{ "cells": [ { "cell_type": "markdown", "id": "73bd968b-d970-4a05-94ef-4e7abf990827", "metadata": {}, "source": [ "Chapter 04\n", "\n", "# 矩阵乘法\n", "Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)" ] }, { "cell_type": "markdown", "id": "f78179ac-736d-417f-964f-a079c966931d", "metadata": {}, "source": [ "\n", "\n", "该代码定义了两个 $2 \\times 2$ 的矩阵 $A$ 和 $B$,并计算了它们的矩阵乘积。矩阵 $A$ 和 $B$ 分别为:\n", "\n", "$$\n", "A = \\begin{bmatrix} 1 & 2 \\\\ 3 & 4 \\end{bmatrix}, \\quad B = \\begin{bmatrix} 2 & 4 \\\\ 1 & 3 \\end{bmatrix}\n", "$$\n", "\n", "矩阵乘积 $A @ B$ 的计算结果为:\n", "\n", "$$\n", "A @ B = \\begin{bmatrix} 1 \\cdot 2 + 2 \\cdot 1 & 1 \\cdot 4 + 2 \\cdot 3 \\\\ 3 \\cdot 2 + 4 \\cdot 1 & 3 \\cdot 4 + 4 \\cdot 3 \\end{bmatrix} = \\begin{bmatrix} 4 & 10 \\\\ 10 & 24 \\end{bmatrix}\n", "$$\n", "\n", "代码中,矩阵乘法操作使用了 `np.matmul` 函数和 `@` 运算符两种方式。这展示了 NumPy 中进行矩阵乘法的两种等效方法。" ] }, { "cell_type": "markdown", "id": "cc4e525d-60d4-4447-a29e-2e1ead9aa96e", "metadata": {}, "source": [ "## 导入所需库" ] }, { "cell_type": "code", "execution_count": 1, "id": "80885172-f546-4973-add9-496ddb779de5", "metadata": {}, "outputs": [], "source": [ "import numpy as np # 导入NumPy库,用于数值计算" ] }, { "cell_type": "markdown", "id": "bef4a295-b3fe-493c-9baf-04b2a95d913e", "metadata": {}, "source": [ "## 定义两个矩阵" ] }, { "cell_type": "code", "execution_count": 2, "id": "8abe8f8d-6398-4bb6-ac14-a1b1139873fd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1, 2],\n", " [3, 4]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[1, 2], # 定义矩阵A\n", " [3, 4]])\n", "A" ] }, { "cell_type": "code", "execution_count": 3, "id": "dbb8337a-f940-4337-9a98-65692ff3e854", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[2, 4],\n", " [1, 3]])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "B = np.array([[2, 4], # 定义矩阵B\n", " [1, 3]])\n", "B" ] }, { "cell_type": "markdown", "id": "fd37527e-b082-4899-a2fe-6b04c8db9fea", "metadata": {}, "source": [ "## 矩阵乘法" ] }, { "cell_type": "code", "execution_count": 4, "id": "313d8fec-6e35-4e36-900f-efa4bd5c6adc", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 4, 10],\n", " [10, 24]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A_times_B = np.matmul(A, B) # 使用np.matmul计算矩阵A和B的乘积\n", "A_times_B" ] }, { "cell_type": "code", "execution_count": 5, "id": "3efab8d4-012b-4f28-b515-d9047d180a89", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 4, 10],\n", " [10, 24]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A_times_B_2 = A @ B # 使用@操作符计算矩阵A和B的乘积\n", "A_times_B_2" ] }, { "cell_type": "code", "execution_count": null, "id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ecd322f4-f919-4be2-adc3-69d28ef25e69", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }