{ "cells": [ { "cell_type": "markdown", "id": "73bd968b-d970-4a05-94ef-4e7abf990827", "metadata": {}, "source": [ "Chapter 02\n", "\n", "# 逐项积\n", "Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)" ] }, { "cell_type": "markdown", "id": "ce4a4893-3f8c-402f-92c3-79d73b81d380", "metadata": {}, "source": [ "\n", "此代码定义了两个三维向量 $a$ 和 $b$,并计算了它们的逐元素积(即对应元素相乘)。代码中既使用了行向量形式也使用了列向量形式的 $a$ 和 $b$ 来演示逐元素乘法的计算。\n", "\n", "### 逐元素乘法公式\n", "对于两个向量 $a = \\begin{bmatrix} a_1 \\\\ a_2 \\\\ a_3 \\end{bmatrix}$ 和 $b = \\begin{bmatrix} b_1 \\\\ b_2 \\\\ b_3 \\end{bmatrix}$,逐元素积定义为:\n", "\n", "$$\n", "a \\odot b = \\begin{bmatrix} a_1 \\cdot b_1 \\\\ a_2 \\cdot b_2 \\\\ a_3 \\cdot b_3 \\end{bmatrix}\n", "$$\n", "\n", "代码中的计算展示了逐元素乘法的两种实现方式:使用 `np.multiply` 函数和直接使用 `*` 操作符。结果得到一个新向量,其中每个元素为对应元素相乘的值。" ] }, { "cell_type": "markdown", "id": "370c070f-d704-40b0-90c9-ef2e2bee22ce", "metadata": {}, "source": [ "## 导入所需库" ] }, { "cell_type": "code", "execution_count": 1, "id": "b92befcd-0d09-4301-aecc-cb3172ce2cd9", "metadata": {}, "outputs": [], "source": [ "import numpy as np # 导入NumPy库,用于数值计算" ] }, { "cell_type": "markdown", "id": "25572211-3dd7-487d-ab16-d62682d66f56", "metadata": {}, "source": [ "## 定义两个行向量" ] }, { "cell_type": "code", "execution_count": 2, "id": "04b0208a-df81-48a4-8e85-f2ef347708c1", "metadata": {}, "outputs": [], "source": [ "a = np.array([-2, 1, 1]) # 定义向量a" ] }, { "cell_type": "code", "execution_count": 3, "id": "557a8b24-f13d-4995-9bc2-c8bc3fa19389", "metadata": {}, "outputs": [], "source": [ "b = np.array([1, -2, -1]) # 定义向量b" ] }, { "cell_type": "markdown", "id": "4a95a30f-b3fc-4e2f-b2e7-ccd49cc48ed1", "metadata": {}, "source": [ "## 计算行向量的逐元素积" ] }, { "cell_type": "code", "execution_count": 4, "id": "29eca8ec-ed59-4e60-90bf-8405a4a084e3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-2, -2, -1])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_times_b = np.multiply(a, b) # 计算a和b的逐元素积\n", "a_times_b" ] }, { "cell_type": "code", "execution_count": 5, "id": "91a581bf-ca56-44b2-8d21-8ae4a19ee309", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([-2, -2, -1])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_times_b_2 = a * b # 使用*操作符计算a和b的逐元素积\n", "a_times_b_2" ] }, { "cell_type": "markdown", "id": "65964628-e9f9-4626-9a49-adc10d2f4ecf", "metadata": {}, "source": [ "## 定义两个列向量" ] }, { "cell_type": "code", "execution_count": 6, "id": "42eec7be-ccdc-4a9a-be68-0e074793c2a4", "metadata": {}, "outputs": [], "source": [ "a_col = np.array([[-2], [1], [1]]) # 定义列向量a_col" ] }, { "cell_type": "code", "execution_count": 7, "id": "b8757d8c-776a-400c-be13-0b7cac7ffdac", "metadata": {}, "outputs": [], "source": [ "b_col = np.array([[1], [-2], [-1]]) # 定义列向量b_col" ] }, { "cell_type": "markdown", "id": "2269b17d-2fc2-47dc-b7eb-4f4ec992502f", "metadata": {}, "source": [ "## 计算列向量的逐元素积" ] }, { "cell_type": "code", "execution_count": 8, "id": "c9f74e22-8432-4c40-bb9b-36f0a2d5e064", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-2],\n", " [-2],\n", " [-1]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_times_b_col = np.multiply(a_col, b_col) # 计算a_col和b_col的逐元素积\n", "a_times_b_col" ] }, { "cell_type": "code", "execution_count": 9, "id": "7cd5c6c6-b2e3-4027-8eaa-7656594db66b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[-2],\n", " [-2],\n", " [-1]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a_times_b_col_2 = a_col * b_col # 使用*操作符计算a_col和b_col的逐元素积\n", "a_times_b_col_2" ] }, { "cell_type": "code", "execution_count": null, "id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "ecd322f4-f919-4be2-adc3-69d28ef25e69", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.7" } }, "nbformat": 4, "nbformat_minor": 5 }