, dtype=None, order=None)

Convert the input to an array, checking for NaNs or Infs.
Parameters

a [array_like] Input data, in any form that can be converted to an array. This includes lists, lists
of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or
Infs.

dtype [data-type, optional] By default, the data-type is inferred from the input data.

order [{‘C’, ‘F’}, optional] Whether to use row-major (C-style) or column-major (Fortran-
style) memory representation. Defaults to ‘C’.

Returns

out [ndarray] Array interpretation of a. No copy is performed if the input is already an ndarray.
If a is a subclass of ndarray, a base class ndarray is returned.

Raises
ValueError Raises ValueError if a contains NaN (Not a Number) or Inf (Infinity).

See also:

asarray Create and array.

asanyarray Similar function which passes through subclasses.
ascontiguousarray Convert input to a contiguous array.

asfarray Convert input to a floating point ndarray.

asfortranarray Convertinput to an ndarray with column-major memory order.
fromiter Create an array from an iterator.

fromfunction Construct an array by executing a function on grid positions.

Examples

Convert a list into an array. If all elements are finite asarray_chkfinite isidentical to asarray.

>>> a = [1, 2]
>>> np.asarray_chkfinite (a, dtype=float)
array ([1., 2.1])

Raises ValueError if array_like contains Nans or Infs.

464

Chapter 4. Routines

NumPy Reference, Release 1.17.0

>>> a = [1, 2, np.inf]
>>> try:
np.asarray_chkfinite (a)
. except ValueError:
print ('ValueError')

ValueError

numpy .asscalar (a)
Convert an array of size 1 to its scalar equivalent.

Deprecated since version 1.16: Deprecated, use numpy.ndarray.item() instead.
Parameters
a [ndarray] Input array of size 1.
Returns

out [scalar] Scalar representation of a. The output data type is the same type returned by the
input’s item method.

Examples

>>> np.asscalar(np.array ([24]))
24

numpy . require (a, dtype=None, requirements=None)
Return an ndarray of the provided type that satisfies requirements.

This function is useful to be sure that an array with the correct flags is returned for passing to compiled code
(perhaps through ctypes).

Parameters
a [array_like] The object to be converted to a type-and-requirement-satisfying array.

dtype [data-type] The required data-type. If None preserve the current dtype. If your applica-
tion requires the data to be in native byteorder, include a byteorder specification as a part of
the dtype specification.

requirements [str or list of str] The requirements list can be any of the following
e ‘F_CONTIGUOUS’ (‘F’) - ensure a Fortran-contiguous array
* ‘C_CONTIGUOUS’ (‘C’) - ensure a C-contiguous array
e ‘ALIGNED’ (‘A’) - ensure a data-type aligned array
* ‘WRITEABLE’ (‘W’) - ensure a writable array
* ‘OWNDATA’ (‘O’) - ensure an array that owns its own data
* ‘ENSUREARRAY’, (‘E’) - ensure a base array, instead of a subclass
Returns
out [ndarray] Array with specified requirements and type if given.

See also:

asarray Convert input to an ndarray.

4.2. Array manipulation routines 465

NumPy Reference, Release 1.17.0

asanyarray Convert to an ndarray, but pass through ndarray subclasses.
ascontiguousarray Convertinput to a contiguous array.

asfortranarray Convert input to an ndarray with column-major memory order.
ndarray. flags Information about the memory layout of the array.

Notes

The returned array will be guaranteed to have the listed requirements by making a copy if needed.

Examples

>>> x = np.arange (6) .reshape (2, 3)
>>> x.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : False
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
>>> y.flags

C_CONTIGUOUS : False

F_CONTIGUOUS : True

OWNDATA : True

WRITEABLE : True

ALIGNED : True

WRITEBACKIFCOPY : False

UPDATEIFCOPY : False

4.2.6 Joining arrays

concatenate((al, a2, ...)[, axis, out])

Join a sequence of arrays along an existing axis.

stack(arrays|, axis, out])

Join a sequence of arrays along a new axis.

column_stack(tup)

Stack 1-D arrays as columns into a 2-D array.

dstack(tup) Stack arrays in sequence depth wise (along third axis).
hstack(tup) Stack arrays in sequence horizontally (column wise).
vstack(tup) Stack arrays in sequence vertically (row wise).
block(arrays) Assemble an nd-array from nested lists of blocks.

numpy .concatenate ((al, a2, ...), axis=0, out=None)

Join a sequence of arrays along an existing axis.
Parameters

al, a2, ... [sequence of array_like] The arrays must have the same shape, except in the dimen-
sion corresponding to axis (the first, by default).

axis [int, optional] The axis along which the arrays will be joined. If axis is None, arrays are
flattened before use. Default is 0.

Chapter 4. Routines

NumPy Reference, Release 1.17.0

out [ndarray, optional] If provided, the destination to place the result. The shape must be cor-
rect, matching that of what concatenate would have returned if no out argument were speci-
fied.

Returns
res [ndarray] The concatenated array.

See also:

ma.concatenate Concatenate function that preserves input masks.

array split Split an array into multiple sub-arrays of equal or near-equal size.
split Split array into a list of multiple sub-arrays of equal size.

hsplit Split array into multiple sub-arrays horizontally (column wise)

vsplit Split array into multiple sub-arrays vertically (row wise)

dsplit Split array into multiple sub-arrays along the 3rd axis (depth).

stack Stack a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise)

vstack Stack arrays in sequence vertically (row wise)

dstack Stack arrays in sequence depth wise (along third dimension)

block Assemble arrays from blocks.

Notes

When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray
object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected
as input, use the ma.concatenate function from the masked array module instead.

Examples
>>> a = np.array ([[1l, 2], [3, 411])
>>> b = np.array ([[5, 611)
>>> np.concatenate((a, b), axis=0)
array ([[1, 27,

[3, 41,

[5, 611)

>>> np.concatenate((a, b.T), axis=1l)
array([[1, 2, 51,

[3, 4, 6]1)
>>> np.concatenate((a, b), axis=None)
array([1, 2, 3, 4, 5, 6])

This function will not preserve masking of MaskedArray inputs.

>>> a = np.ma.arange (3)

>>> a[l] = np.ma.masked

>>> b = np.arange (2, 5)

>>> g

masked_array (data=[0, --, 21,

(continues on next page)

4.2. Array manipulation routines 467

NumPy Reference, Release 1.17.0

(continued from previous page)

mask=[False, True, False],
fill_value=999999)
>>> b
array ([2, 3, 4])
>>> np.concatenate([a, Dbl)
masked_array (data=[0, 1, 2, 2, 3, 4],
mask=False,
fill_value=999999)
>>> np.ma.concatenate([a, bl)
masked_array (data=[0, --, 2, 2, 3, 4],
mask=[False, True, False, False, False, False],
fill_value=999999)

numpy . stack (arrays, axis=0, out=None)
Join a sequence of arrays along a new axis.

The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if axis=0
it will be the first dimension and if axis=-1 it will be the last dimension.

New in version 1.10.0.
Parameters
arrays [sequence of array_like] Each array must have the same shape.
axis [int, optional] The axis in the result array along which the input arrays are stacked.

out [ndarray, optional] If provided, the destination to place the result. The shape must be cor-
rect, matching that of what stack would have returned if no out argument were specified.

Returns
stacked [ndarray] The stacked array has one more dimension than the input arrays.

See also:

concatenate Join a sequence of arrays along an existing axis.
split Split array into a list of multiple sub-arrays of equal size.

block Assemble arrays from blocks.

Examples

>>> arrays = [np.random.randn (3, 4) for _ in range(10)]
>>> np.stack (arrays, axis=0) .shape

(10, 3, 4)

>>> np.stack (arrays, axis=1) .shape
(3, 10, 4)

>>> np.stack (arrays, axis=2).shape
(3, 4, 10)

>>> a = np.array([1l, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.stack((a, b))

(continues on next page)

468 Chapter 4. Routines

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> np.stack((a, b), axis=-1)
array ([[1, 27,

[2, 31,

[3, 411)

numpy .column_stack (fup)
Stack 1-D arrays as columns into a 2-D array.

Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked
as-is, just like with hstack. 1-D arrays are turned into 2-D columns first.

Parameters

tup [sequence of 1-D or 2-D arrays.] Arrays to stack. All of them must have the same first
dimension.

Returns
stacked [2-D array] The array formed by stacking the given arrays.
See also:

stack, hstack, vstack, concatenate

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack ((a,b))
array ([[1, 21,

(2, 31,

[3, 411)

numpy .dstack (fup)
Stack arrays in sequence depth wise (along third axis).

This is equivalent to concatenation along the third axis after 2-D arrays of shape (M,N) have been reshaped to
(M,N, 1) and 1-D arrays of shape (N,) have been reshaped to (1,N,1). Rebuilds arrays divided by dsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

Parameters

tup [sequence of arrays] The arrays must have the same shape along all but the third axis. 1-D
or 2-D arrays must have the same shape.

Returns
stacked [ndarray] The array formed by stacking the given arrays, will be at least 3-D.

See also:

stack Join a sequence of arrays along a new axis.

vstack Stack along first axis.

4.2. Array manipulation routines 469

NumPy Reference, Release 1.17.0

hstack Stack along second axis.

concatenate Join a sequence of arrays along an existing axis.

dsplit Split array along third axis.

Examples

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))

array ([[[1, 2],
(2, 31,
(3, 4111)
>>> a = np.array ([[1]1,[2]1,1[311)

>>> b = np.array ([[2],[3]1,[4]11)

>>> np.dstack((a,b))

array ([[[1, 2]]
(12, 311]
[[3, 41]

4

1)

numpy . hstack (fup)

Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the

first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and

block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the second axis,

except 1-D arrays which can be any length.

Returns

stacked [ndarray] The array formed by stacking the given arrays.

See also:

stack Join a sequence of arrays along a new axis.
vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third axis).

concatenate Join a sequence of arrays along an existing axis.

hsplit Split array along second axis.

block Assemble arrays from blocks.

Examples

470

Chapter 4. Routines

NumPy Reference, Release 1.17.0

>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array ([1, 2, 3, 2, 3, 4]
>>> a = np.array ([[1],[2]1,[311])
21,13
)

>>> b = np.array ([[2],[31,1411)
>>> np.hstack((a,b)
array ([[1, 2],

(2, 31,

[3, 411)

numpy . vstack (fup)
Stack arrays in sequence vertically (row wise).

This is equivalent to concatenation along the first axis after 1-D arrays of shape (N,) have been reshaped to (1,N).
Rebuilds arrays divided by vsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height
(first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and
block provide more general stacking and concatenation operations.

Parameters

tup [sequence of ndarrays] The arrays must have the same shape along all but the first axis. 1-D
arrays must have the same length.

Returns
stacked [ndarray] The array formed by stacking the given arrays, will be at least 2-D.

See also:

stack Join a sequence of arrays along a new axis.

hstack Stack arrays in sequence horizontally (column wise).
dstack Stack arrays in sequence depth wise (along third dimension).
concatenate Join a sequence of arrays along an existing axis.
vsplit Split array into a list of multiple sub-arrays vertically.

block Assemble arrays from blocks.

Examples

>>> a = np.array([l, 2, 31)
>>> b = np.array([2, 3, 41])
>>> np.vstack((a,b))
array ([[1, 2, 31,

(2, 3, 411)

>>> a = np.array ([[1
>>> b = np.array([[2], [3], [4]
>>> np.vstack((a,b))

(continues on next page)

4.2. Array manipulation routines 471

NumPy Reference, Release 1.17.0

(continued from previous page)

[31,
(411)

numpy .block (arrays)

Assemble an nd-array from nested lists of blocks.

Blocks in the innermost lists are concatenated (see concatenate) along the last dimension (-1), then these

are concatenated along the second-last dimension (-2), and so on until the outermost list is reached.

Blocks can be of any dimension, but will not be broadcasted using the normal rules. Instead, leading axes of
size 1 are inserted, to make block.ndim the same for all blocks. This is primarily useful for working with

scalars, and means that code like np.block ([v, 11]) isvalid, where v.ndim ==

When the nested list is two levels deep, this allows block matrices to be constructed from their components.

New in version 1.13.0.

Parameters

arrays [nested list of array_like or scalars (but not tuples)] If passed a single ndarray or scalar

(a nested list of depth 0), this is returned unmodified (and not copied).

Elements shapes must match along the appropriate axes (without broadcasting), but leading

1s will be prepended to the shape as necessary to make the dimensions match.
Returns

block_array [ndarray] The array assembled from the given blocks.

The dimensionality of the output is equal to the greatest of: * the dimensionality of all the

inputs * the depth to which the input list is nested
Raises

ValueError

* If list depths are mismatched - for instance, [[a, b], c] isillegal, and should be spelt

[la, bl, [cl]
e If lists are empty - for instance, [[a, b], []]

See also:

concatenate Join a sequence of arrays together.

stack Stack arrays in sequence along a new dimension.

hstack Stack arrays in sequence horizontally (column wise).
vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third dimension).

vsplit Split array into a list of multiple sub-arrays vertically.

Notes
When called with only scalars, np .block is equivalent to an ndarray call. Sonp.block ([[1, 21, [3,
4171) isequivalenttonp.array ([[1, 21, [3, 411).
This function does not enforce that the blocks lie on a fixed grid. np.block ([[a, bl, [c, d]l]) isnot
restricted to arrays of the form:

472 Chapter 4. Routines

NumPy Reference, Release 1.17.0

AAAbb
AAADbDb
ccecDbD

But is also allowed to produce, for some a, b, c, d:

AAAbb
AAAbb
cDDDD

Since concatenation happens along the last axis first, b1 ock is _not_ capable of producing the following di-
rectly:

AAADD
cccbb
cccDD

Matlab’s “square bracket stacking”, [A, B, ...; p, d, ...l,isequivalenttonp.block([[A, B,
1, ey 9 -2 11).

Examples

The most common use of this function is to build a block matrix

>>> A = np.eye(2) x 2

>>> B = np.eye(3) * 3

>>> np.block ([
[a, np.zeros ((2, 3))]1,
[np.ones((3, 2)), B]

~

~

BB S
~

S S Ve
<

cower
<

o wo oo
<

reoeer

il

o~

With a list of depth 1, b1ock can be used as hstack

>>> np.block ([1

; 2, 31) # hstack ([1, 2, 3])
array ([1, 2, 31])

>>> a = np.array([1l, 2, 31)

>>> b = np.array([2, 3, 41])

>>> np.block([a, b, 10]) # hstack([a, b, 10])
array ([1, 2, 3, 2, 3, 4, 101)

>>> A = np.ones((2, 2), int)
>>> B = 2 x A
>>> np.block ([A, B]) # hstack ([A, B]J)
array ([[1, 1, 2, 2],
[1, 1, 2, 211)

With a list of depth 2, b1 ock can be used in place of vstack:

4.2. Array manipulation routines 473

NumPy Reference, Release 1.17.0

>>> a = np.array([1l, 2, 31)
>>> b = np.array([2, 3, 41])
>>> np.block([[a]l, [b]]) # vstack([a, b])
array ([[1, 2, 31,
(2, 3, 411)

>>> A = np.ones((2, 2), int)
>>> B = 2 x A

>>> np.block ([[A], [B]]) # vstack ([A, B])
array ([[1, 17,

(1, 11,

[2, 21,

[2, 211)

’

It can also be used in places of at least_I1dand atleast_2d

>>> a = np.array(0)
>>> b = np.array([1l])

>>> np.block ([a]) # atleast_1ld(a)
array ([0])
>>> np.block ([b]) # atleast_1d(b)

array ([1])

>>> np.block([[a]]) # atleast_2d(a)
array ([[0]])
>>> np.block ([[b]]) # atleast_2d(b)
array ([[1]])

4.2.7 Splitting arrays

split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays.

array_split(ary, indices_or_sections[, axis]) Split an array into multiple sub-arrays.

dsplit(ary, indices_or_sections) Split array into multiple sub-arrays along the 3rd axis
(depth).

hsplit(ary, indices_or_sections) Split an array into multiple sub-arrays horizontally
(column-wise).

vsplit(ary, indices_or_sections) Split an array into multiple sub-arrays vertically (row-
wise).

numpy . split (ary, indices_or_sections, axis=0)

Split an array into multiple sub-arrays.
Parameters
ary [ndarray] Array to be divided into sub-arrays.

indices_or_sections [int or 1-D array] If indices_or_sections is an integer, N, the array will be
divided into N equal arrays along axis. If such a split is not possible, an error is raised.

If indices_or_sections is a 1-D array of sorted integers, the entries indicate where along axis
the array is split. For example, [2, 3] would, for axis=0, result in

e ary[:2]
e ary[2:3]

474

Chapter 4. Routines

NumPy Reference, Release 1.17.0

* ary[3:]

If an index exceeds the dimension of the array along axis, an empty sub-array is returned
correspondingly.

axis [int, optional] The axis along which to split, default is 0.
Returns
sub-arrays [list of ndarrays] A list of sub-arrays.
Raises
ValueError If indices_or_sections is given as an integer, but a split does not result in equal
division.
See also:
array_ split Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception
if an equal division cannot be made.
hsplit Split array into multiple sub-arrays horizontally (column-wise).
vsplit Split array into multiple sub-arrays vertically (row wise).
dsplit Split array into multiple sub-arrays along the 3rd axis (depth).
concatenate Join a sequence of arrays along an existing axis.
stack Join a sequence of arrays along a new axis.
hstack Stack arrays in sequence horizontally (column wise).
vstack Stack arrays in sequence vertically (row wise).

dstack Stack arrays in sequence depth wise (along third dimension).

Examples

>>> x = np.arange (9.0)
>>> np.split(x, 3)
[array ([O0., 1., 2.1), array([3., 4., 5.]), array([6., 7., 8.1)1

>>> x = np.arange (8.0)
>>> np.split(x, [3, 5, 6, 101)
[array ([0 1., 2.1),

array ([3 4.1),

array ([5])

array ([6 7.1),

array([} dtype float64)]

numpy .array_split (ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays.

Please refer to the split documentation. The only difference between these functions is that array_split
allows indices_or_sections to be an integer that does not equally divide the axis. For an array of length I that
should be split into n sections, it returns 1 % n sub-arrays of size 1//n + 1 and the rest of size 1/n.

See also:

split Split array into multiple sub-arrays of equal size.

4.2. Array manipulation routines 475

NumPy Reference, Release 1.17.0

Examples
>>> x = np.arange (8.0)
>>> np.array_split (x, 3)
[array ([0., 1., 2.1), array([3., 4., .1), array([6., 1)1
>>> x = np.arange(7.0)
>>> np.array_split (x, 3)
[array ([0., 1. 2.1), array(I[3., 4.1), array(I[5., 1)]

’

numpy .dsplit (ary, indices_or_sections)
Split array into multiple sub-arrays along the 3rd axis (depth).

Please refer to the sp1it documentation. dsplit is equivalent to split with axis=2, the array is always

split along the third axis provided the array dimension is greater than or equal to 3.

See also:

split Split an array into multiple sub-arrays of equal size.

Examples
>>> x = np.arange (16.0) .reshape (2, 2, 4)
>>> x
array ([[[O., 1., 2., 3.1,
[4., 5., 6., 7.11,
[[8., 9., 10., 11.71,
[(12., 13., 14., 15.111)
>>> np.dsplit(x, 2)
[array ([[[O., 1.1,
[4., 5.11,
[[8., 9.1,
[12., 13.]111), array([I[[2., 3.1,
[6., 7.11,
[[{10., 11.7,
[(14., 15.111)]
>>> np.dsplit(x, np.array([3, 6]))
[array ([[[O., 1., 2.1,
[4., ’ 6.11,
[[8., 9., 10.7],
[12., 13., 14.111),
array ([[[3.1,
[7.11,
[[11.7,
[15.111),
array([], shape=(2, 2, 0), dtype=float64)]

numpy . hsplit (ary, indices_or_sections)
Split an array into multiple sub-arrays horizontally (column-wise).

Please refer to the split documentation. hsplit is equivalent to split with axis=1, the array is always

split along the second axis regardless of the array dimension.

See also:

split Split an array into multiple sub-arrays of equal size.

476

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples
>>> x = np.arange (16.0) .reshape (4, 4)
>>> x
array ([[O., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.71,
[12., 13., 14., 15.11)
>>> np.hsplit(x, 2)
[array ([[O., 1.1,
[4., 5.1,
[8., 9.1,
[12., 13.11),
array ([[2., 3.1,
[6., 7.1,
[10., 11.1,
[14., 15.11)]

>>> np.hsplit(x, np.array([3, 6]))

[array ([[O., 1., 2.1,
[4., 5., 1,
[8., 9., 10.71,
[12., 13., 14.11),
array ([[3.7,
[7.1,
[11.1,
[15.11),
array ([], shape=(4, 0), dtype=float64)]

With a higher dimensional array the split is still along the second axis.

>>> x = np.arange(8.0) .reshape (2, 2, 2)
>>> x
array ([[[0., 1.1,
(2., 3.11,
[[4., 5.1
(6., 7.1
>>> np.hsplit(x

— ~

J

’

3

]

2

[array ([[[0., .1
]

[]

6., .11

1)

)

]

(4]
array ([i
[t 1]

numpy .vsplit (ary, indices_or_sections)
Split an array into multiple sub-arrays vertically (row-wise).

Please refer to the split documentation. vsplit is equivalent to split with axis=0 (default), the array is

always split along the first axis regardless of the array dimension.

See also:

split Split an array into multiple sub-arrays of equal size.

Examples

>>> x = np.arange(16.0) .reshape (4, 4)

>>> X

(continues on next page)

4.2. Array manipulation routines

477

NumPy Reference, Release 1.17.0

(continued from previous page)

array ([[O., 1., 2., 3.1,
[4., , 6., 7.1,
[8., .y 10., 1.7,
[12., 13., 14., 15.11)

>>> np.vsplit (x,

[array ([[0., 1., 2., 3.1,

(4., 5., 6., 7.11), array([[8., 9., 10., 11.71,
[12., 13., 14., 15.11)1]
>>> np.vsplit (x, np.array([3, 6]))
l[array ([[O., 1., 2., 3.1,
[4., 5., 6., 7.1,
[8., 9., 10., 11.11), array([[l2., 13., 14., 15.]1]1), array([], shape=(0,

—4), dtype=float64)]

With a higher dimensional array the split is still along the first axis.

>>> x = np.arange(8.0) .reshape (2, 2, 2)
>>> x
array ([[[0., 1.1,
(2., 3.11,
[f4., 5.1,
(6., 7.111)
>>> np.vsplit(x, 2)
larray ([[[0., 1.7,
(2., 3.111), array([[[4., 5.1,
(6., 7.111)1

4.2.8 Tiling arrays

tile(A, reps)

Construct an array by repeating A the number of times
given by reps.

repeat(a, repeats[, axis])

Repeat elements of an array.

numpy.tile (A, reps)

Construct an array by repeating A the number of times given by reps.
If reps has length d, the result will have dimension of max (d, A.ndim).

IfA.ndim < d, A ispromoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted
to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A
to d-dimensions manually before calling this function.

IfA.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a reps
of (2, 2) is treated as (1, 1, 2, 2).

Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting
operations and functions.

Parameters

A [array_like] The input array.

reps [array_like] The number of repetitions of A along each axis.
Returns

¢ [ndarray] The tiled output array.

Chapter 4. Routines

NumPy Reference, Release 1.17.0

See also:

repeat Repeat elements of an array.

broadcast_to Broadcast an array to a new shape

Examples

>>> a = np.array ([0, 1, 21)
>>> np.tile(a, 2)

array ([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2,

()
array([[0, 1, 2, 0, 1, 21,
(o, 1, 2, 0, 1, 211)
>>> np.tile(a, (2, 1, 2))
array((rrto, 1, 2, 0, 1, 211,
(o, 1, 2, 0, 1, 2111

>>> b = np.array ([[1, 2], [3, 411)
>>> np.tile(b, 2)

array ([[1, 2, 1, 2],
[3, 4, 3, 411)
>>> np.tile(b, (2, 1))
array ([[1, 21,
(3, 41,
(1, 21,
[3, 411)
>>> ¢ = np.array([1,2,3,4])
>>> np.tile(c, (4,1))
array ([[1, 2, 3, 471,
1, 2, 3, 41,
1, 2, 3, 41,
(1, 2, 3, 411)

’

~

numpy . repeat (a, repeats, axis=None)
Repeat elements of an array.

Parameters
a [array_like] Input array.

repeats [int or array of ints] The number of repetitions for each element. repeats is broadcasted
to fit the shape of the given axis.

axis [int, optional] The axis along which to repeat values. By default, use the flattened input
array, and return a flat output array.

Returns

repeated_array [ndarray] Output array which has the same shape as a, except along the given
axis.

See also:

tile Tile an array.

4.2. Array manipulation routines 479

NumPy Reference, Release 1.17.0

Examples

>>> np.repeat (3, 4)
array ([3, 3, 3, 31)
>>> x = np.array ([[1,2],[3,411])
>>> np.repeat (x, 2)
array ([1, 1, 2, 2, 3, 3, 4, 41)
>>> np.repeat (x, 3, axis=1)
array (([([1, 1, 1, 2, 2, 2],

[3, 3, 3, 4, 4, 411)
[1, 2], axis=0)

>>> np.repeat (x,

array ([[1, 2],
[3, 41,
[3, 411)

4.2.9 Adding and removing elements

delete(arr, obj[, axis]) Return a new array with sub-arrays along an axis
deleted.

insert(arr, obj, values[, axis]) Insert values along the given axis before the given in-
dices.

append(arr, values|[, axis]) Append values to the end of an array.

resize(a, new_shape) Return a new array with the specified shape.

trim_zeros(filt[, trim]) Trim the leading and/or trailing zeros from a 1-D array
or sequence.

unique(ar[, return_index, return_inverse, ...]) Find the unique elements of an array.

numpy .delete (arr, obj, axis=None)
Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries
not returned by arr[obj].

Parameters
arr [array_like] Input array.
obj [slice, int or array of ints] Indicate indices of sub-arrays to remove along the specified axis.

axis [int, optional] The axis along which to delete the subarray defined by obj. If axis is None,
obj is applied to the flattened array.

Returns

out [ndarray] A copy of arr with the elements specified by obj removed. Note that delete
does not occur in-place. If axis is None, out is a flattened array.

See also:

insert Insert elements into an array.

append Append elements at the end of an array.
Notes

Often it is preferable to use a boolean mask. For example:

480 Chapter 4. Routines

NumPy Reference, Release 1.17.0

>>> arr = np.arange(l2) + 1

>>> mask = np.ones(len(arr), dtype=bool)
>>> mask[[0,2,4]] = False

>>> result = arr[mask,...]

Is equivalent to np.delete(arr, [0,2,4], axis=0), but allows further use of mask.

Examples

>>> arr = np.array([[1,2,3,4], [5,6,7,81, [9,10,11,1211)

>>> arr

array ([[1, 2, 3, 4]
[5, 6, 7, 8]
[9 10, 11, 12]

>>> np.delete(arr, 1, O

array ([[1, 2, 3, 471,
[9 10, 11, 1211)

>>> np.delete(arr, np.s_[::2], 1)
array ([[2, 4],

[6, 81,

[10, 1211])

>>> np.delete(arr, [1,3,5], None)
array ([1, 3, 5, 7, 8, 9, 10, 11, 12])

numpy . insert (arr, obj, values, axis=None)
Insert values along the given axis before the given indices.

Parameters
arr [array_like] Input array.

obj [int, slice or sequence of ints] Object that defines the index or indices before which values
is inserted.

New in version 1.8.0.

Support for multiple insertions when 0bj is a single scalar or a sequence with one element
(similar to calling insert multiple times).

values [array_like] Values to insert into arr. If the type of values is different from that of arr,
values is converted to the type of arr. values should be shaped so that arr[...,0obj, ..
.1 = values is legal.

axis [int, optional] Axis along which to insert values. If axis is None then arr is flattened first.
Returns

out [ndarray] A copy of arr with values inserted. Note that i nsert does not occur in-place: a
new array is returned. If axis is None, out is a flattened array.

See also:

append Append elements at the end of an array.
concatenate Join a sequence of arrays along an existing axis.

delete Delete elements from an array.

4.2. Array manipulation routines

NumPy Reference, Release 1.17.0

Notes

Note that for higher dimensional inserts obj=0 behaves very different from obj=[0] just like arr[:,0,:] = values
is different from arr[:,[0],:] = values.

Examples

>>> a = np.array ([[1, 11, [2, 2], [3, 311)

>>> a
array ([[1, 11,
(2, 21,

(3, 311

t

>>> np.inser
array ([1, 5, 1,
>>> np.insert (a
array ([[1, 5, 1

[2, 5, 2
3

Difference between sequence and scalars:

>>> np.insert(a, [1], [[1],[2],[3]], axis=1)

array ([[1, 1, 11,
(2, 2, 21,
[3, 3, 311
>>> np.array_equal (np.insert(a, 1, [1, 2, 3], axis=1),
C. np.insert(a, [1], [[1]1,[2],([31], axis=1))
True
>>> b = a.flatten()
>>> b

array([1, 1, 2, 2, 3, 3])
>>> np.insert (b, [2, 2], [5, 6])
array ([1, 1, 5, ..., 2, 3, 31)

>>> np.insert (b, slice(2, 4), [5, 6])
array ([1, 1, 5, ..., 2, 3, 31)

>>> np.insert (b, [2, 2], [7.13, False]) # type casting
array ([, 1, 7, ..., 2, 3, 31)

>>> x = np.arange (8) .reshape (2, 4)

>>> idx = (1, 3)

>>> np.insert (x, idx, 999, axis=1)

array ([[0, 999, 1, 2, 999, 3],
[4, 999, 5, 6, 999, 711)

numpy . append (arr, values, axis=None)
Append values to the end of an array.

Parameters
arr [array_like] Values are appended to a copy of this array.

values [array_like] These values are appended to a copy of arr. It must be of the correct shape
(the same shape as arr, excluding axis). If axis is not specified, values can be any shape and

482 Chapter 4. Routines

NumPy Reference, Release 1.17.0

will be flattened before use.

axis [int, optional] The axis along which values are appended. If axis is not given, both arr and
values are flattened before use.

