## 类说明 ### tf.variable ##### 创建 ``` # Create two variables. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") biases = tf.Variable(tf.zeros([200]), name="biases") ``` * 一个Variable操作存放变量的值。 * 一个初始化op将变量设置为初始值。这事实上是一个tf.assign操作. * 初始值的操作,例如示例中对biases变量的zeros操作也被加入了graph。 ##### 初始化 ``` # Add an op to initialize the variables. init_op = tf.initialize_all_variables() # Later, when launching the model with tf.Session() as sess: # Run the init operation. sess.run(init_op) ... # Use the model ... # Create a variable with a random value. weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights") # Create another variable with the same value as 'weights'. w2 = tf.Variable(weights.initialized_value(), name="w2") # Create another variable with twice the value of 'weights' w_twice = tf.Variable(weights.initialized_value() * 0.2, name="w_twice") ``` * 可以直接指明初始化的值,使用sess.run运行。也可以用一个张量的initialized_value来初始化另外一个variable ### 常量tf.Constant ##### 创建 ``` tf.Constant("Hello world",dtype=tf.string) ``` ##### 数据类型 ``` tf.int tf.intl tf.int32 tf.int64 tf.uint8 tf.uint16 tf.float16 tf.float32 tf.string tf.bool tf.complex64 tf.complex128 tf.float32 ``` ### 随机数Random ##### 生成 ``` tf.random_normal(shape,mean=0,stddev=1.0,dtype=tf.float32,seed=None,name=None) tf.truncate_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None) tf.random_uniform(shape,minval=0,maxval=None,dtype=tf.float32,seed=None,name=None) ```