Files
notes_estom/Python/scipy/14cluster.md
2020-10-07 20:26:19 +08:00

6.3 KiB
Raw Permalink Blame History

聚类

cluster.vq

Provides routines for k-means clustering, generating code books from k-means models and quantizing vectors by comparing them with centroids in a code book.

function introduction
whiten(obs[, check_finite]) Normalize a group of observations on a per feature basis.每行元素除以该行的标准差。
vq(obs, code_book[, check_finite]) Assign codes from a code book to observations.
kmeans(obs, k_or_guess[, iter, thresh, …]) Performs k-means on a set of observation vectors forming k clusters.
kmeans2(data, k[, iter, thresh, minit, …]) Classify a set of observations into k clusters using the k-means algorithm.

cluster.hierarchy

Hierarchical clustering (scipy.cluster.hierarchy)

  • These functions cut hierarchical clusterings into flat clusterings or find the roots of the forest formed by a cut by providing the flat cluster ids of each observation.
functions introduction
fcluster(Z, t[, criterion, depth, R, monocrit]) Form flat clusters from the hierarchical clustering defined by the given linkage matrix.
fclusterdata(X, t[, criterion, metric, …]) Cluster observation data using a given metric.
leaders(Z, T) Return the root nodes in a hierarchical clustering.
  • These are routines for agglomerative clustering.
functions introduction
linkage(y[, method, metric, optimal_ordering]) Perform hierarchical/agglomerative clustering.
single(y) Perform single/min/nearest linkage on the condensed distance matrix y.
complete(y) Perform complete/max/farthest point linkage on a condensed distance matrix.
average(y) Perform average/UPGMA linkage on a condensed distance matrix.
weighted(y) Perform weighted/WPGMA linkage on the condensed distance matrix.
centroid(y) Perform centroid/UPGMC linkage.
median(y) Perform median/WPGMC linkage.
ward(y) Perform Wards linkage on a condensed distance matrix.
  • These routines compute statistics on hierarchies.
functions introduction
cophenet(Z[, Y]) Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage Z.
from_mlab_linkage(Z) Convert a linkage matrix generated by MATLAB(TM) to a new linkage matrix compatible with this module.
inconsistent(Z[, d]) Calculate inconsistency statistics on a linkage matrix.
maxinconsts(Z, R) Return the maximum inconsistency coefficient for each non-singleton cluster and its children.
maxdists(Z) Return the maximum distance between any non-singleton cluster.
maxRstat(Z, R, i) Return the maximum statistic for each non-singleton cluster and its children.

to_mlab_linkage(Z) | Convert a linkage matrix to a MATLAB(TM) compatible one.

  • Routines for visualizing flat clusters.
functions introduction
dendrogram(Z[, p, truncate_mode, …]) Plot the hierarchical clustering as a dendrogram.
  • These are data structures and routines for representing hierarchies as tree objects.
functions introduction
ClusterNode(id[, left, right, dist, count]) A tree node class for representing a cluster.
leaves_list(Z) Return a list of leaf node ids.
to_tree(Z[, rd]) Convert a linkage matrix into an easy-to-use tree object.
cut_tree(Z[, n_clusters, height]) Given a linkage matrix Z, return the cut tree.
optimal_leaf_ordering(Z, y[, metric]) Given a linkage matrix Z and distance, reorder the cut tree.
  • These are predicates for checking the validity of linkage and inconsistency matrices as well as for checking isomorphism of two flat cluster assignments.
functions introduction
is_valid_im(R[, warning, throw, name]) Return True if the inconsistency matrix passed is valid.
is_valid_linkage(Z[, warning, throw, name]) Check the validity of a linkage matrix.
is_isomorphic(T1, T2) Determine if two different cluster assignments are equivalent.
is_monotonic(Z) Return True if the linkage passed is monotonic.
correspond(Z, Y) Check for correspondence between linkage and condensed distance matrices.
num_obs_linkage(Z) Return the number of original observations of the linkage matrix passed.
  • Utility routines for plotting:
functions introduction
set_link_color_palette(palette) Set list of matplotlib color codes for use by dendrogram.

原理

K均值聚类是一种在一组未标记数据中查找聚类和聚类中心的方法。 直觉上,我们可以将一个群集(簇聚)看作 - 包含一组数据点,其点间距离与群集外点的距离相比较小。 给定一个K中心的初始集合K均值算法重复以下两个步骤 -

  • 对于每个中心,比其他中心更接近它的训练点的子集(其聚类)被识别出来。
  • 计算每个聚类中数据点的每个要素的平均值,并且此平均向量将成为该聚类的新中心。

重复这两个步骤,直到中心不再移动或分配不再改变。 然后可以将新点x分配给最接近的原型的群集。 SciPy库通过集群包提供了K-Means算法的良好实现。 下面来了解如何使用它。

实现

  • 导入K-Means
from SciPy.cluster.vq import kmeans,vq,whiten
Python
  • 数据生成
from numpy import vstack,array
from numpy.random import rand

# data generation with three features
data = vstack((rand(100,3) + array([.5,.5,.5]),rand(100,3)))
  • 根据每个要素标准化一组观察值。 在运行K-Means之前使用白化重新缩放观察集的每个特征维度是有好处的。 每个特征除以所有观测值的标准偏差以给出其单位差异。美化数据
# whitening of data
data = whiten(data)
print (data)
  • 用三个集群计算K均值现在使用以下代码计算三个群集的K均值。
# computing K-Means with K = 3 (2 clusters)
centroids,_ = kmeans(data,3)
  • 上述代码对形成K个簇的一组观测向量执行K均值。 K-Means算法调整质心直到不能获得足够的进展即失真的变化因为最后一次迭代小于某个阈值。 在这里可以通过使用下面给出的代码打印centroids变量来观察簇。
print(centroids)
  • 使用下面给出的代码将每个值分配给一个集群。
# assign each sample to a cluster
clx,_ = vq(data,centroids)
  • vq函数将'M'中的每个观察向量与'N' obs数组与centroids进行比较并将观察值分配给最近的聚类。 它返回每个观察和失真的聚类。 我们也可以检查失真。使用下面的代码检查每个观察的聚类。