Returns

append [ndarray] A copy of arr with values appended to axis. Note that append does not
occur in-place: a new array is allocated and filled. If axis is None, out is a flattened array.

See also:

insert Insert elements into an array.

delete Delete elements from an array.

Examples

>>> np.append([1, 2, 31, [[4, 5, 61, [7, 8, 911)
array ([1, 2, 3, ..., 7, 8, 91])

When axis is specified, values must have the correct shape.

>>> np.append([[1, 2, 31, 1[4, 5, 611, [[7, 8, 911, axis=0)
array ([[1, 2, 31,

[4, 5, 61,

(7, 8, 911)
>>> np.append([[1, 2, 31, [4, 5, 611, [7, 8, 91, axis=0)
Traceback (most recent call last):

ValueError: all the input arrays must have same number of dimensions

numpy . resize (a, new_shape)
Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note that
this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of a.

Parameters

a [array_like] Array to be resized.

new_shape [int or tuple of int] Shape of resized array.
Returns

reshaped_array [ndarray] The new array is formed from the data in the old array, repeated if
necessary to fill out the required number of elements. The data are repeated in the order that
they are stored in memory.

See also:

ndarray.resize resize an array in-place.

Notes

Warning: This functionality does not consider axes separately, i.e. it does not apply interpolation/extrapolation.
It fills the return array with the required number of elements, taken from a as they are laid out in memory,

4.2. Array manipulation routines 483

NumPy Reference, Release 1.17.0

disregarding strides and axes. (This is in case the new shape is smaller. For larger, see above.) This functionality
is therefore not suitable to resize images, or data where each axis represents a separate and distinct entity.

Examples

>>> a=np.array ([[0,1]1,[2,311)
>>> np.resize(a, (2,3))
array ([[0, 1, 21,
[3, 0, 111)
>>> np.resize(a, (1,4))
array ([[0, 1, 2, 311)
>>> np.resize(a, (2,4))
array ([[O0, 1, 2, 3],
[0, 1, 2, 311)

numpy . trim_zeros (filt, trim="fb’)
Trim the leading and/or trailing zeros from a 1-D array or sequence.

Parameters
filt [1-D array or sequence] Input array.

trim [str, optional] A string with ‘f” representing trim from front and ‘b’ to trim from back.
Default is ‘fb’, trim zeros from both front and back of the array.

Returns

trimmed [1-D array or sequence] The result of trimming the input. The input data type is
preserved.

Examples

>>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
>>> np.trim_zeros (a)
array([1, 2, 3, 0, 2, 1])

>>> np.trim_zeros(a, 'b'")
array ([0, 0, O, ..., 0, 2, 11)

The input data type is preserved, list/tuple in means list/tuple out.

>>> np.trim_zeros ([0, 1, 2, 0])
[1, 2]

numpy . unique (ar, return_index=False, return_inverse=False, return_counts=False, axis=None)
Find the unique elements of an array.

Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique
elements:

* the indices of the input array that give the unique values
* the indices of the unique array that reconstruct the input array

¢ the number of times each unique value comes up in the input array

Parameters

484 Chapter 4. Routines

NumPy Reference, Release 1.17.0

ar [array_like] Input array. Unless axis is specified, this will be flattened if it is not already 1-D.

return_index [bool, optional] If True, also return the indices of ar (along the specified axis, if
provided, or in the flattened array) that result in the unique array.

return_inverse [bool, optional] If True, also return the indices of the unique array (for the
specified axis, if provided) that can be used to reconstruct ar.

return_counts [bool, optional] If True, also return the number of times each unique item ap-
pears in ar.

New in version 1.9.0.

axis [int or None, optional] The axis to operate on. If None, ar will be flattened. If an integer,
the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D
array with the dimension of the given axis, see the notes for more details. Object arrays or
structured arrays that contain objects are not supported if the axis kwarg is used. The default
is None.

New in version 1.13.0.
Returns
unique [ndarray] The sorted unique values.

unique_indices [ndarray, optional] The indices of the first occurrences of the unique values in
the original array. Only provided if return_index is True.

unique_inverse [ndarray, optional] The indices to reconstruct the original array from the unique
array. Only provided if return_inverse is True.

unique_counts [ndarray, optional] The number of times each of the unique values comes up in
the original array. Only provided if return_counts is True.

New in version 1.9.0.
See also:

numpy .lib.arraysetops Module with a number of other functions for performing set operations on ar-
rays.

Notes

When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified
axis the first dimension of the array and then flattening the subarrays in C order. The flattened subarrays are
then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array
of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened
subarrays are sorted in lexicographic order starting with the first element.

Examples

>>> np.unique([1, 1, 2, 2, 3, 31)
array ([1, 2, 3])
>>> a = np.array ([[1, 1], [2, 311)
>>> np.unique (a)
array ([1, 2, 31])

Return the unique rows of a 2D array

4.2. Array manipulation routines 485

NumPy Reference, Release 1.17.0

>>> a = np.array([[1, O, O], [1, O, O], [2, 3, 411])
>>> np.unique (a, axis=0)
array ([[1, O, 0], [2, 3, 4]])

Return the indices of the original array that give the unique values:

>>> a = np.array(['a', 'b', 'b', 'c', 'a'l)
>>> u, indices = np.unique(a, return_index=True)
>>>

array(['a', 'b', 'c'], dtype='<Ul")
>>> indices

array ([0, 1, 3])

>>> af[indices]

array(['a', 'b', 'c'], dtype='<Ul")

Reconstruct the input array from the unique values:

>>> a = np.array([1l, 2, 6, 4, 2, 3, 2])

>>> u, indices = np.unique(a, return_inverse=True)
>>>

array ([1, 2, 3, 4, 61])

>>> indices

array ([0, 1, 4, ..., 1, 2, 11)
>>> ul[indices]
array ([1, 2, 6, ..., 2, 3, 21])

4.2.10 Rearranging elements

£11p(m[, axis]) Reverse the order of elements in an array along the given
axis.

f1iplr(m) Flip array in the left/right direction.

f1ipud(m) Flip array in the up/down direction.

reshape(a, newshapel, order]) Gives a new shape to an array without changing its data.

rolI(a, shift[, axis]) Roll array elements along a given axis.

rot 90(ml, k, axes]) Rotate an array by 90 degrees in the plane specified by
axes.

numpy . £1ip (m, axis=None)
Reverse the order of elements in an array along the given axis.

The shape of the array is preserved, but the elements are reordered.
New in version 1.12.0.
Parameters
m [array_like] Input array.

axis [None or int or tuple of ints, optional] Axis or axes along which to flip over. The default,
axis=None, will flip over all of the axes of the input array. If axis is negative it counts from
the last to the first axis.

If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple.
Changed in version 1.15.0: None and tuples of axes are supported

Returns

486 Chapter 4. Routines

NumPy Reference, Release 1.17.0

out [array_like] A view of m with the entries of axis reversed. Since a view is returned, this

operation is done in constant time.

See also:

flipud Flip an array vertically (axis=0).
fliplr Flip an array horizontally (axis=1).

Notes

flip(m, 0) is equivalent to flipud(m).

flip(m, 1) is equivalent to fliplr(m).

flip(m, n) corresponds tom [..., ::

flip(m) corresponds tom [::—1, : :

flip(m, (0, 1)) corresponds tom [::-1, :

Examples

=1, ..

.] with : : -1 at position n.
., ::—1] with : : =1 at all positions.

.1 with : : =1 at position 0 and position 1.

>>> A

array ([[[0,
(2,
[4

14

o~
~

[

o~
O —

[6,
>>> np.flip(
array ([[[4,

[6,

[[0,

(2,
>>> np.flip(
array ([[[2,

[0,

[[6,

(4,
>>> np.flip(
array ([[[7,

e e N
o~ LN N
~ [E— ~

o~ o~
~ —

O oD P OND O O JdF, WP WRE 90 J0 W
e e s 2 D S

True

[51
[[3, ’
(1, 11)
>>> np.flip (A, (0, 2))
array ([[[5, 41,
(7, 611,
[[1, ol,
(3, 2111)
>>> A = np.random.randn(3,4,5)
>>> np.all(np.flip(A,2) == A[:,:,:

>>> A = np.arange (8) .reshape((2,2,2))

=1, ...

1)

numpy . £liplr (m)
Flip array in the left/right direction.

Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order

than before.

4.2. Array manipulation routines

487

NumPy Reference, Release 1.17.0

Parameters
m [array_like] Input array, must be at least 2-D.
Returns

f [ndarray] A view of m with the columns reversed. Since a view is returned, this operation is

o).

See also:

flipud Flip array in the up/down direction.
rot 90 Rotate array counterclockwise.
Notes

Equivalent to m[:,::-1]. Requires the array to be at least 2-D.

Examples
>>> A = np.diag([l.,2.,3.])
>>> A
array ([[1l., 0., 0.1,

(0., 2., 0.1,

[0., 0., 3.11)
>>> np.fliplr (A)
array ([[O0., 0., 1.1,

[0., 2., 0.1,

[3., 0., 0.11)
>>> A = np.random.randn(2,3,5)
>>> np.all(np.fliplr(A) == A[:,::-1,...1)
True

numpy . £lipud (m)
Flip array in the up/down direction.

Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order

than before.
Parameters
m [array_like] Input array.
Returns

out [array_like] A view of m with the rows reversed. Since a view is returned, this operation is

O(1).

See also:

fliplr Flip array in the left/right direction.
rot 90 Rotate array counterclockwise.
Notes

Equivalenttom[::-1, ...]. Does not require the array to be two-dimensional.

488 Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples
>>> A = np.diag([1.0, 2, 31)
>>> A
array ([[1l., 0., 0.1,
[0., 2., 0.1,
[0., 0., 3.11)
>>> np.flipud(A)
array ([[O0., 0., 3.1,
[0., 2., 0.1,
[1., 0., 0.11)
>>> A = np.random.randn(2,3,5)
>>> np.all(np.flipud(A) == A[::-1,...1])
True
>>> np.flipud([1,2])
array ([2, 1])

numpy . roll (a, shift, axis=None)
Roll array elements along a given axis.

Elements that roll beyond the last position are re-introduced at the first.
Parameters
a [array_like] Input array.

shift [int or tuple of ints] The number of places by which elements are shifted. If a tuple,
then axis must be a tuple of the same size, and each of the given axes is shifted by the
corresponding number. If an int while axis is a tuple of ints, then the same value is used for
all given axes.

axis [int or tuple of ints, optional] Axis or axes along which elements are shifted. By default,
the array is flattened before shifting, after which the original shape is restored.

Returns
res [ndarray] Output array, with the same shape as a.

See also:

rollaxis Roll the specified axis backwards, until it lies in a given position.

Notes

New in version 1.12.0.

Supports rolling over multiple dimensions simultaneously.

Examples

>>> x = np.arange (10)

>>> np.roll(x, 2)

array ([8, 9, 0, 1, 2, 3, 4, 5, 6, 71)
>>> np.roll(x, —2)

array([(2, 3, 4, 5, 6, 7, 8, 9, 0, 11])

4.2. Array manipulation routines

489

NumPy Reference, Release 1.17.0

>>> x2 = np.reshape(x, (2,5))

>>> x2

array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 911)

>>> np.roll(x2, 1)

array ([[9, 0, 1, 2, 31,
[4, 5, 6, 7, 811)

>>> np.roll(x2, -1)

array ([[1, 2, 3, 4, 51,
[6, 7, 8, 9, 011)

>>> np.roll(x2, 1, axis=0)

1
6
(
0
5
(
2
7
(4

array ([[5, 6, 7, 8, 91,
1, 2
(
6
1
(
0
5
(
2
7

[0, 1, 2, 3, 411)
>>> np.roll(x2, -1, axis=0)
array ([[5, 6, 7, 8, 91,

[o, 1, 2, 3, 411)
>>> np.roll(x2, 1, axis=1)
array ([[4, , 1, 2, 31,

[9, 5, 6, 7, 811)
>>> np.roll(x2, -1, axis=1)
array ([[1, , 3, 4, 0],

(6, 7, 8, 9, 511)

numpy .rot90 (m, k=1, axes=(0, 1))
Rotate an array by 90 degrees in the plane specified by axes.

Rotation direction is from the first towards the second axis.
Parameters

m [array_like] Array of two or more dimensions.

k [integer] Number of times the array is rotated by 90 degrees.

axes: (2,) array_like The array is rotated in the plane defined by the axes. Axes must be differ-

ent.
New in version 1.12.0.
Returns
y [ndarray] A rotated view of m.

See also:

flip Reverse the order of elements in an array along the given axis.
fliplr Flip an array horizontally.

flipud Flip an array vertically.

Notes

rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1)) rot90(m, k=1, axes=(1,0)) is equivalent to

rot90(m, k=-1, axes=(0,1))

490

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples
>>> m = np.array([[1,2],[3,4]1], int)
>>> m
array ([[1, 2],
[3, 411)

>>> np.rot90 (m)
array ([[2, 4],

[1, 311
>>> np.rot90 (m, 2)
array ([[4, 3],

(2, 111)

>>> m = np.arange (8) .reshape((2,2,2))
>>> np.rot90(m, 1, (1,2))
array ([[[1, 31,
[0, 211,
(05, 7]
[4, 6]

14

11)

4.3 Binary operations

4.3.1 Elementwise bit operations

bitwise and(xl, x2, /[, out, where, ...]) Compute the bit-wise AND of two arrays element-wise.

bitwise_or(xl, x2, /[, out, where, casting, ...]) Compute the bit-wise OR of two arrays element-wise.

bitwise xor(xl,x2,/[, out, where, ...]) Compute the bit-wise XOR of two arrays element-wise.

invert(X, /[, out, where, casting, order, ...]) Compute bit-wise inversion, or bit-wise NOT, element-
wise.

left_shift(xl, x2, /[, out, where, casting, ...]) Shift the bits of an integer to the left.

right_shift(xl, x2,/[, out, where, ...]) Shift the bits of an integer to the right.

numpy .bitwise_and (x/, x2, /, out=None, *, where=True, casting="same_kind’, order="K’, dtype=None,
sub0k=True[, signature, extobj]) = <ufunc 'bitwise_and'>
Compute the bit-wise AND of two arrays element-wise.

Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator &.

Parameters
x1, x2 [array_like] Only integer and boolean types are handled. If x1.shape != x2.
shape, they must be broadcastable to a common shape (which becomes the shape of the
output).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result. Elsewhere, the out array
will retain its original value. Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will remain uninitialized.

4.3. Binary operations 491

NumPy Reference, Release 1.17.0

**kwargs For other keyword-only arguments, see the ufunc docs.
Returns
out [ndarray or scalar] Result. This is a scalar if both x/ and x2 are scalars.
See also:
logical_and,bitwise_or,bitwise_xor

binary repr Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise AND
of 13 and 17 is therefore 000000001, or 1:

>>> np.bitwise_and (13, 17)
1

>>> np.bitwise_and (14, 13)

12

>>> np.binary_repr(12)

'1100"

>>> np.bitwise_and([14,3], 13)
array ([12, 11])

>>> np.bitwise_and([11,7], [4,25])

array ([0, 11])

>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array ([2, 4, 16])

>>> np.bitwise_and([True, True], [False, True])

array ([False, Truel])

numpy .bitwise_or (x1, x2, /, out=None, *, where=True, casting="same_kind’, order="K’, dtype=None,

subok:True[, signature, extobj]) = <ufunc 'bitwise or'>
Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc
implements the C/Python operator | .

Parameters
x1, x2 [array_like] Only integer and boolean types are handled. If x1.shape != x2.
shape, they must be broadcastable to a common shape (which becomes the shape of the
output).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result. Elsewhere, the out array
will retain its original value. Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will remain uninitialized.

**kwargs For other keyword-only arguments, see the ufunc docs.

Returns

492

Chapter 4. Routines

NumPy Reference, Release 1.17.0

out [ndarray or scalar] Result. This is a scalar if both x/ and x2 are scalars.
See also:
logical_or,bitwise _and, bitwise xor

binary repr Return the binary representation of the input number as a string.

Examples

The number 13 has the binaray representation 00001101. Likewise, 16 is represented by 00010000. The
bit-wise OR of 13 and 16 is then 000111011, or 29:

>>> np.bitwise_or (13, 16)

29

>>> np.binary_repr (29)

'11101"

>>> np.bitwise_or (32, 2)

34

>>> np.bitwise_or ([33, 4], 1)
array ([33, 5])

>>> np.bitwise_or ([33, 41, [1, 2])

array ([33, 6])

>>> np.bitwise_or (np.array([2, 5, 255]), np.array([4, 4, 4]))
array ([6, 5, 255])

>>> np.array([2, 5, 255]) | np.array([4, 4, 4])

array ([6, 5, 255])

>>> np.bitwise_or(np.array([2, 5,
ce np.array ([4, 4, 4,
array ([6, 5,
>>> np.bitwise_or ([True, True],
array ([Truel])

255, 21474836471,
2147483647],
255,
[False,

dtype=np.int32),
dtype=np.int32))
2147483647])

True])

True,

numpy .bitwise_xor (x/, x2,/, out=None, *, where=True, casting="same_kind’, order="K’, dtype=None,

subok:True[, signature, extobj]) = <ufunc 'bitwise xor'>
Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator .

Parameters

x1, x2 [array_like] Only integer and boolean types are handled. If x1.shape != x2.
shape, they must be broadcastable to a common shape (which becomes the shape of the
output).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result. Elsewhere, the out array
will retain its original value. Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will remain uninitialized.

**kwargs For other keyword-only arguments, see the ufunc docs.

4.3. Binary operations

493

NumPy Reference, Release 1.17.0

Returns
out [ndarray or scalar] Result. This is a scalar if both x/ and x2 are scalars.
See also:
logical_xor,bitwise_and, bitwise_or

binary repr Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise XOR
of 13 and 17 is therefore 00011100, or 28:

>>> np.bitwise_xor (13, 17)
28

>>> np.binary_repr (28)
'11100"

>>> np.bitwise_xor (31, 5)

26

>>> np.bitwise_xor ([31,3], 5)
array ([26, 61)

>>> np.bitwise_xor ([31,3], [5,6])

array ([26, 5])

>>> np.bitwise_xor ([True, True], [False, True])
array ([True, Falsel])

numpy .invert (x, /, out=None, *, where=True, casting=’same_kind’, order="K’, dtype=None,

subok:Tme[, signature, extobj]) = <ufunc 'invert'>
Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This
ufunc implements the C/Python operator ~.

For signed integer inputs, the two’s complement is returned. In a two’s-complement system negative numbers
are represented by the two’s complement of the absolute value. This is the most common method of representing
signed integers on computers [1]. A N-bit two’s-complement system can represent every integer in the range
—2N=lo42N-1 1,

Parameters
x [array_like] Only integer and boolean types are handled.

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result. Elsewhere, the out array
will retain its original value. Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will remain uninitialized.

**kwargs For other keyword-only arguments, see the ufunc docs.
Returns

out [ndarray or scalar] Result. This is a scalar if x is a scalar.

494

Chapter 4. Routines

NumPy Reference, Release 1.17.0

See also:
bitwise_and,bitwise_or,bitwise_xor, logical_not
binary repr Return the binary representation of the input number as a string.

Notes

bitwise_not is an alias for invert:

>>> np.bitwise_not is np.invert
True

References

(1]

Examples

We’ve seen that 13 is represented by 00001101. The invert or bit-wise NOT of 13 is then:

>>> x = np.invert (np.array (13, dtype=np.uint8))
>>> x

242

>>> np.binary_repr(x, width=8)

'11110010"

The result depends on the bit-width:

>>> x = np.invert (np.array (13, dtype=np.uintl6))
>>> x

65522

>>> np.binary_repr(x, width=16)
'1111111111110010"

When using signed integer types the result is the two’s complement of the result for the unsigned type:

>>> np.invert (np.array([13], dtype=np.int8))
array ([—-14], dtype=int8)

>>> np.binary_repr(-14, width=8)

'11110010"

Booleans are accepted as well:

>>> np.invert (np.array([True, False]))
array ([False, Truel])

numpy .left_shift (x/, x2, /, out=None, *, where=True, casting="same_kind’, order="K’, dtype=None,
sub0k=True[, signature, extobj]) = <ufunc 'left_shift'>
Shift the bits of an integer to the left.

Bits are shifted to the left by appending x2 Os at the right of x/. Since the internal representation of numbers is
in binary format, this operation is equivalent to multiplying x/ by 2+ xx2.

Parameters

x1 [array_like of integer type] Input values.

4.3. Binary operations 495

NumPy Reference, Release 1.17.0

x2 [array_like of integer type] Number of zeros to append to x/. Has to be non-negative. If x1 .
shape != x2.shape, they must be broadcastable to a common shape (which becomes
the shape of the output).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result. Elsewhere, the out array
will retain its original value. Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will remain uninitialized.

**kwargs For other keyword-only arguments, see the ufunc docs.
Returns

out [array of integer type] Return x/ with bits shifted x2 times to the left. This is a scalar if both
xI and x2 are scalars.

See also:

right_shift Shift the bits of an integer to the right.

binary repr Return the binary representation of the input number as a string.

Examples

>>> np.binary_repr(5)

101"

>>> np.left_shift (5, 2)
20

>>> np.binary_repr (20)
'10100"

>>> np.left_shift (5, [1,2,3])
array ([10, 20, 401])

numpy . right_shift (x/, x2, /, out=None, *, where=True, casting="same_kind’, order="K’, dtype=None,

sub0k=True[, signature, extobj]) = <ufunc 'right_shift'>
Shift the bits of an integer to the right.

Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation
is equivalent to dividing x/ by 2 x xx2.

Parameters
x1 [array_like, int] Input values.

x2 [array_like, int] Number of bits to remove at the right of x/. If x1 . shape != x2.shape,
they must be broadcastable to a common shape (which becomes the shape of the output).

out [ndarray, None, or tuple of ndarray and None, optional] A location into which the result
is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or
None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument)
must have length equal to the number of outputs.

where [array_like, optional] This condition is broadcast over the input. At locations where the
condition is True, the out array will be set to the ufunc result. Elsewhere, the out array

496 Chapter 4. Routines

NumPy Reference, Release 1.17.0

will retain its original value. Note that if an uninitialized out array is created via the default
out=None, locations within it where the condition is False will remain uninitialized.

**kwargs For other keyword-only arguments, see the ufunc docs.
Returns

out [ndarray, int] Return x/ with bits shifted x2 times to the right. This is a scalar if both x/ and
x2 are scalars.

See also:

left_shift Shift the bits of an integer to the left.

binary repr Return the binary representation of the input number as a string.

Examples

>>> np.binary_repr (10)

'1010"

>>> np.right_shift (10, 1)
5

>>> np.binary_repr (5)
'101"

>>> np.right_shift (10, [1,2,3])
array ([5, 2, 11)

4.3.2 Bit packing

packbits(al, axis, bitorder]) Packs the elements of a binary-valued array into bits in
a uint8 array.
unpackbits(al, axis, count, bitorder]) Unpacks elements of a uint8 array into a binary-valued

output array.

numpy . packbits (a, axis=None, bitorder="big’)
Packs the elements of a binary-valued array into bits in a uint8 array.

The result is padded to full bytes by inserting zero bits at the end.
Parameters
a [array_like] An array of integers or booleans whose elements should be packed to bits.

axis [int, optional] The dimension over which bit-packing is done. None implies packing the
flattened array.

bitorder [{‘big’, ‘little’}, optional] The order of the input bits. ‘big’ will mimic bin(val), [0,
o, 0, 0, 0, 0, 1, 1] => 3 = 0b00000011 => *, 'little' will
reverse the order so " [1, 1, 0, 0, 0, 0, 0, 0] => 3. Defaults to
‘big’.

New in version 1.17.0.

Returns

packed [ndarray] Array of type uint8 whose elements represent bits corresponding to the logical

4.3. Binary operations 497

NumPy Reference, Release 1.17.0

(0 or nonzero) value of the input elements. The shape of packed has the same number of
dimensions as the input (unless axis is None, in which case the output is 1-D).

See also:

unpackbits Unpacks elements of a uint8 array into a binary-valued output array.

Examples
>>> a = np.array ([[[1,0,1],
[0,1,011,
[((1,1,01,
[0,0,1111)
>>> b = np.packbits(a, axis=-1)
>>> Db
array ([[[160],
[6411,
[[1927,
[32111, dtype=uint8)

Note that in binary 160 = 1010 0000, 64 = 0100 0000, 192 = 1100 0000, and 32 = 0010 0000.

numpy . unpackbits (a, axis=None, count=None, bitorder="big’)
Unpacks elements of a uint8 array into a binary-valued output array.

Each element of a represents a bit-field that should be unpacked into a binary-valued output array. The shape of
the output array is either 1-D (if axis is None) or the same shape as the input array with unpacking done along
the axis specified.

Parameters
a [ndarray, uint8 type] Input array.

axis [int, optional] The dimension over which bit-unpacking is done. None implies unpacking
the flattened array.

count [int or None, optional] The number of elements to unpack along axis, provided as a
way of undoing the effect of packing a size that is not a multiple of eight. A non-negative
number means to only unpack count bits. A negative number means to trim off that many
bits from the end. None means to unpack the entire array (the default). Counts larger than
the available number of bits will add zero padding to the output. Negative counts must not
exceed the available number of bits.

New in version 1.17.0.

bitorder [{‘big’, ‘little’}, optional] The order of the returned bits. ‘big’ will mimic bin(val), 3
= 0b00000011 => [0, O, O, O, O, 0O, 1, 11, ‘little’ will reverse the order to
(, 1, o, o, 0, 0, 0, O0].Defaults to ‘big’.

New in version 1.17.0.
Returns
unpacked [ndarray, uint8 type] The elements are binary-valued (0 or 1).

See also:

packbits Packs the elements of a binary-valued array into bits in a uint8 array.

498 Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples
>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array ([[2],
[71,
[23]], dtype=uint8)
>>> b = np.unpackbits(a, axis=1)
>>> b
array([([0O, O, O, O, O, O, 1, 1,
(o, o, o, o, 0, 1, 1, 11,
(o, o, o, 1, 0o, 1, 1, 111, dtype=uint8)
>>> ¢ = np.unpackbits(a, axis=1, count=-3)
>>> ¢
array([[O0, O, O, 0, O],
[0, o, o, 0, 01,
[0, 0, 0, 1, 0]], dtype=uint8)
>>> p = np.packbits (b, axis=0)
>>> np.unpackbits (p, axis=0)
array([[0O, O, O, 0O, O, O, 1, 0],
(o, o, o, o, 0, 1, 1, 11,
(o, o, o, 1, o, 1, 1, 11,
(o, o, o, o, 0, 0, 0, 01,
(o, o, o, o, 0, 0, 0, 01,
(o, o, o, o, 0, 0, 0, 01,
(o, o, o, o, 0, 0, 0, 01,
(o, o, o, o, 0, 0, 0, 011, dtype=uint8)
>>> np.array_equal (b, np.unpackbits(p, axis=0, count=b.shape[0]))
True

4.3.3 Output formatting

binary repr(num[, width]) Return the binary representation of the input number as

a string.

numpy .binary_repr (num, width=None)
Return the binary representation of the input number as a string.

For negative numbers, if width is not given, a minus sign is added to the front. If width is given, the two’s
complement of the number is returned, with respect to that width.

In a two’s-complement system negative numbers are represented by the two’s complement of the absolute value.
This is the most common method of representing signed integers on computers [1]. A N-bit two’s-complement
system can represent every integer in the range —2V ! to +2V-1 — 1.

Parameters
num [int] Only an integer decimal number can be used.

width [int, optional] The length of the returned string if num is positive, or the length of the
two’s complement if num is negative, provided that width is at least a sufficient number of
bits for num to be represented in the designated form.

If the width value is insufficient, it will be ignored, and num will be returned in binary (num
> 0) or two’s complement (num < 0) form with its width equal to the minimum number of

4.3. Binary operations 499

NumPy Reference, Release 1.17.0

bits needed to represent the number in the designated form. This behavior is deprecated and
will later raise an error.

Deprecated since version 1.12.0.
Returns
bin [str] Binary representation of num or two’s complement of num.

See also:

base_repr Return a string representation of a number in the given base system.

bin Python’s built-in binary representation generator of an integer.

Notes

binary_repr is equivalent to using base_repr with base 2, but about 25x faster.

References

(1]

Examples

>>> np.binary_repr (3)

llll

>>> np.binary_repr (-3)

'711'

>>> np.binary_repr (3, width=4)
'0011"

The two’s complement is returned when the input number is negative and width is specified:

>>> np.binary_repr (-3, width=3)
'101"

>>> np.binary_repr (-3, width=5)
'11101"

4.4 String operations

The numpy.char module provides a set of vectorized string operations for arrays of type numpy.string_ or
numpy . unicode_. All of them are based on the string methods in the Python standard library.

4.4.1 String operations

add(x1, x2) Return element-wise string concatenation for two arrays
of str or unicode.
multiply(a,i) Return (a * i), that is string multiple concatenation,

element-wise.

Continued on next page

500 Chapter 4. Routines

https://docs.python.org/dev/library/functions.html#bin

NumPy Reference, Release 1.17.0

Table 21 — continued from previous page

mod(a, values)

Return (a % 1), that is pre-Python 2.6 string formatting
(iterpolation), element-wise for a pair of array_likes of
str or unicode.

capitalize(a)

Return a copy of a with only the first character of each
element capitalized.

center(a, width[, fillchar])

Return a copy of a with its elements centered in a string
of length width.

decode(al, encoding, errors])

Calls str.decode element-wise.

encode(al, encoding, errors])

Calls str.encode element-wise.

expandtabs(al, tabsize])

Return a copy of each string element where all tab char-
acters are replaced by one or more spaces.

Join(sep, seq)

Return a string which is the concatenation of the strings
in the sequence seq.

1 just(a, width[, fillchar])

Return an array with the elements of a left-justified in a
string of length width.

lower(a)

Return an array with the elements converted to lower-
case.

