# 小提琴图基础 小提琴图类似于直方图和箱形图,因为它们显示了样本概率分布的抽象表示。小提琴图使用核密度估计(KDE)来计算样本的经验分布,而不是显示属于分类或顺序统计的数据点的计数。该计算由几个参数控制。此示例演示如何修改评估KDE的点数 ``(points)`` 以及如何修改KDE ``(bw_method)`` 的带宽。 有关小提琴图和KDE的更多信息,请参阅scikit-learn文档 有一个很棒的部分:http://scikit-learn.org/stable/modules/density.html ![小提琴图基础示例](https://matplotlib.org/_images/sphx_glr_violinplot_001.png) ```python import numpy as np import matplotlib.pyplot as plt # Fixing random state for reproducibility np.random.seed(19680801) # fake data fs = 10 # fontsize pos = [1, 2, 4, 5, 7, 8] data = [np.random.normal(0, std, size=100) for std in pos] fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6, 6)) axes[0, 0].violinplot(data, pos, points=20, widths=0.3, showmeans=True, showextrema=True, showmedians=True) axes[0, 0].set_title('Custom violinplot 1', fontsize=fs) axes[0, 1].violinplot(data, pos, points=40, widths=0.5, showmeans=True, showextrema=True, showmedians=True, bw_method='silverman') axes[0, 1].set_title('Custom violinplot 2', fontsize=fs) axes[0, 2].violinplot(data, pos, points=60, widths=0.7, showmeans=True, showextrema=True, showmedians=True, bw_method=0.5) axes[0, 2].set_title('Custom violinplot 3', fontsize=fs) axes[1, 0].violinplot(data, pos, points=80, vert=False, widths=0.7, showmeans=True, showextrema=True, showmedians=True) axes[1, 0].set_title('Custom violinplot 4', fontsize=fs) axes[1, 1].violinplot(data, pos, points=100, vert=False, widths=0.9, showmeans=True, showextrema=True, showmedians=True, bw_method='silverman') axes[1, 1].set_title('Custom violinplot 5', fontsize=fs) axes[1, 2].violinplot(data, pos, points=200, vert=False, widths=1.1, showmeans=True, showextrema=True, showmedians=True, bw_method=0.5) axes[1, 2].set_title('Custom violinplot 6', fontsize=fs) for ax in axes.flatten(): ax.set_yticklabels([]) fig.suptitle("Violin Plotting Examples") fig.subplots_adjust(hspace=0.4) plt.show() ``` ## 下载这个示例 - [下载python源码: violinplot.py](https://matplotlib.org/_downloads/violinplot.py) - [下载Jupyter notebook: violinplot.ipynb](https://matplotlib.org/_downloads/violinplot.ipynb)