# 直方图 演示如何使用matplotlib绘制直方图。 ```python import matplotlib.pyplot as plt import numpy as np from matplotlib import colors from matplotlib.ticker import PercentFormatter # Fixing random state for reproducibility np.random.seed(19680801) ``` ## 生成数据并绘制简单的直方图 要生成一维直方图,我们只需要一个数字矢量。对于二维直方图,我们需要第二个矢量。我们将在下面生成两者,并显示每个向量的直方图。 ```python N_points = 100000 n_bins = 20 # Generate a normal distribution, center at x=0 and y=5 x = np.random.randn(N_points) y = .4 * x + np.random.randn(100000) + 5 fig, axs = plt.subplots(1, 2, sharey=True, tight_layout=True) # We can set the number of bins with the `bins` kwarg axs[0].hist(x, bins=n_bins) axs[1].hist(y, bins=n_bins) ``` ![直方图示例](https://matplotlib.org/_images/sphx_glr_hist_001.png) ## 更新直方图颜色 直方图方法(除其他外)返回一个修补程序对象。这使我们可以访问所绘制对象的特性。使用这个,我们可以根据自己的喜好编辑直方图。让我们根据每个条的y值更改其颜色。 ```python fig, axs = plt.subplots(1, 2, tight_layout=True) # N is the count in each bin, bins is the lower-limit of the bin N, bins, patches = axs[0].hist(x, bins=n_bins) # We'll color code by height, but you could use any scalar fracs = N / N.max() # we need to normalize the data to 0..1 for the full range of the colormap norm = colors.Normalize(fracs.min(), fracs.max()) # Now, we'll loop through our objects and set the color of each accordingly for thisfrac, thispatch in zip(fracs, patches): color = plt.cm.viridis(norm(thisfrac)) thispatch.set_facecolor(color) # We can also normalize our inputs by the total number of counts axs[1].hist(x, bins=n_bins, density=True) # Now we format the y-axis to display percentage axs[1].yaxis.set_major_formatter(PercentFormatter(xmax=1)) ``` ![直方图示例2](https://matplotlib.org/_images/sphx_glr_hist_002.png) ## 绘制二维直方图 要绘制二维直方图,只需两个长度相同的向量,对应于直方图的每个轴。 ```python fig, ax = plt.subplots(tight_layout=True) hist = ax.hist2d(x, y) ``` ![直方图示例3](https://matplotlib.org/_images/sphx_glr_hist_003.png) ## 自定义直方图 自定义2D直方图类似于1D情况,您可以控制可视组件,如存储箱大小或颜色规格化。 ```python fig, axs = plt.subplots(3, 1, figsize=(5, 15), sharex=True, sharey=True, tight_layout=True) # We can increase the number of bins on each axis axs[0].hist2d(x, y, bins=40) # As well as define normalization of the colors axs[1].hist2d(x, y, bins=40, norm=colors.LogNorm()) # We can also define custom numbers of bins for each axis axs[2].hist2d(x, y, bins=(80, 10), norm=colors.LogNorm()) plt.show() ``` ![直方图示例4](https://matplotlib.org/_images/sphx_glr_hist_004.png) ## 下载这个示例 - [下载python源码: hist.py](https://matplotlib.org/_downloads/hist.py) - [下载Jupyter notebook: hist.ipynb](https://matplotlib.org/_downloads/hist.ipynb)