Istrip(al, chars])

For each element in a, return a copy with the leading
characters removed.

partition(a, sep)

Partition each element in a around sep.

replace(a, old, new|[, count])

For each element in a, return a copy of the string with
all occurrences of substring old replaced by new.

rjust(a, width[, fillchar])

Return an array with the elements of a right-justified in
a string of length width.

rpartition(a, sep)

Partition (split) each element around the right-most sep-
arator.

rsplit(al, sep, maxsplit])

For each element in a, return a list of the words in the
string, using sep as the delimiter string.

rstrip(al, chars])

For each element in a, return a copy with the trailing
characters removed.

split(al, sep, maxsplit])

For each element in a, return a list of the words in the
string, using sep as the delimiter string.

splitlines(al, keepends])

For each element in a, return a list of the lines in the
element, breaking at line boundaries.

strip(al, chars])

For each element in a, return a copy with the leading
and trailing characters removed.

swapcase(a)

Return element-wise a copy of the string with uppercase
characters converted to lowercase and vice versa.

title(a)

Return element-wise title cased version of string or uni-
code.

translate(a, table[, deletechars])

For each element in a, return a copy of the string
where all characters occurring in the optional argument
deletechars are removed, and the remaining characters
have been mapped through the given translation table.

upper(a)

Return an array with the elements converted to upper-
case.

zf111(a, width)

Return the numeric string left-filled with zeros

numpy .char.add (x/, x2)

Return element-wise string concatenation for two arrays of str or unicode.

Arrays xI and x2 must have the same shape.

4.4. String operations

501

NumPy Reference, Release 1.17.0

Parameters
x1 [array_like of str or unicode] Input array.
x2 [array_like of str or unicode] Input array.
Returns

add [ndarray] Output array of st ring_ or unicode_, depending on input types of the same
shape as x/ and x2.

numpy.char.multiply (a, i)
Return (a * i), that is string multiple concatenation, element-wise.

Values in i of less than O are treated as O (which yields an empty string).
Parameters
a [array_like of str or unicode]
i [array_like of ints]
Returns
out [ndarray] Output array of str or unicode, depending on input types

numpy . char .mod (a, values)

Return (a % 1), that is pre-Python 2.6 string formatting (iterpolation), element-wise for a pair of array_likes of
str or unicode.

Parameters
a [array_like of str or unicode]
values [array_like of values] These values will be element-wise interpolated into the string.
Returns
out [ndarray] Output array of str or unicode, depending on input types
See also:
str.__mod

numpy.char.capitalize (a)
Return a copy of a with only the first character of each element capitalized.

Calls str.capitalize element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode] Input array of strings to capitalize.
Returns
out [ndarray] Output array of str or unicode, depending on input types
See also:

str.capitalize

Examples

502 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.capitalize

NumPy Reference, Release 1.17.0

>>> ¢ = np.array(['alb2',"1b2a'", 'b2al', '2alb'],'s4"); c
array(['alb2', 'lb2a', 'b2al', '2alb'],
dtype="'[S4")
>>> np.char.capitalize (c)
array (['Alb2', 'lb2a', 'B2al', '2alb'],
dtype="'154")

numpy . char.center (a, width, fillchar="")
Return a copy of a with its elements centered in a string of length width.

Calls str.center element-wise.
Parameters
a [array_like of str or unicode]

width [int] The length of the resulting strings

fillchar [str or unicode, optional] The padding character to use (default is space).

Returns
out [ndarray] Output array of str or unicode, depending on input types
See also:
str.center

numpy . char .decode (a, encoding=None, errors=None)
Calls str.decode element-wise.

The set of available codecs comes from the Python standard library, and may be extended at runtime. For more

information, see the codecs module.
Parameters
a [array_like of str or unicode]
encoding [str, optional] The name of an encoding
errors [str, optional] Specifies how to handle encoding errors
Returns
out [ndarray]
See also:

str.decode

Notes

The type of the result will depend on the encoding specified.

Examples

>>> c = np.array (['aRaRaAr', ' ahA ', 'abBABba'l])
>>> ¢

array (['aAaAaA', ' aA ', 'abBABba'], dtype='<U7")

>>> np.char.encode (c, encoding='cp037")
array (["\x81\xcl\x81\xcl\x81l\xcl', 'Q@@\x81l\xcl@@',

(continues on next page)

4.4. String operations

503

https://docs.python.org/dev/library/stdtypes.html#str.center
https://docs.python.org/dev/library/codecs.html#module-codecs

NumPy Reference, Release 1.17.0

(continued from previous page)

"\x81\x82\xc2\xcl\xc2\x82\x81"'],
dtype="[S7")

numpy . char.encode (a, encoding=None, errors=None)
Calls str.encode element-wise.

The set of available codecs comes from the Python standard library, and may be extended at runtime. For more
information, see the codecs module.

Parameters
a [array_like of str or unicode]
encoding [str, optional] The name of an encoding
errors [str, optional] Specifies how to handle encoding errors
Returns
out [ndarray]
See also:

str.encode

Notes

The type of the result will depend on the encoding specified.

numpy . char.expandtabs (a, tabsize=8)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

Calls str.expandtabs element-wise.

Return a copy of each string element where all tab characters are replaced by one or more spaces, depending on
the current column and the given tabsize. The column number is reset to zero after each newline occurring in
the string. This doesn’t understand other non-printing characters or escape sequences.

Parameters
a [array_like of str or unicode] Input array

tabsize [int, optional] Replace tabs with fabsize number of spaces. If not given defaults to 8
spaces.

Returns
out [ndarray] Output array of str or unicode, depending on input type
See also:
str.expandtabs

numpy .char. join (sep, seq)
Return a string which is the concatenation of the strings in the sequence seq.

Calls str.join element-wise.
Parameters
sep [array_like of str or unicode]
seq [array_like of str or unicode]

Returns

504 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.encode
https://docs.python.org/dev/library/stdtypes.html#str.expandtabs

NumPy Reference, Release 1.17.0

out [ndarray] Output array of str or unicode, depending on input types
See also:
str.join

numpy . char.ljust (a, width, fillchar="")
Return an array with the elements of a left-justified in a string of length width.

Calls str:[just element-wise.
Parameters
a [array_like of str or unicode]
width [int] The length of the resulting strings
fillchar [str or unicode, optional] The character to use for padding
Returns
out [ndarray] Output array of str or unicode, depending on input type
See also:
str.ljust

numpy .char.lower (a)
Return an array with the elements converted to lowercase.

Call str.lower element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like, {str, unicode}] Input array.
Returns
out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type
See also:

str.lower

Examples

>>> ¢ = np.array(['AlIB C', "IBCA', 'BCA1']l); c
array (['AIB C', '1IBCA', 'BCAl'], dtype='<U5"'")
>>> np.char.lower (c)

array(['alb c¢', 'lbca', 'bcal']l, dtype='<U5")

numpy .char.lstrip (a, chars=None)
For each element in a, return a copy with the leading characters removed.

Calls str:Istrip element-wise.
Parameters
a [array-like, {str, unicode}] Input array.

chars [{str, unicode}, optional] The chars argument is a string specifying the set of characters
to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped.

4.4. String operations 505

https://docs.python.org/dev/library/stdtypes.html#str.join
https://docs.python.org/dev/library/stdtypes.html#str.ljust
https://docs.python.org/dev/library/stdtypes.html#str.lower

NumPy Reference, Release 1.17.0

Returns
out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type
See also:

str.lstrip

Examples

>>> c = np.array (['aRa”RaA', ' aA ', 'abBABba'])
>>> ¢

array (['aRAaAaA', ' aA ', 'abBABba'l], dtype='<U7")

The ‘a’ variable is unstripped from c[1] because whitespace leading.

>>> np.char.lstrip(c, 'a')

array (["RARaRaA', ' aA ', '"bBABba'l], dtype='<UT7")

>>> np.char.lstrip(c, 'A') # leaves c unchanged

array (['aAaAaA', ' aA ', 'abBABba'], dtype='<U7")

>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, ''")).all()

XXX: is this a regression? This used to return True
np.char.lstrip(c,'') does not modify c at all.
False
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()

True

numpy.char.partition (a, sep)
Partition each element in a around sep.

Calls str.partition element-wise.

For each element in a, split the element as the first occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3
strings containing the string itself, followed by two empty strings.

Parameters

a [array_like, {str, unicode}] Input array

sep [{str, unicode}] Separator to split each string element in a.
Returns

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type. The
output array will have an extra dimension with 3 elements per input element.

See also:
str.partition

numpy .char.replace (a, old, new, count=None)
For each element in a, return a copy of the string with all occurrences of substring old replaced by new.

Calls str.replace element-wise.
Parameters
a [array-like of str or unicode]

old, new [str or unicode]

506 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.lstrip
https://docs.python.org/dev/library/stdtypes.html#str.partition

NumPy Reference, Release 1.17.0

count [int, optional] If the optional argument count is given, only the first count occurrences
are replaced.

Returns
out [ndarray] Output array of str or unicode, depending on input type
See also:
str.replace

numpy . char.rjust (a, width, fillchar="")
Return an array with the elements of a right-justified in a string of length width.

Calls str.rjust element-wise.
Parameters
a [array_like of str or unicode]
width [int] The length of the resulting strings
fillchar [str or unicode, optional] The character to use for padding
Returns
out [ndarray] Output array of str or unicode, depending on input type
See also:
str.rjust

numpy.char.rpartition (a, sep)
Partition (split) each element around the right-most separator.

Calls str.rpartition element-wise.

For each element in a, split the element as the last occurrence of sep, and return 3 strings containing the part
before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3
strings containing the string itself, followed by two empty strings.

Parameters

a [array_like of str or unicode] Input array

sep [str or unicode] Right-most separator to split each element in array.
Returns

out [ndarray] Output array of string or unicode, depending on input type. The output array will
have an extra dimension with 3 elements per input element.

See also:
str.rpartition

numpy . char.rsplit (a, sep=None, maxsplit=None)
For each element in q, return a list of the words in the string, using sep as the delimiter string.

Calls str.rsplit element-wise.
Except for splitting from the right, rsp1it behaves like split.
Parameters
a [array_like of str or unicode]

sep [str or unicode, optional] If sep is not specified or None, any whitespace string is a separator.

4.4. String operations 507

https://docs.python.org/dev/library/stdtypes.html#str.replace
https://docs.python.org/dev/library/stdtypes.html#str.rjust
https://docs.python.org/dev/library/stdtypes.html#str.rpartition

NumPy Reference, Release 1.17.0

maxsplit [int, optional] If maxsplit is given, at most maxsplit splits are done, the rightmost ones.
Returns
out [ndarray] Array of list objects
See also:
str.rsplit, split

numpy . char.rstrip (a, chars=None)
For each element in a, return a copy with the trailing characters removed.

Calls str.rstrip element-wise.
Parameters
a [array-like of str or unicode]

chars [str or unicode, optional] The chars argument is a string specifying the set of characters
to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped.

Returns
out [ndarray] Output array of str or unicode, depending on input type
See also:

str.rstrip

Examples

>>> c = np.array(['aRaRaA', 'abBABba'l], dtype='S7'); c
array (['aRaRaA', 'abBABba'l],
dtype="1S7")
>>> np.char.rstrip(c, b'a'")
array (['aRaRaA', 'abBABb'],
dtype="'1]S7")
>>> np.char.rstrip(c, b'A")
array (['aRaRAa', 'abBABba'],
dtype="'15S7")

numpy . char.split (a, sep=None, maxsplit=None)
For each element in a, return a list of the words in the string, using sep as the delimiter string.

Calls str.split element-wise.
Parameters
a [array_like of str or unicode]
sep [str or unicode, optional] If sep is not specified or None, any whitespace string is a separator.
maxsplit [int, optional] If maxsplit is given, at most maxsplit splits are done.
Returns
out [ndarray] Array of list objects
See also:

str.split, rsplit

508 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.rsplit
https://docs.python.org/dev/library/stdtypes.html#str.rstrip
https://docs.python.org/dev/library/stdtypes.html#str.split

NumPy Reference, Release 1.17.0

numpy .char.splitlines (a, keepends=None)
For each element in a, return a list of the lines in the element, breaking at line boundaries.

Calls str.splitlines element-wise.
Parameters
a [array_like of str or unicode]

keepends [bool, optional] Line breaks are not included in the resulting list unless keepends is
given and true.

Returns
out [ndarray] Array of list objects
See also:
str.splitlines

numpy .char.strip (a, chars=None)
For each element in a, return a copy with the leading and trailing characters removed.

Calls str.strip element-wise.
Parameters
a [array-like of str or unicode]

chars [str or unicode, optional] The chars argument is a string specifying the set of characters to
be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix or suffix; rather, all combinations of its values are stripped.

Returns
out [ndarray] Output array of str or unicode, depending on input type
See also:

str.strip

Examples

>>> c = np.array(['aRa”RaA', ' aA ', 'abBABba'l])
>>> ¢

array (['aAaAaA', ' aA ', 'abBABba'], dtype='<U7")

>>> np.char.strip(c)
array (['aRAaAaA', 'aA', 'abBABba'], dtype='<U7'")

>>> np.char.strip(c, 'a') # 'a' unstripped from c[l] because whitespace leads
array (["RARaRaA', ' aA ', '"bBABb'], dtype='<UT7")

>>> np.char.strip(c, 'A') # 'A' unstripped from c[1l] because (unprinted) ws trails
array(['aRaRa', ' aA ', 'abBABba'], dtype='<U7'")

numpy .char.swapcase (a)
Return element-wise a copy of the string with uppercase characters converted to lowercase and vice versa.

Calls strswapcase element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like, {str, unicode}] Input array.

Returns

4.4. String operations 509

https://docs.python.org/dev/library/stdtypes.html#str.splitlines
https://docs.python.org/dev/library/stdtypes.html#str.strip

NumPy Reference, Release 1.17.0

out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type
See also:

str.swapcase

Examples

>>> c=np.array(['alB c¢','lb Ca','b Cal', '"cAlb'],'S5"); c
array(['alB ¢', 'lb Ca', 'b Cal', 'cAlb'],
dtype="'1]S55")
>>> np.char.swapcase (c)
array(['Alb C', '"1lB cA', 'B cAl', 'CalB'],
dtype="'1]S55")

numpy.char.title (a)
Return element-wise title cased version of string or unicode.

Title case words start with uppercase characters, all remaining cased characters are lowercase.
Calls str.title element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like, {str, unicode}] Input array.
Returns

out [ndarray] Output array of str or unicode, depending on input type

See also:
str.title
Examples
>>> c=np.array(['alb c¢','lb ca','b cal','calb'],'S5"); c
array(['alb ¢', 'lb ca', 'b cal', 'calb'],
dtype="'1]S5")
>>> np.char.title(c)
array(['AlB C', 'lB Ca', 'B Cal', 'CalB'],
dtype="'1]S55")

numpy .char.translate (q, table, deletechars=None)
For each element in a, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation table.

Calls str.translate element-wise.
Parameters
a [array-like of str or unicode]
table [str of length 256]
deletechars [str]
Returns

out [ndarray] Output array of str or unicode, depending on input type

510 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.swapcase
https://docs.python.org/dev/library/stdtypes.html#str.title

NumPy Reference, Release 1.17.0

See also:
str.translate

numpy . char .upper (a)
Return an array with the elements converted to uppercase.

Calls str:.upper element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like, {str, unicode}] Input array.
Returns
out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type
See also:

str.upper

Examples

>>> ¢ = np.array(['alb c¢', '"lbca', 'bcal'l); c
array(['alb c¢', 'lbca', 'bcal']l, dtype='<U5")
>>> np.char.upper (c)

array (['Al1B C', '1BCA', 'BCAl'], dtype='<U5"'")

numpy .char.z£ill (a, width)
Return the numeric string left-filled with zeros

Calls str.zfill element-wise.
Parameters
a [array_like, {str, unicode}] Input array.
width [int] Width of string to left-fill elements in a.
Returns
out [ndarray, {str, unicode}] Output array of str or unicode, depending on input type
See also:

str.zfill

4.4.2 Comparison

Unlike the standard numpy comparison operators, the ones in the char module strip trailing whitespace characters
before performing the comparison.

equal(xl, x2) Return (x1 == x2) element-wise.
not_equal(xl, x2) Return (x1 !=x2) element-wise.
greater_equal(xl, x2) Return (x1 >= x2) element-wise.
less_equal(xl, x2) Return (x1 <= x2) element-wise.
greater(xl, x2) Return (x1 > x2) element-wise.
less(xl, x2) Return (x1 < x2) element-wise.

4.4. String operations 511

https://docs.python.org/dev/library/stdtypes.html#str.translate
https://docs.python.org/dev/library/stdtypes.html#str.upper
https://docs.python.org/dev/library/stdtypes.html#str.zfill

NumPy Reference, Release 1.17.0

numpy .char.equal (x/, x2)
Return (x1 == x2) element-wise.

Unlike numpy . equal, this comparison is performed by first stripping whitespace characters from the end of
the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 [array_like of str or unicode] Input arrays of the same shape.
Returns
out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.
See also:
not_equal, greater._equal, less_equal, greater, less

numpy .char.not_equal (x/, x2)
Return (x1 != x2) element-wise.

Unlike numpy . not__equal, this comparison is performed by first stripping whitespace characters from the
end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 [array_like of str or unicode] Input arrays of the same shape.
Returns
out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.
See also:
equal, greater_equal, less_equal, greater, less

numpy . char.greater_equal (x/, x2)
Return (x1 >= x2) element-wise.

Unlike numpy . greater._equal, this comparison is performed by first stripping whitespace characters from
the end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 [array_like of str or unicode] Input arrays of the same shape.
Returns
out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.
See also:
equal, not_equal, less_equal, greater, less

numpy .char.less_equal (x/, x2)
Return (x1 <= x2) element-wise.

Unlike numpy. less_equal, this comparison is performed by first stripping whitespace characters from the
end of the string. This behavior is provided for backward-compatibility with numarray.

Parameters
x1, x2 [array_like of str or unicode] Input arrays of the same shape.
Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

512 Chapter 4. Routines

NumPy Reference, Release 1.17.0

See also:

equal, not_equal, greater_equal, greater, less

numpy .char.greater (x/, x2)

Return (x1 > x2) element-wise.

Unlike numpy . greater, this comparison is performed by first stripping whitespace characters from the end
of the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, less_equal, less

numpy .char.less (x/, x2)

Return (x1 < x2) element-wise.

Unlike numpy . greater, this comparison is performed by first stripping whitespace characters from the end
of the string. This behavior is provided for backward-compatibility with numarray.

Parameters

x1, x2 [array_like of str or unicode] Input arrays of the same shape.

Returns

out [ndarray or bool] Output array of bools, or a single bool if x1 and x2 are scalars.

See also:

equal, not_equal, greater_equal, less_equal, greater

4.4.3 String information

count(a, subl, start, end])

Returns an array with the number of non-overlapping
occurrences of substring sub in the range [start, end].

endswith(a, suffix[, start, end])

Returns a boolean array which is True where the string
element in a ends with suffix, otherwise False.

find(a, subl, start, end])

For each element, return the lowest index in the string
where substring sub is found.

index(a, sub[, start, end])

Like £ind, but raises ValueError when the substring is
not found.

isalpha(a)

Returns true for each element if all characters in the
string are alphabetic and there is at least one character,
false otherwise.

isalnum(a)

Returns true for each element if all characters in the
string are alphanumeric and there is at least one char-
acter, false otherwise.

isdecimal(a)

For each element, return True if there are only decimal
characters in the element.

Continued on next page

4.4. String operations

513

NumPy Reference, Release 1.17.0

Table 23 — continued from previous page

isdigit(a)

Returns true for each element if all characters in the
string are digits and there is at least one character, false
otherwise.

islower(a)

Returns true for each element if all cased characters in
the string are lowercase and there is at least one cased
character, false otherwise.

isnumeric(a)

For each element, return True if there are only numeric
characters in the element.

isspace(a)

Returns true for each element if there are only whites-
pace characters in the string and there is at least one
character, false otherwise.

istitle(a)

Returns true for each element if the element is a title-
cased string and there is at least one character, false oth-
erwise.

isupper(a)

Returns true for each element if all cased characters in
the string are uppercase and there is at least one charac-
ter, false otherwise.

rfind(a, subl, start, end])

For each element in a, return the highest index in the
string where substring sub is found, such that sub is con-
tained within [start, end].

rindex(a, subl, start, end])

Like rfind, but raises ValueError when the substring
sub is not found.

startswith(a, prefix[, start, end])

Returns a boolean array which is True where the string
element in a starts with prefix, otherwise False.

str_len(a)

Return len(a) element-wise.

numpy . char.count (a, sub, start=0, end=None)

Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

Calls str.count element-wise.
Parameters

a [array_like of str or unicode]

sub [str or unicode] The substring to search for.

start, end [int, optional] Optional arguments start and end are interpreted as slice notation to

specify the range in which to count.
Returns
out [ndarray] Output array of ints.
See also:

str.count

Examples

>>> c = np.array(['aRaraA', ' aA ', 'abBABba'l)
>>> ¢

array (["aRaRaA', ' aA ', 'abBABba'l], dtype='<U7")
>>> np.char.count (c, 'A")

array ([3, 1, 1])

>>> np.char.count (¢, 'aA')

(continues on next page)

514

Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.count

NumPy Reference, Release 1.17.0

(continued from previous page)

array ([3, 1, 0])
>>> np.char.count(c, 'A', start=1, end=4)
array([2, 1, 1])
>>> np.char.count (¢, 'A', start=1, end=3)
array ([1, 0, 0])

numpy . char.endswith (a, suffix, start=0, end=None)
Returns a boolean array which is True where the string element in a ends with suffix, otherwise False.

Calls strendswith element-wise.
Parameters
a [array_like of str or unicode]
suffix [str]

start, end [int, optional] With optional start, test beginning at that position. With optional end,
stop comparing at that position.

Returns
out [ndarray] Outputs an array of bools.
See also:

str.endswith

Examples

>>> s = np.array(['foo', 'bar'])
>>> s[0] = 'foo'

>>> s[1l] = 'bar'

>>> s

array (['foo', 'bar'], dtype='<U3'")

>>> np.char.endswith(s, 'ar')

array ([False, Truel])

>>> np.char.endswith(s, 'a', start=1, end=2)
array ([False, True])

numpy . char. £ind (a, sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

Calls str.find element-wise.

For each element, return the lowest index in the string where substring sub is found, such that sub is contained
in the range [start, end].

Parameters

a [array_like of str or unicode]

sub [str or unicode]

start, end [int, optional] Optional arguments start and end are interpreted as in slice notation.
Returns

out [ndarray or int] Output array of ints. Returns -1 if sub is not found.

4.4. String operations 515

https://docs.python.org/dev/library/stdtypes.html#str.endswith

NumPy Reference, Release 1.17.0

See also:
str.find

numpy . char.index (a, sub, start=0, end=None)
Like £1ind, but raises ValueError when the substring is not found.

Calls str.index element-wise.
Parameters
a [array_like of str or unicode]
sub [str or unicode]
start, end [int, optional]
Returns
out [ndarray] Output array of ints. Returns -1 if sub is not found.
See also:
find, str.find

numpy.char.isalpha (a)

Returns true for each element if all characters in the string are alphabetic and there is at least one character, false
otherwise.

Calls str.isalpha element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode]
Returns
out [ndarray] Output array of bools
See also:
str.isalpha

numpy.char.isalnum(a)

Returns true for each element if all characters in the string are alphanumeric and there is at least one character,
false otherwise.

Calls strisalnum element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode]
Returns
out [ndarray] Output array of str or unicode, depending on input type
See also:
str.isalnum

numpy .char.isdecimal (a)
For each element, return True if there are only decimal characters in the element.

Calls unicode.isdecimal element-wise.

516 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.find
https://docs.python.org/dev/library/stdtypes.html#str.find
https://docs.python.org/dev/library/stdtypes.html#str.isalpha
https://docs.python.org/dev/library/stdtypes.html#str.isalnum

NumPy Reference, Release 1.17.0

Decimal characters include digit characters, and all characters that that can be used to form decimal-radix
nunmem,&g.U+O660, ARABIC-INDIC DIGIT ZERO

Parameters
a [array_like, unicode] Input array.
Returns
out [ndarray, bool] Array of booleans identical in shape to a.
See also:
unicode.isdecimal

numpy.char.isdigit (a)
Returns true for each element if all characters in the string are digits and there is at least one character, false
otherwise.

Calls str.isdigit element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode]
Returns
out [ndarray] Output array of bools
See also:
str.isdigit

numpy .char.islower (a)
Returns true for each element if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

Calls strislower element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode]
Returns
out [ndarray] Output array of bools
See also:
str.islower

numpy .char.isnumeric (a)
For each element, return True if there are only numeric characters in the element.

Calls unicode.isnumeric element-wise.

Numeric characters include digit characters, and all characters that have the Unicode numeric value property,
e.g. U+2155, VULGAR FRACTION ONE FIFTH

Parameters
a [array_like, unicode] Input array.

Returns

4.4. String operations 517

https://docs.python.org/dev/library/stdtypes.html#str.isdigit
https://docs.python.org/dev/library/stdtypes.html#str.islower

NumPy Reference, Release 1.17.0

out [ndarray, bool] Array of booleans of same shape as a.
See also:
unicode.isnumeric

numpy .char.isspace (a)
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

Calls strisspace element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode]
Returns
out [ndarray] Output array of bools
See also:
str.isspace

numpy.char.istitle (a)
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

Call str.istitle element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode]
Returns
out [ndarray] Output array of bools
See also:
str.istitle

numpy .char.isupper (a)
Returns true for each element if all cased characters in the string are uppercase and there is at least one character,
false otherwise.

Call strisupper element-wise.
For 8-bit strings, this method is locale-dependent.
Parameters
a [array_like of str or unicode]
Returns
out [ndarray] Output array of bools
See also:

str.isupper

518 Chapter 4. Routines

https://docs.python.org/dev/library/stdtypes.html#str.isspace
https://docs.python.org/dev/library/stdtypes.html#str.istitle
https://docs.python.org/dev/library/stdtypes.html#str.isupper

NumPy Reference, Release 1.17.0

numpy . char.rfind (a, sub, start=0, end=None)
For each element in a, return the highest index in the string where substring sub is found, such that sub is
contained within [start, end].

Calls str.rfind element-wise.
Parameters
a [array-like of str or unicode]
sub [str or unicode]
start, end [int, optional] Optional arguments start and end are interpreted as in slice notation.
Returns
out [ndarray] Output array of ints. Return -1 on failure.
See also:
str.rfind

numpy . char.rindex (a, sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

Calls str.rindex element-wise.
Parameters
a [array-like of str or unicode]
sub [str or unicode]
start, end [int, optional]
Returns
out [ndarray] Output array of ints.
See also:
rfind, str.rindex

numpy . char.startswith (a, prefix, start=0, end=None)
Returns a boolean array which is True where the string element in a starts with prefix, otherwise False.

Calls str.startswith element-wise.
Parameters
a [array_like of str or unicode]
prefix [str]

start, end [int, optional] With optional start, test beginning at that position. With optional end,
stop comparing at that position.

Returns
out [ndarray] Array of booleans
See also:
str.startswith

numpy .char.str_len (a)
Return len(a) element-wise.

Parameters

4.4. String operations 519

https://docs.python.org/dev/library/stdtypes.html#str.rfind
https://docs.python.org/dev/library/stdtypes.html#str.rindex
https://docs.python.org/dev/library/stdtypes.html#str.startswith

NumPy Reference, Release 1.17.0

a [array_like of str or unicode]
Returns
out [ndarray] Output array of integers
See also:

__builtin__ .len

4.4.4 Convenience class

array(obj[, itemsize, copy, unicode, order]) Create a chararray.

asarray(obj[, itemsize, unicode, order]) Convert the input to a chararray, copying the data
only if necessary.

chararray(shapel, itemsize, unicode, ...]) Provides a convenient view on arrays of string and uni-

code values.

numpy . char.array (obj, itemsize=None, copy=True, unicode=None, order=None)
Create a chararray.

Note: This class is provided for numarray backward-compatibility. New code (not concerned with numarray

compatibility) should use arrays of type string_ or unicode_ and use the free functions in numpy . char
for fast vectorized string operations instead.

Versus a regular NumPy array of type str or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values
3) vectorized string operations are provided as methods (e.g. strendswith) and infix operators (e.g. +, =*
%)
Parameters
obj [array of str or unicode-like]

itemsize [int, optional] itemsize is the number of characters per scalar in the resulting array. If
itemsize is None, and obj is an object array or a Python list, the ifemsize will be automatically

determined. If ifemsize is provided and obj is of type str or unicode, then the o0bj string will
be chunked into itemsize pieces.

copy [bool, optional] If true (default), then the object is copied. Otherwise, a copy will only
be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to
satisfy any of the other requirements (ifemsize, unicode, order, etc.).

unicode [bool, optional] When true, the resulting chararray can contain Unicode characters,
when false only 8-bit characters. If unicode is None and obj is one of the following:

* achararray,
* an ndarray of type str or unicode
* a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

520 Chapter 4. Routines

NumPy Reference, Release 1.17.0

order [{‘C’, ‘F’, ‘A’}, optional] Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the
returned array will be in Fortran-contiguous order (first-index varies the fastest). If order
is ‘A’, then the returned array may be in any order (either C-, Fortran-contiguous, or even
discontiguous).

numpy . char .asarray (obj, itemsize=None, unicode=None, order=None)
Convert the input to a chararray, copying the data only if necessary.
Versus a regular NumPy array of type str or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values
3) vectorized string operations are provided as methods (e.g. strendswith) and infix operators (e.g. +
*, %)
Parameters
obj [array of str or unicode-like]

itemsize [int, optional] itemsize is the number of characters per scalar in the resulting array. If
itemsize is None, and obj is an object array or a Python list, the itemsize will be automatically
determined. If ifemsize is provided and obyj is of type str or unicode, then the obj string will
be chunked into itemsize pieces.

unicode [bool, optional] When true, the resulting chararray can contain Unicode characters,
when false only 8-bit characters. If unicode is None and 0bj is one of the following:

* achararray,

* an ndarray of type str or ‘unicode’

* a Python str or unicode object,

then the unicode setting of the output array will be automatically determined.

order [{‘C’, ‘F’}, optional] Specify the order of the array. If order is ‘C’ (default), then the
array will be in C-contiguous order (last-index varies the fastest). If order is ‘F’, then the
returned array will be in Fortran-contiguous order (first-index varies the fastest).

class numpy.char.chararray (shape, itemsize=1, unicode=False, buffer=None, offset=0,

strides=None, order=None)
Provides a convenient view on arrays of string and unicode values.

