{ "cells": [ { "cell_type": "markdown", "id": "73bd968b-d970-4a05-94ef-4e7abf990827", "metadata": {}, "source": [ "Chapter 02\n", "\n", "# 向量积\n", "Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)" ] }, { "cell_type": "markdown", "id": "873da06f-c90c-4a2a-abd3-7f8711feca02", "metadata": {}, "source": [ "此代码定义了两个三维向量 $a$ 和 $b$,并计算了它们的叉积(向量积)。首先定义了行向量形式的 $a$ 和 $b$,然后分别计算了行向量和列向量的叉积。\n", "\n", "### 叉积公式\n", "对于三维向量 $a = \\begin{bmatrix} a_1 \\\\ a_2 \\\\ a_3 \\end{bmatrix}$ 和 $b = \\begin{bmatrix} b_1 \\\\ b_2 \\\\ b_3 \\end{bmatrix}$,叉积定义为:\n", "\n", "$$\n", "a \\times b = \\begin{bmatrix} a_2 b_3 - a_3 b_2 \\\\ a_3 b_1 - a_1 b_3 \\\\ a_1 b_2 - a_2 b_1 \\end{bmatrix}\n", "$$\n", "\n", "代码中计算了行向量和列向量形式的叉积。结果表示两个向量的垂直方向,并可用于三维空间中的法向量计算。" ] }, { "cell_type": "markdown", "id": "4e369506-697f-450e-a731-76945415ed9c", "metadata": {}, "source": [ "## 导入所需库" ] }, { "cell_type": "code", "execution_count": 1, "id": "dbb6f14c-fcb4-499f-9618-d6ca9c8b36ab", "metadata": {}, "outputs": [], "source": [ "import numpy as np # 导入NumPy库,用于数值计算" ] }, { "cell_type": "markdown", "id": "5d9fa082-6e75-4a30-9ff1-b119c73a3a25", "metadata": {}, "source": [ "## 定义两个行向量" ] }, { "cell_type": "code", "execution_count": 2, "id": "081b4fe5-be16-4854-914b-5c795f937fa8", "metadata": {}, "outputs": [], "source": [ "a = np.array([-2, 1, 1]) # 定义向量a" ] }, { "cell_type": "code", "execution_count": 3, "id": "9a902aa8-799a-4461-a5c0-459f2550272a", "metadata": {}, "outputs": [], "source": [ "b = np.array([1, -2, -1]) # 定义向量b" ] }, { "cell_type": "markdown", "id": "b04a2e40-0ae4-44f1-a6bd-e691ee781d18", "metadata": {}, "source": [ "## 计算行向量的叉积" ] }, { "cell_type": "code", "execution_count": 4, "id": "95ea922a-d94c-42c3-8459-d8fc755b8df3", "metadata": {}, "outputs": [], "source": [ "a_cross_b = np.cross(a, b) # 计算a和b的叉积" ] }, { "cell_type": "markdown", "id": "6de6f635-f9e9-4667-a12a-884ccaeb26f3", "metadata": {}, "source": [ "## 定义两个列向量" ] }, { "cell_type": "code", "execution_count": 5, "id": "0d9f2b40-f6a0-4ca6-a70b-3910b69a9706", "metadata": {}, "outputs": [], "source": [ "a_col = np.array([[-2], [1], [1]]) # 定义列向量a_col" ] }, { "cell_type": "code", "execution_count": 6, "id": "66e48d3a-7fa8-41a8-bf8b-61cfdf250200", "metadata": {}, "outputs": [], "source": [ "b_col = np.array([[1], [-2], [-1]]) # 定义列向量b_col" ] }, { "cell_type": "markdown", "id": "c19ed8a3-f8e7-4c42-b6f7-bac01f31e016", "metadata": {}, "source": [ "## 计算列向量的叉积" ] }, { "cell_type": "code", "execution_count": 7, "id": "9c019178-15f5-41f6-93d5-ceea5505684f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1],\n", " [-1],\n", " [ 3]])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_cross_b_col = np.cross(a_col, b_col, axis=0) # 计算a_col和b_col的叉积,沿axis=0进行计算\n", "a_cross_b_col" ] }, { "cell_type": "code", "execution_count": null, "id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ecd322f4-f919-4be2-adc3-69d28ef25e69", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }