Files
Iris Series: Visualize Math -- From Arithmetic Basics to Machine Learning 79be5dda7d Add files via upload
2025-02-01 17:06:45 +08:00

167 lines
3.6 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
"metadata": {},
"source": [
"Chapter 02\n",
"\n",
"# 矩阵乘积\n",
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
]
},
{
"cell_type": "markdown",
"id": "98f9659f-671c-40ba-bf01-26b02f299f65",
"metadata": {},
"source": [
"\n",
"\n",
"此代码定义了两个 $2 \\times 2$ 的矩阵 $A$ 和 $B$,并计算它们的矩阵乘积。矩阵 $A$ 和 $B$ 的定义分别为:\n",
"\n",
"$$\n",
"A = \\begin{bmatrix} 2 & 3 \\\\ 3 & 4 \\end{bmatrix}, \\quad B = \\begin{bmatrix} 3 & 4 \\\\ 5 & 6 \\end{bmatrix}\n",
"$$\n",
"\n",
"矩阵乘积 $A @ B$ 的计算公式是:\n",
"\n",
"$$\n",
"A @ B = \\begin{bmatrix} 2 \\cdot 3 + 3 \\cdot 5 & 2 \\cdot 4 + 3 \\cdot 6 \\\\ 3 \\cdot 3 + 4 \\cdot 5 & 3 \\cdot 4 + 4 \\cdot 6 \\end{bmatrix} = \\begin{bmatrix} 21 & 26 \\\\ 29 & 38 \\end{bmatrix}\n",
"$$\n"
]
},
{
"cell_type": "markdown",
"id": "b7d099d5-b19e-4dc1-bcbc-c6f27ff10d63",
"metadata": {},
"source": [
"## 导入所需库"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "fe40fe29-6b65-47eb-a82d-c9739d4f17b1",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np # 导入NumPy库用于数值计算"
]
},
{
"cell_type": "markdown",
"id": "972ceb2f-dfc9-406b-aa4d-759d8a3c5ceb",
"metadata": {},
"source": [
"## 定义两个矩阵"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "022dfa07-a9e4-4ba6-9456-f7dd6b861bcd",
"metadata": {},
"outputs": [],
"source": [
"A = np.array([[2, 3], # 定义矩阵A\n",
" [3, 4]])"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "eba046cd-9051-403b-86a4-5586226e9c86",
"metadata": {},
"outputs": [],
"source": [
"B = np.array([[3, 4], # 定义矩阵B\n",
" [5, 6]])"
]
},
{
"cell_type": "markdown",
"id": "97150b17-9793-47aa-b9c1-aa61baf34bde",
"metadata": {},
"source": [
"## 计算矩阵点积"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "dec0b7d8-6d24-4d13-8bf2-0786a4d1e8e6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[21, 26],\n",
" [29, 36]])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A_dot_B = np.dot(A, B) # 使用np.dot计算A和B的矩阵乘积\n",
"A_dot_B"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[21, 26],\n",
" [29, 36]])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 可以直接用A @ B作为矩阵乘法的简写\n",
"A @ B"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}