mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 10:33:18 +08:00
199 lines
3.9 KiB
Plaintext
199 lines
3.9 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 02\n",
|
||
"\n",
|
||
"# L2范数\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ab88dee3-1a2e-4357-b6b5-136abf3073c5",
|
||
"metadata": {},
|
||
"source": [
|
||
"此代码定义了两个二维列向量 `a` 和 `b`,并计算它们的L2范数。L2范数也称为欧几里得范数,用于测量向量的长度。公式如下:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"\\| a \\|_2 = \\sqrt{a_1^2 + a_2^2}\n",
|
||
"$$ \n",
|
||
"\n",
|
||
"对于向量 `a` 和 `b`,L2范数分别为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"\\| a \\|_2 = \\sqrt{4^2 + 3^2} = 5\n",
|
||
"$$\n",
|
||
"\n",
|
||
"$$\n",
|
||
"\\| b \\|_2 = \\sqrt{(-3)^2 + 4^2} = 5\n",
|
||
"$$"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2a36cd49-a4e6-4321-a7e8-7f9a34c6aaef",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "01a128eb-3998-4172-bd8a-ec95a23bbc83",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8ad8b4b0-856b-47a7-adb8-b020180d0c30",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义两个列向量"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "212d3a51-f2c6-4785-8c9a-40fa93ae0566",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[4],\n",
|
||
" [3]])"
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a = np.array([[4], [3]]) # 定义向量a,值为[4, 3]\n",
|
||
"a"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "8d5f6350-fddc-4633-946e-f21797b6f5e8",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[-3],\n",
|
||
" [ 4]])"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"b = np.array([[-3], [4]]) # 定义向量b,值为[-3, 4]\n",
|
||
"b"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a3ba8142-26a8-43d6-b777-685207499ca9",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算L2范数"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "1954434f-cb3e-44d3-b985-45b73af8a815",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"5.0"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a_L2_norm = np.linalg.norm(a) # 计算向量a的L2范数\n",
|
||
"a_L2_norm"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "8110a0d6-c941-4825-bf60-bc989324f592",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"5.0"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"b_L2_norm = np.linalg.norm(b) # 计算向量b的L2范数\n",
|
||
"b_L2_norm"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|