{ "cells": [ { "cell_type": "markdown", "id": "73bd968b-d970-4a05-94ef-4e7abf990827", "metadata": {}, "source": [ "Chapter 06\n", "\n", "# 分块矩阵\n", "Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)" ] }, { "cell_type": "markdown", "id": "25999c8b-f570-4ca4-b9d4-6e8c9537b859", "metadata": {}, "source": [ "这段代码演示了如何对矩阵进行分块和重组操作。首先定义了一个 \\(4 \\times 5\\) 矩阵 \\( A \\):\n", "\n", "$$\n", "A = \\begin{bmatrix}\n", "1 & 2 & 3 & 0 & 0 \\\\\n", "4 & 5 & 6 & 0 & 0 \\\\\n", "0 & 0 & 0 & -1 & 0 \\\\\n", "0 & 0 & 0 & 0 & 1 \\\\\n", "\\end{bmatrix}\n", "$$\n", "\n", "然后使用 NumPy 的切片方法,将矩阵 \\( A \\) 分割为 4 个子矩阵(即 \\(2 \\times 2\\) 的块矩阵结构):\n", "\n", "1. \\( A_{1,1} = A[0:2, 0:3] \\),即前两行和前三列的子矩阵:\n", " $$\n", " A_{1,1} = \\begin{bmatrix} 1 & 2 & 3 \\\\ 4 & 5 & 6 \\end{bmatrix}\n", " $$\n", " \n", "2. \\( A_{1,2} = A[0:2, 3:] \\),即前两行和最后两列的子矩阵:\n", " $$\n", " A_{1,2} = \\begin{bmatrix} 0 & 0 \\\\ 0 & 0 \\end{bmatrix}\n", " $$\n", "\n", "3. \\( A_{2,1} = A[2:, 0:3] \\),即后两行和前三列的子矩阵:\n", " $$\n", " A_{2,1} = \\begin{bmatrix} 0 & 0 & 0 \\\\ 0 & 0 & 0 \\end{bmatrix}\n", " $$\n", "\n", "4. \\( A_{2,2} = A[2:, 3:] \\),即后两行和最后两列的子矩阵:\n", " $$\n", " A_{2,2} = \\begin{bmatrix} -1 & 0 \\\\ 0 & 1 \\end{bmatrix}\n", " $$\n", "\n", "最后使用 `np.block` 函数将这些子矩阵重新组合为一个新的矩阵 \\( A' \\),其结构与原矩阵 \\( A \\) 相同:\n", "\n", "$$\n", "A' = \\begin{bmatrix} \n", "A_{1,1} & A_{1,2} \\\\ \n", "A_{2,1} & A_{2,2} \n", "\\end{bmatrix} = \n", "\\begin{bmatrix} \n", "1 & 2 & 3 & 0 & 0 \\\\ \n", "4 & 5 & 6 & 0 & 0 \\\\ \n", "0 & 0 & 0 & -1 & 0 \\\\ \n", "0 & 0 & 0 & 0 & 1 \n", "\\end{bmatrix}\n", "$$ \n", "\n", "通过这种方法,可以方便地在分块矩阵操作中对矩阵进行重新组合,实现了矩阵的分解与重构。" ] }, { "cell_type": "code", "execution_count": 1, "id": "da9bd893-e25f-4193-b12b-e5cac674f64b", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "id": "67b49f8e-b6d5-49d4-b4a4-190ecd915450", "metadata": {}, "source": [ "## 定义矩阵 A" ] }, { "cell_type": "code", "execution_count": 2, "id": "e00b27dd-c721-42e1-8f65-fa2937b460ad", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1, 2, 3, 0, 0],\n", " [ 4, 5, 6, 0, 0],\n", " [ 0, 0, 0, -1, 0],\n", " [ 0, 0, 0, 0, 1]])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A = np.array([[1, 2, 3, 0, 0], # 定义矩阵 A 的元素\n", " [4, 5, 6, 0, 0],\n", " [0, 0, 0, -1, 0],\n", " [0, 0 ,0, 0, 1]])\n", "A" ] }, { "cell_type": "markdown", "id": "5a878c1b-238b-4f8d-a033-db66fb2aa0fa", "metadata": {}, "source": [ "## NumPy 数组切片操作" ] }, { "cell_type": "code", "execution_count": 3, "id": "440560e5-ed77-4bbc-8fa7-d2c09285e3c7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1, 2, 3],\n", " [4, 5, 6]])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A_1_1 = A[0:2,0:3] # 提取矩阵 A 的前两行和前三列作为子矩阵 A_1_1\n", "A_1_1" ] }, { "cell_type": "code", "execution_count": 4, "id": "29344301-cbb7-4fbd-b64b-d23aced6823e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0, 0],\n", " [0, 0]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A_1_2 = A[0:2,3:] # 提取矩阵 A 的前两行和最后两列作为子矩阵 A_1_2\n", "A_1_2\n", "# A_1_2 = A[0:2,-2:] # 或者用负索引方式提取前两行和最后两列(注释部分)" ] }, { "cell_type": "code", "execution_count": 5, "id": "b24013dd-a04e-44f6-9c89-67b2a0027bff", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0, 0, 0],\n", " [0, 0, 0]])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A_2_1 = A[2:,0:3] # 提取矩阵 A 的后两行和前三列作为子矩阵 A_2_1\n", "A_2_1\n", "# A_2_1 = A[-2:,0:3] # 或者用负索引方式提取后两行和前三列(注释部分)" ] }, { "cell_type": "code", "execution_count": 6, "id": "2aa41d01-ef5a-450d-b912-d0cf9134f16f", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-1, 0],\n", " [ 0, 1]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A_2_2 = A[2:,3:] # 提取矩阵 A 的后两行和最后两列作为子矩阵 A_2_2\n", "A_2_2\n", "# A_2_2 = A[-2:,-2:] # 或者用负索引方式提取后两行和最后两列(注释部分)" ] }, { "cell_type": "markdown", "id": "f618ccce-d822-417d-8ce1-6cb6d3f90999", "metadata": {}, "source": [ "## 使用嵌套列表中的块组装矩阵" ] }, { "cell_type": "code", "execution_count": 7, "id": "4dc81f48-c1a3-42e0-82df-b76c62601926", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 1, 2, 3, 0, 0],\n", " [ 4, 5, 6, 0, 0],\n", " [ 0, 0, 0, -1, 0],\n", " [ 0, 0, 0, 0, 1]])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A_ = np.block([[A_1_1, A_1_2], # 通过 np.block 函数将子矩阵 A_1_1、A_1_2、A_2_1 和 A_2_2 组合成新的矩阵 A_\n", " [A_2_1, A_2_2]])\n", "A_" ] }, { "cell_type": "code", "execution_count": null, "id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ecd322f4-f919-4be2-adc3-69d28ef25e69", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }