# 聚类 ## cluster.vq Provides routines for k-means clustering, generating code books from k-means models and quantizing vectors by comparing them with centroids in a code book. function | introduction ----|---- whiten(obs[, check_finite]) | Normalize a group of observations on a per feature basis.每行元素除以该行的标准差。 vq(obs, code_book[, check_finite]) | Assign codes from a code book to observations. kmeans(obs, k_or_guess[, iter, thresh, …]) | Performs k-means on a set of observation vectors forming k clusters. kmeans2(data, k[, iter, thresh, minit, …]) | Classify a set of observations into k clusters using the k-means algorithm. ## cluster.hierarchy Hierarchical clustering (scipy.cluster.hierarchy) * These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation. functions | introduction ----|---- fcluster(Z, t[, criterion, depth, R, monocrit]) | Form flat clusters from the hierarchical clustering defined by the given linkage matrix. fclusterdata(X, t[, criterion, metric, …]) | Cluster observation data using a given metric. leaders(Z, T) | Return the root nodes in a hierarchical clustering. * These are routines for agglomerative clustering. functions | introduction ----|---- linkage(y[, method, metric, optimal_ordering]) | Perform hierarchical/agglomerative clustering. single(y) | Perform single/min/nearest linkage on the condensed distance matrix y. complete(y) | Perform complete/max/farthest point linkage on a condensed distance matrix. average(y) | Perform average/UPGMA linkage on a condensed distance matrix. weighted(y) | Perform weighted/WPGMA linkage on the condensed distance matrix. centroid(y) | Perform centroid/UPGMC linkage. median(y) | Perform median/WPGMC linkage. ward(y) | Perform Ward’s linkage on a condensed distance matrix. * These routines compute statistics on hierarchies. functions | introduction ----|---- cophenet(Z[, Y]) | Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage Z. from_mlab_linkage(Z) | Convert a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module. inconsistent(Z[, d]) | Calculate inconsistency statistics on a linkage matrix. maxinconsts(Z, R) | Return the maximum inconsistency coefficient for each non-singleton cluster and its children. maxdists(Z) | Return the maximum distance between any non-singleton cluster. maxRstat(Z, R, i) | Return the maximum statistic for each non-singleton cluster and its children. to_mlab_linkage(Z) | Convert a linkage matrix to a MATLAB(TM) compatible one. * Routines for visualizing flat clusters. functions | introduction ----|---- dendrogram(Z[, p, truncate_mode, …]) | Plot the hierarchical clustering as a dendrogram. * These are data structures and routines for representing hierarchies as tree objects. functions | introduction ----|---- ClusterNode(id[, left, right, dist, count]) | A tree node class for representing a cluster. leaves_list(Z) | Return a list of leaf node ids. to_tree(Z[, rd]) | Convert a linkage matrix into an easy-to-use tree object. cut_tree(Z[, n_clusters, height]) | Given a linkage matrix Z, return the cut tree. optimal_leaf_ordering(Z, y[, metric]) | Given a linkage matrix Z and distance, reorder the cut tree. * These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments. functions | introduction ----|---- is_valid_im(R[, warning, throw, name]) | Return True if the inconsistency matrix passed is valid. is_valid_linkage(Z[, warning, throw, name]) | Check the validity of a linkage matrix. is_isomorphic(T1, T2) | Determine if two different cluster assignments are equivalent. is_monotonic(Z) | Return True if the linkage passed is monotonic. correspond(Z, Y) | Check for correspondence between linkage and condensed distance matrices. num_obs_linkage(Z) | Return the number of original observations of the linkage matrix passed. * Utility routines for plotting: functions | introduction ----|---- set_link_color_palette(palette) | Set list of matplotlib color codes for use by dendrogram. ## 原理 K均值聚类是一种在一组未标记数据中查找聚类和聚类中心的方法。 直觉上,我们可以将一个群集(簇聚)看作 - 包含一组数据点,其点间距离与群集外点的距离相比较小。 给定一个K中心的初始集合,K均值算法重复以下两个步骤 - * 对于每个中心,比其他中心更接近它的训练点的子集(其聚类)被识别出来。 * 计算每个聚类中数据点的每个要素的平均值,并且此平均向量将成为该聚类的新中心。 重复这两个步骤,直到中心不再移动或分配不再改变。 然后,可以将新点x分配给最接近的原型的群集。 SciPy库通过集群包提供了K-Means算法的良好实现。 下面来了解如何使用它。 ## 实现 * 导入K-Means ```py from SciPy.cluster.vq import kmeans,vq,whiten Python ``` * 数据生成 ```py from numpy import vstack,array from numpy.random import rand # data generation with three features data = vstack((rand(100,3) + array([.5,.5,.5]),rand(100,3))) ``` * 根据每个要素标准化一组观察值。 在运行K-Means之前,使用白化重新缩放观察集的每个特征维度是有好处的。 每个特征除以所有观测值的标准偏差以给出其单位差异。美化数据 ```py # whitening of data data = whiten(data) print (data) ``` * 用三个集群计算K均值现在使用以下代码计算三个群集的K均值。 ```py # computing K-Means with K = 3 (2 clusters) centroids,_ = kmeans(data,3) ``` * 上述代码对形成K个簇的一组观测向量执行K均值。 K-Means算法调整质心直到不能获得足够的进展,即失真的变化,因为最后一次迭代小于某个阈值。 在这里,可以通过使用下面给出的代码打印centroids变量来观察簇。 ```py print(centroids) ``` * 使用下面给出的代码将每个值分配给一个集群。 ```py # assign each sample to a cluster clx,_ = vq(data,centroids) ``` * vq函数将'M'中的每个观察向量与'N' obs数组与centroids进行比较,并将观察值分配给最近的聚类。 它返回每个观察和失真的聚类。 我们也可以检查失真。使用下面的代码检查每个观察的聚类。