mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 10:33:18 +08:00
214 lines
4.7 KiB
Plaintext
214 lines
4.7 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 02\n",
|
||
"\n",
|
||
"# 向量内积\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "90d57742-54b5-4967-9de6-2b97f3ff13ce",
|
||
"metadata": {},
|
||
"source": [
|
||
"该代码定义了两个二维向量 $a$ 和 $b$,并计算它们的内积。向量 $a$ 和 $b$ 的定义分别为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"a = \\begin{bmatrix} 4 & 3 \\end{bmatrix}, \\quad b = \\begin{bmatrix} 5 & -2 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"代码首先通过 `np.inner` 函数计算行向量的内积,其计算公式为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"a \\cdot b = 4 \\cdot 5 + 3 \\cdot (-2) = 20 - 6 = 14\n",
|
||
"$$\n",
|
||
"\n",
|
||
"接着,代码将 $a$ 和 $b$ 定义为列向量形式 $a_2$ 和 $b_2$,并通过矩阵转置与矩阵乘法计算内积:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"a_2^T \\cdot b_2 = \\begin{bmatrix} 4 & 3 \\end{bmatrix} \\cdot \\begin{bmatrix} 5 \\\\ -2 \\end{bmatrix} = 14\n",
|
||
"$$\n",
|
||
"\n",
|
||
"该过程展示了内积计算的不同实现方式,包括使用 `np.inner` 和转置矩阵乘法。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a869bcd3-b5b0-48a6-8473-e1af9efa124c",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "52854f8c-f415-452c-8b0f-ba216cedb4a3",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a895dedd-943b-4b5e-a9d8-6c958e1ec18e",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义两个行向量"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "13d6cc5a-824f-4537-8d80-5e4a0c6146a7",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"a = np.array([[4, 3]]) # 定义向量a,值为[4, 3]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "89d1799e-2c61-4410-83fd-401db971b8fd",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"b = np.array([[5, -2]]) # 定义向量b,值为[5, -2]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "3277e077-e975-4354-b79a-5bc9e77d5666",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算内积"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "e4008c0e-94ff-4cb5-8139-432ed0048692",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[14]])"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a_dot_b = np.inner(a, b) # 使用np.inner计算a和b的内积\n",
|
||
"a_dot_b"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b6a1c7e0-b5e4-4303-b2a8-19e7a0d72cbb",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义两个列向量"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "c30e546b-1f82-43c7-b4d5-163394f406c3",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"a_2 = np.array([[4], [3]]) # 定义列向量a_2,值为[4, 3]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "41ee49f6-1d62-4f0e-895e-671ae32ad301",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"b_2 = np.array([[5], [-2]]) # 定义列向量b_2,值为[5, -2]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d6a74fd1-5de1-486c-98fb-ff21a16d5158",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算转置后内积"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "ce1247f9-be4e-40aa-be27-9b9b4d8f9b03",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"a_dot_b_2 = a_2.T @ b_2 # 使用矩阵乘法计算a_2转置和b_2的内积"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[14]])"
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a_dot_b_2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|