Note: The chararray class exists for backwards compatibility with Numarray, it is not recommended for
new development. Starting from numpy 1.4, if one needs arrays of strings, it is recommended to use arrays of
dtype object_, string_ or unicode_, and use the free functions in the numpy . char module for fast
vectorized string operations.

Versus a regular NumPy array of type str or unicode, this class adds the following functionality:
1) values automatically have whitespace removed from the end when indexed
2) comparison operators automatically remove whitespace from the end when comparing values

3) vectorized string operations are provided as methods (e.g. endswith) and infix operators (e.g. "+",

n,n nown
* Ty °)

4.4. String operations 521

NumPy Reference, Release 1.17.0

chararrays should be created using numpy . char.array or numpy.char.asarray, rather than this con-
structor directly.

This constructor creates the array, using buffer (with offset and strides) if it is not None. If buffer
is None, then constructs a new array with strides in “C order”, unless both len (shape) >= 2 and
order="Fortran', in which case st rides is in “Fortran order”.

Parameters
shape [tuple] Shape of the array.
itemsize [int, optional] Length of each array element, in number of characters. Default is 1.

unicode [bool, optional] Are the array elements of type unicode (True) or string (False). Default
is False.

buffer [int, optional] Memory address of the start of the array data. Default is None, in which
case a new array is created.

offset [int, optional] Fixed stride displacement from the beginning of an axis? Default is 0.
Needs to be >=0.

strides [array_like of ints, optional] Strides for the array (see ndarray.strides for full
description). Default is None.

order [{‘C’, ‘F’}, optional] The order in which the array data is stored in memory: ‘C’ -> “row
major” order (the default), ‘F’ -> “column major” (Fortran) order.

Examples

>>> charar np.chararray ((3, 3))

>>> charar[:] = 'a'

>>> charar

chararray([[b'a', b'a', b'a
[b'a', b'a', b'a'],
[b'a', b'a', b'a']], dtype='|[S1")

>>> charar np.chararray (charar.shape, itemsize=5)
>>> charar[:] = 'abc'
>>> charar
chararray ([[b'abc', b'abc', b'abc'],
[b'abc', b'abc', b'abc'],
[b'abc', b'abc', b'abc']], dtype='|S5")

Attributes
T The transposed array.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with the ctypes module.
data Python buffer object pointing to the start of the array’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.

imag The imaginary part of the array.

522

Chapter 4. Routines

NumPy Reference, Release 1.17.0

itemsize Length of one array element in bytes.

nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.

real The real part of the array.

shape Tuple of array dimensions.

size Number of elements in the array.

strides Tuple of bytes to step in each dimension when traversing an array.

Methods

astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.

argsort([axis, kind, order])

Returns the indices that would sort this array.

copy([order])

Return a copy of the array.

count(self, sub[, start, end])

Returns an array with the number of non-overlapping
occurrences of substring sub in the range [start, end].

decode(self[, encoding, errors])

Calls str.decode element-wise.

dump(file)

Dump a pickle of the array to the specified file.

dumps()

Returns the pickle of the array as a string.

encode(self[, encoding, errors])

Calls str.encode element-wise.

endswith(self, suffix[, start, end])

Returns a boolean array which is True where the
string element in self ends with suffix, otherwise
False.

expandtabs(self], tabsize])

Return a copy of each string element where all tab
characters are replaced by one or more spaces.

£111(value)

Fill the array with a scalar value.

find(self, subl, start, end])

For each element, return the lowest index in the
string where substring sub is found.

flatten([order])

Return a copy of the array collapsed into one dimen-
sion.

get field(dtype[, offset])

Returns a field of the given array as a certain type.

index(self, sub[, start, end])

Like £ind, butraises ValueError when the substring
is not found.

1salnum(self)

Returns true for each element if all characters in the
string are alphanumeric and there is at least one char-
acter, false otherwise.

isalpha(self)

Returns true for each element if all characters in the
string are alphabetic and there is at least one charac-
ter, false otherwise.

1sdecimal(self)

For each element in self, return True if there are only
decimal characters in the element.

isdigit(self)

Returns true for each element if all characters in the
string are digits and there is at least one character,
false otherwise.

islower(self)

Returns true for each element if all cased characters
in the string are lowercase and there is at least one
cased character, false otherwise.

isnumeric(self)

For each element in self, return True if there are only
numeric characters in the element.

Continued on next page

4.4. String operations

523

NumPy Reference, Release 1.17.0

Table 25 — continued from previous page

1isspace(self)

Returns true for each element if there are only
whitespace characters in the string and there is at
least one character, false otherwise.

istitle(self)

Returns true for each element if the element is a title-
cased string and there is at least one character, false
otherwise.

1 supper(self)

Returns true for each element if all cased characters
in the string are uppercase and there is at least one
character, false otherwise.

1tem(*args)

Copy an element of an array to a standard Python
scalar and return it.

Jjoin(self, seq)

Return a string which is the concatenation of the
strings in the sequence seq.

1 just(self, width[, fillchar])

Return an array with the elements of self left-
justified in a string of length width.

Iower(self)

Return an array with the elements of self converted
to lowercase.

1strip(self[, chars])

For each element in self, return a copy with the lead-
ing characters removed.

nonzero()

Return the indices of the elements that are non-zero.

put(indices, values[, mode])

Set a.flat[n] = values[n] for all n in in-
dices.

ravel([order])

Return a flattened array.

repeat(repeats|, axis])

Repeat elements of an array.

replace(self, old, new[, count])

For each element in self, return a copy of the string
with all occurrences of substring old replaced by
new.

reshape(shape[, order])

Returns an array containing the same data with a new
shape.

resize(new_shape[, refcheck])

Change shape and size of array in-place.

rfind(self, sub[, start, end])

For each element in self, return the highest index in
the string where substring sub is found, such that sub
is contained within [start, end].

rindex(self, sub[, start, end])

Like rfind, but raises ValueError when the sub-
string sub is not found.

rjust(self, width[, fillchar])

Return an array with the elements of self right-
justified in a string of length width.

rsplit(self], sep, maxsplit])

For each element in self, return a list of the words in
the string, using sep as the delimiter string.

rstrip(self[, chars])

For each element in self, return a copy with the trail-
ing characters removed.

searchsorted(v], side, sorter])

Find indices where elements of v should be inserted
in a to maintain order.

set field(val, dtypel[, offset])

Put a value into a specified place in a field defined by
a data-type.

set flags([write, align, uic])

Set array flags WRITEABLE, ALIGNED, (WRITE-
BACKIFCOPY and UPDATEIFCOPY), respec-
tively.

sort([axis, kind, order])

Sort an array in-place.

spl1it(self], sep, maxsplit])

For each element in self, return a list of the words in
the string, using sep as the delimiter string.

Continued on next page

524

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Table 25 — continued from previous page

splitlines(self[, keepends])

For each element in self, return a list of the lines in
the element, breaking at line boundaries.

squeeze([axis])

Remove single-dimensional entries from the shape
of a.

startswith(self, prefix[, start, end])

Returns a boolean array which is True where the
string element in self starts with prefix, otherwise
False.

st rip(self[, chars])

For each element in self, return a copy with the lead-
ing and trailing characters removed.

swapaxes(axisl, axis2)

Return a view of the array with axis/ and axis2 in-
terchanged.

swapcase(self)

For each element in self, return a copy of the string
with uppercase characters converted to lowercase
and vice versa.

take(indices[, axis, out, mode])

Return an array formed from the elements of a at the
given indices.

t 1t le(self)

For each element in self, return a titlecased version
of the string: words start with uppercase characters,
all remaining cased characters are lowercase.

tofile(fid[, sep, format])

Write array to a file as text or binary (default).

tolist()

Return the array as an a.ndim-levels deep nested
list of Python scalars.

tostring([order])

Construct Python bytes containing the raw data bytes
in the array.

translate(self, table[, deletechars])

For each element in self, return a copy of the string
where all characters occurring in the optional ar-
gument deletechars are removed, and the remain-
ing characters have been mapped through the given
translation table.

transpose(*axes)

Returns a view of the array with axes transposed.

uppe r(self)

Return an array with the elements of self converted
to uppercase.

view([dtype, type])

New view of array with the same data.

z £111(self, width)

Return the numeric string left-filled with zeros in a
string of length width.

method

chararray.astype (dtype, order="K’, casting="unsafe’, subok=True, copy=True)

Copy of the array, cast to a specified type.

Parameters

dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A> means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’ }, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

* ‘no’ means the data types should not be cast at all.

* ‘equiv’ means only byte-order changes are allowed.

4.4.

String operations

NumPy Reference, Release 1.17.0

* ‘safe’ means only casts which can preserve values are allowed.

* ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

* ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dt ype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns

arr_t [ndarray] Unless copy is False and the other conditions for returning the input array
are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises

ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for

“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the

string dtype length is long enough to store the max integer/float value converted.

Examples
>>> x = np.array([1l, 2, 2.5])
>>> x

array ([1. , 2. 2.51)

>>> x.astype (int)
array ([1, 2, 2])

method

chararray.argsort (axis=-1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy . argsort for full documentation.

See also:
numpy.argsort equivalent function

method

chararray.copy (order="C’)
Return a copy of the array.

Parameters

526 Chapter 4. Routines

NumPy Reference, Release 1.17.0

order [{‘C’, ‘F’, ‘A’, ‘’K’}, optional] Controls the memory layout of the copy. ‘C’ means
C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy .
copy are very similar, but have different default values for their order= arguments.)

See also:

numpy.copy, numpy.copyto

Examples
’>>> x = np.array([[1,2,3],[4,5,6]], order='F")
’>>> y = x.copy()

’>>> x.£111(0)

>>> x
array ([[0, O, 0],
(0, 0, 011

>>> v
array ([[1, 2, 31,
(4, 5, 611)

>>> y.flags['C_CONTIGUOUS']
True

method

chararray.count (self, sub, start=0, end=None)
Returns an array with the number of non-overlapping occurrences of substring sub in the range [start, end].

See also:
char.count
method

chararray.decode (self, encoding=None, errors=None)
Calls str.decode element-wise.

See also:
char.decode
method

chararray.dump (file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

method

4.4.

String operations 527

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

chararray.dumps ()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None
method

chararray.encode (self, encoding=None, errors=None)
Calls str.encode element-wise.

See also:
char.encode
method

chararray.endswith (self, suffix, start=0, end=None)
Returns a boolean array which is True where the string element in self ends with suffix, otherwise False.

See also:
char.endswith
method

chararray.expandtabs (self, tabsize=38)
Return a copy of each string element where all tab characters are replaced by one or more spaces.

See also:
char.expandtabs
method

chararray.£ill (value)
Fill the array with a scalar value.

Parameters

value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1l, 21])
>>> a.f111 (0)

>>> g

array ([0, 0])

>>> a = np.empty (2)

>>> a.fill (1)

>>> g

array ([1., 1.1)

method

chararray. £ind (self, sub, start=0, end=None)
For each element, return the lowest index in the string where substring sub is found.

See also:
char.find

method

528 Chapter 4. Routines

NumPy Reference, Release 1.17.0

chararray.flatten (order="C’)
Return a copy of the array collapsed into one dimension.

Parameters

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’
means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

Examples

>>> a = np.array ([[1,2], [3,411])
>>> a.flatten()

array ([1, 2, 3, 41)

>>> a.flatten('F")

array ([1, 3, 2, 41)

method

chararray.getfield (dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters

dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([l.+1.3]1%2)
>>> x[1, 1] =2 + 4.3
>>> x
array ([[1.+1.7, 0.+0.77,
[0.40.3, 2.+4.311)
>>> x.getfield(np.float64)
array ([[1., 0.1,
(0., 2.11)

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

. String operations 529

NumPy Reference, Release 1.17.0

>>> x.getfield (np.float64, offset=8)
array ([[1., 0.1,
(0., 4.11)

method

chararray.index (self, sub, start=0, end=None)
Like £ind, but raises ValueError when the substring is not found.

See also:
char.index
method

chararray.isalnum (self)
Returns true for each element if all characters in the string are alphanumeric and there is at least one
character, false otherwise.

See also:
char.isalnum
method

chararray.isalpha (self)
Returns true for each element if all characters in the string are alphabetic and there is at least one character,
false otherwise.

See also:
char.isalpha
method

chararray.isdecimal (self)
For each element in self, return True if there are only decimal characters in the element.

See also:
char.isdecimal
method

chararray.isdigit (self)
Returns true for each element if all characters in the string are digits and there is at least one character,
false otherwise.

See also:
char.isdigit
method

chararray.islower (self)
Returns true for each element if all cased characters in the string are lowercase and there is at least one
cased character, false otherwise.

See also:
char.islower

method

530

Chapter 4. Routines

NumPy Reference, Release 1.17.0

chararray.isnumeric (self)
For each element in self, return True if there are only numeric characters in the element.

See also:
char.isnumeric
method

chararray.isspace (self)
Returns true for each element if there are only whitespace characters in the string and there is at least one
character, false otherwise.

See also:
char.isspace
method

chararray.istitle (self)
Returns true for each element if the element is a titlecased string and there is at least one character, false
otherwise.

See also:
char.istitle
method

chararray.isupper (self)
Returns true for each element if all cased characters in the string are uppercase and there is at least one
character, false otherwise.

See also:
char.isupper
method

chararray.item (*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters
*args [Arguments (variable number and type)]

* none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argu-
ment is interpreted as an nd-index into the array.

Returns

z [Standard Python scalar object] A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

4.4.

String operations 531

NumPy Reference, Release 1.17.0

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned.
This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples
>>> np.random.seed (123)
>>> x = np.random.randint (9, size=(3, 3))
>>> x
array ([[2, 2, 6],
(1, 3, 6],
(1, 0, 111)
>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1
method

chararray. join (self, seq)
Return a string which is the concatenation of the strings in the sequence seq.

See also:
char.join
method

chararray.ljust (self, width, fillchar="")
Return an array with the elements of self left-justified in a string of length width.

See also:
char.ljust
method

chararray.lower (self)
Return an array with the elements of self converted to lowercase.

See also:
char.lower
method

chararray.lstrip (self, chars=None)
For each element in self, return a copy with the leading characters removed.

See also:
char.lstrip
method

chararray.nonzero ()
Return the indices of the elements that are non-zero.

Refer to numpy . nonzero for full documentation.

532 Chapter 4. Routines

NumPy Reference, Release 1.17.0

See also:
numpy.nonzero equivalent function

method

chararray.put (indices, values, mode="raise’)

Seta.flat[n] = values[n] forall nin indices.

Refer to numpy . put for full documentation.

See also:
numpy . put equivalent function

method

chararray.ravel ([order])
Return a flattened array.

Refer to numpy . ravel for full documentation.

See also:

numpy . ravel equivalent function

ndarray. flat a flatiterator on the array.

method

chararray.repeat (repeats, axis=None)
Repeat elements of an array.

Refer to numpy . repeat for full documentation.

See also:
numpy . repeat equivalent function

method

chararray.replace (self, old, new, count=None)

For each element in self, return a copy of the string with all occurrences of substring old replaced by new.

See also:
char.replace
method

chararray.reshape (shape, order="C’)

Returns an array containing the same data with a new shape.

Refer to numpy . reshape for full documentation.

See also:

numpy . reshape equivalent function

4.4.

String operations

533

NumPy Reference, Release 1.17.0

Notes

Unlike the free function numpy . reshape, this method on ndarray allows the elements of the shape
parameter to be passed in as separate arguments. For example, a . reshape (10, 11) is equivalent to
a.reshape ((10, 11)).

method

chararray.resize (new_shape, refcheck=True)

Change shape and size of array in-place.
Parameters
new_shape [tuple of ints, or n ints] Shape of resized array.
refcheck [bool, optional] If False, reference count will not be checked. Default is True.
Returns
None
Raises

ValueError If a does not own its own data or references or views to it exist, and the data
memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.
Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and re-
shaped:

>>> a = np.array ([[0, 1], [2, 3]], order='C'")
>>> a.resize((2, 1))
>>> a
array ([[0],
[(111)
>>> a = np.array ([[0, 1], [2, 3]], order='F")
>>> a.resize((2, 1))
>>> a

(continues on next page)

534

Chapter 4. Routines

NumPy Reference, Release 1.17.0

(continued from previous page)

array ([[0],
(211)

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array ([[0, 11, [2, 311)

>>> b.resize (2, 3) # new_shape parameter doesn't have to be a tuple
>>> b

array ([[0, 1, 2]

Referencing an array prevents resizing. ..

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):

ValueError: cannot resize an array that references or is referenced

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)

>>> a

array ([[0]])

>>> C

array ([[0]])
method

chararray.rfind (self, sub, start=0, end=None)
For each element in self, return the highest index in the string where substring sub is found, such that sub
is contained within [start, end].

See also:
char.rfind
method

chararray.rindex (self, sub, start=0, end=None)
Like rfind, but raises ValueError when the substring sub is not found.

See also:
char.rindex
method

chararray.rjust (self, width, fillchar="")
Return an array with the elements of self right-justified in a string of length width.

See also:
char.rjust
method

chararray.rsplit (self, sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:

. String operations 535

NumPy Reference, Release 1.17.0

char.rsplit
method

chararray.rstrip (self, chars=None)
For each element in self, return a copy with the trailing characters removed.

See also:
char.rstrip
method

chararray.searchsorted (v, side="left’, sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy . searchsorted

See also:
numpy . searchsorted equivalent function

method

chararray.setfield (val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dt ype and beginning offset bytes into the field.

Parameters
val [object] Value to be placed in field.
dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

Returns
None
See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array ([[1., 0., 0.],
(0., 1., 0.1,
[0., 0., 1.11)
>>> x.setfield (3, np.int32)
>>> x.getfield(np.int32)
array ([[3, 3, 31,
(3, 3, 31,
[3, 3, 311, dtype=int32)
>>> x
array ([[1.0e+000, 1.5e-323, 1.5e-323],
[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]1])
>>> x.setfield(np.eye(3), np.int32)

(continues on next page)

536 Chapter 4. Routines

NumPy Reference, Release 1.17.0

(continued from previous page)

>>> X
array([[1., ©0., 0.1,
(0., 1., 0.1,
(0., 0., 1.11)
method

chararray.setflags (write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters
write [bool, optional] Describes whether or not a can be written to.
align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples
>>> y = np.array ([[3, 1, 7],
[2, 0, 01,

[8, 5, 11)
>>> y
array ([[3, 1, 71,

(2, o0, 01,

(8, 5, 911)

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True

(continues on next page)

4.4. String operations 537

NumPy Reference, Release 1.17.0

(continued from previous page)

WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
>>> y.setflags (uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

method

chararray.sort (axis=-1, kind=None, order=None)
Sort an array in-place. Refer to numpy . sort for full documentation.

Parameters

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The de-
fault is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers
and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0.: The ‘stable’ option was added.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy . sort Return a sorted copy of an array.
argsort Indirect sort.

lexsort Indirect stable sort on multiple keys.
searchsorted Find elements in sorted array.

partition Partial sort.

Notes

See numpy . sort for notes on the different sorting algorithms.

538

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Examples
>>> a = np.array ([[1,4], [3,11])
>>> a.sort (axis=1)
>>> a
array ([[1, 4],
(1, 311)
>>> a.sort (axis=0)
>>> a
array ([[1, 3],
(1, 411])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c¢', 1)1, dtype=[('x', 'S1"), ('y', int)])
>>> a.sort (order="y")
>>> a
array ([(b'c', 1), (b'a', 2)1,
dtype=[('x"', 'S1"), ('y', '<i8")])
method

chararray.split (self, sep=None, maxsplit=None)
For each element in self, return a list of the words in the string, using sep as the delimiter string.

See also:
char.split
method

chararray.splitlines (self, keepends=None)
For each element in self, return a list of the lines in the element, breaking at line boundaries.

See also:
char.splitlines
method

chararray.squeeze (axis=None)
Remove single-dimensional entries from the shape of a.

Refer to numpy . squeeze for full documentation.

See also:
numpy . squeeze equivalent function

method

chararray.startswith (self, prefix, start=0, end=None)
Returns a boolean array which is True where the string element in self starts with prefix, otherwise False.

See also:
char.startswith
method

chararray.strip (self, chars=None)
For each element in self, return a copy with the leading and trailing characters removed.

4.4. String operations 539

NumPy Reference, Release 1.17.0

See also:
char.strip
method

chararray.swapaxes (axisl, axis2)
Return a view of the array with axis/ and axis2 interchanged.

Refer to numpy . swapaxes for full documentation.

See also:
numpy . swapaxes equivalent function

method

chararray.swapcase (self)

For each element in self, return a copy of the string with uppercase characters converted to lowercase and
vice versa.

See also:
char.swapcase
method

chararray.take (indices, axis=None, out=None, mode="raise’)
Return an array formed from the elements of a at the given indices.

Refer to numpy . t ake for full documentation.

See also:
numpy . take equivalent function

method

chararray.title (self)
For each element in self, return a titlecased version of the string: words start with uppercase characters, all
remaining cased characters are lowercase.

See also:
char.title
method

chararray.tofile (fid, sep="", format="%s")
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid [file or str or Path] An open file object, or a string containing a filename.
Changed in version 1.17.0: pathlib.Path objects are now accepted.

sep [str] Separator between array items for text output. If “”” (empty), a binary file is written,
equivalentto file.write (a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

540 Chapter 4. Routines

https://docs.python.org/dev/library/pathlib.html#pathlib.Path

NumPy Reference, Release 1.17.0

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision
is lost, so this method is not a good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome by outputting the data as
text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support £ileno () (e.g., ByteslO).

method

chararray.tolist ()
Return the array as an a . ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the it em function.

If a.ndimis 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none
Returns

y [object, or list of object, or list of list of object, or ...] The possibly nested list of array
elements.

Notes

The array may be recreated via a = np.array(a.tolist ()), although this may sometimes lose
precision.

Examples

For a ID array, a.tolist () is almost the same as 1ist (a):

>>> a = np.array([l, 21)
>>> list (a)

[1, 2]

>>> a.tolist ()

[1, 2]

However, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 411)
>>> list (a)

[array ([1, 21), array([3, 4]1)]

>>> a.tolist ()

(1, 21, (3, 411

The base case for this recursion is a 0D array:

4.4. String operations 541

NumPy Reference, Release 1.17.0

>>> a = np.array (1)
>>> list (a)
Traceback (most recent call last):

TypeError: iteration over a 0-d array
>>> a.tolist ()
1

method

chararray.tostring (order="C’)
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be
produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOQOUS flag in the array is set, in which case it means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.
Parameters

order [{‘C’, ‘F’, None}, optional] Order of the data for multidimensional arrays: C, Fortran,
or the same as for the original array.

Returns

s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 11, [2, 311, dtype='<u2')
>>> x.tobytes ()
b'\x00\x00\x01\x00\x02\x00\x03\x00"

>>> x.tobytes('C') == x.tobytes|()

True

>>> x.tobytes ('F")
b'\x00\x00\x02\x00\x01\x00\x03\x00"

method

chararray.translate (self, table, deletechars=None)
For each element in self, return a copy of the string where all characters occurring in the optional argument
deletechars are removed, and the remaining characters have been mapped through the given translation
table.

See also:
char.translate
method

chararray.transpose (*axes)
Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-
D array into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves
this, as does af:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if
axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided
and a.shape = (i[0], 1[1], ... i1[n-2], i[n-1]), then a.transpose () .shape =
(i[n-11, i[n-21, ... i[1]1, i[01).

542

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Parameters
axes [None, tuple of ints, or n ints]
* None or no argument: reverses the order of the axes.

* tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
J-th axis.

* n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

ndarray.T Array property returning the array transposed.

ndarray.reshape Give a new shape to an array without changing its data.

Examples
>>> a = np.array([[1, 21, [3, 411)
>>> a
array ([[1, 21,
[3, 411])
>>> a.transpose ()
array ([[1, 31,
(2, 411)
>>> a.transpose((1, 0))
array ([[1, 31,
(2, 411)
>>> a.transpose (1, 0)
array ([[1, 31,
(2, 411)
method

chararray.upper (self)
Return an array with the elements of self converted to uppercase.

See also:
char.upper
method

chararray.view (dtype=None, type=None)
New view of array with the same data.

Parameters

dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,
e.g., float32 or int16. The default, None, results in the view having the same data-type as
a. This argument can also be specified as an ndarray sub-class, which then specifies the
type of the returned object (this is equivalent to setting the t ype parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

4.4.

String operations 543

NumPy Reference, Release 1.17.0

Notes

a.view () is used two different ways:

a.view (some_dtype) ora.view (dtype=some_dtype) constructs a view of the array’s memory
with a different data-type. This can cause a reinterpretation of the bytes of memory.

a.view (ndarray_subclass) ora.view (type=ndarray_subclass) justreturns an instance
of ndarray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinter-
pretation of the memory.

For a.view (some_dtype), if some_dtype has a different number of bytes per entry than the pre-
vious dtype (for example, converting a regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown by print (a)). It also depends on
exactly how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a
slice or transpose, etc., the view may give different results.

Examples

>>> x = np.array ([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.intl6, type=np.matrix)
>>> y

matrix ([[513]], dtype=intl6)

>>> print (type(y))

<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(l, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)1])
>>> xv = x.view(dtype=np.int8) .reshape(-1,2)
>>> XV
array ([[1, 2
[3, 4
(

1,
11, dtype=int8)
>>> xv.mean (0)
array ([2., 3.1)

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array ([(1, 20), (3, 4)], dtype=[('a', 'il"), ('b', 'il")])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a

array ([1, 3], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

544

Chapter 4. Routines

NumPy Reference, Release 1.17.0

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3]1,[4,5,6]], dtype=np.intl6)

>>> vy = x[:, 0:2]
>>> y
array ([[1, 2],
[4, 5]], dtype=intl6)
>>> y.view (dtype=[('width', np.intl6), ('length', np.intl6)])

Traceback (most recent call last):

ValueError: To change to a dtype of a different size, the array must be C-

—contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.intl6), ('length', np.intl6)])
array ([[(1, 2)1,
[(4, 5)]11, dtype=[('width', '<i2'), ('length', '<i2')])
method

chararray.z£ill (self, width)
Return the numeric string left-filled with zeros in a string of length width.

See also:

char.zfill

4.5 C-Types Foreign Function Interface (numpy . ctypeslib)

numpy .ctypeslib.as_array (obj, shape=None)

Create a numpy array from a ctypes array or POINTER.
The numpy array shares the memory with the ctypes object.

The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if
converting from a ctypes array

numpy.ctypeslib.as_ctypes (0bj)

Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__
is accepted.

numpy.ctypeslib.as_ctypes_type (dtype)

Convert a dtype into a ctypes type.
Parameters
dtype [dtype] The dtype to convert
Returns
ctype A ctype scalar, union, array, or struct
Raises

NotImplementedError If the conversion is not possible

Notes

This function does not losslessly round-trip in either direction.

4.5.

C-Types Foreign Function Interface (numpy . ctypeslib) 545

NumPy Reference, Release 1.17.0

np.dtype (as_ctypes_type (dt)) will:
* insert padding fields
* reorder fields to be sorted by offset
e discard field titles
as_ctypes_type (np.dtype (ctype)) will:
e discard the class names of ctypes.Structuresand ctypes.Unions
* convert single-element ct ypes . Unions into single-element ct ypes.Structures
* insert padding fields

numpy .ctypeslib.ctypes_load_library (*args, **kwds)
ctypes_load_library is deprecated, use load Ilibrary instead!

It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP

But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load
the first library it finds with that name. NumPy supplies the load_library function as a convenience.

Parameters
libname [str] Name of the library, which can have ‘lib’ as a prefix, but without an extension.
loader_path [str] Where the library can be found.

Returns
ctypes.cdll[libpath] [library object] A ctypes library object

Raises

OSError If there is no library with the expected extension, or the library is defective and cannot
be loaded.

numpy .ctypeslib.load_library (libname, loader_path)
It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP

But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load
the first library it finds with that name. NumPy supplies the load_library function as a convenience.

Parameters
libname [str] Name of the library, which can have ‘lib’ as a prefix, but without an extension.
loader_path [str] Where the library can be found.

Returns
ctypes.cdll[libpath] [library object] A ctypes library object

Raises

OSError If there is no library with the expected extension, or the library is defective and cannot
be loaded.

numpy .ctypeslib.ndpointer (dtype=None, ndim=None, shape=None, flags=None)
Array-checking restype/argtypes.

An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach
is more flexible than using, for example, POINTER (c_double), since several restrictions can be specified,
which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and
flags. If a given array does not satisfy the specified restrictions, a TypeError is raised.

546 Chapter 4. Routines

https://docs.python.org/dev/library/ctypes.html#ctypes.Structure
https://docs.python.org/dev/library/ctypes.html#ctypes.Union
https://docs.python.org/dev/library/ctypes.html#ctypes.Union
https://docs.python.org/dev/library/ctypes.html#ctypes.Structure

NumPy Reference, Release 1.17.0

Parameters
dtype [data-type, optional] Array data-type.
ndim [int, optional] Number of array dimensions.
shape [tuple of ints, optional] Array shape.
flags [str or tuple of str] Array flags; may be one or more of:
* C_CONTIGUOUS /C/CONTIGUOUS
* F_CONTIGUOUS / F/ FORTRAN
* OWNDATA /O
« WRITEABLE / W
ALIGNED / A
WRITEBACKIFCOPY / X
* UPDATEIFCOPY /U

Returns

klass [ndpointer type object] A type object, which is an _ndtpr instance containing dtype,
ndim, sh