mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 18:43:34 +08:00
167 lines
3.6 KiB
Plaintext
167 lines
3.6 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 02\n",
|
||
"\n",
|
||
"# 矩阵乘积\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "98f9659f-671c-40ba-bf01-26b02f299f65",
|
||
"metadata": {},
|
||
"source": [
|
||
"\n",
|
||
"\n",
|
||
"此代码定义了两个 $2 \\times 2$ 的矩阵 $A$ 和 $B$,并计算它们的矩阵乘积。矩阵 $A$ 和 $B$ 的定义分别为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A = \\begin{bmatrix} 2 & 3 \\\\ 3 & 4 \\end{bmatrix}, \\quad B = \\begin{bmatrix} 3 & 4 \\\\ 5 & 6 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"矩阵乘积 $A @ B$ 的计算公式是:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A @ B = \\begin{bmatrix} 2 \\cdot 3 + 3 \\cdot 5 & 2 \\cdot 4 + 3 \\cdot 6 \\\\ 3 \\cdot 3 + 4 \\cdot 5 & 3 \\cdot 4 + 4 \\cdot 6 \\end{bmatrix} = \\begin{bmatrix} 21 & 26 \\\\ 29 & 38 \\end{bmatrix}\n",
|
||
"$$\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b7d099d5-b19e-4dc1-bcbc-c6f27ff10d63",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "fe40fe29-6b65-47eb-a82d-c9739d4f17b1",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "972ceb2f-dfc9-406b-aa4d-759d8a3c5ceb",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义两个矩阵"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "022dfa07-a9e4-4ba6-9456-f7dd6b861bcd",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.array([[2, 3], # 定义矩阵A\n",
|
||
" [3, 4]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "eba046cd-9051-403b-86a4-5586226e9c86",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"B = np.array([[3, 4], # 定义矩阵B\n",
|
||
" [5, 6]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "97150b17-9793-47aa-b9c1-aa61baf34bde",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算矩阵点积"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "dec0b7d8-6d24-4d13-8bf2-0786a4d1e8e6",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[21, 26],\n",
|
||
" [29, 36]])"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_dot_B = np.dot(A, B) # 使用np.dot计算A和B的矩阵乘积\n",
|
||
"A_dot_B"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[21, 26],\n",
|
||
" [29, 36]])"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# 可以直接用A @ B作为矩阵乘法的简写\n",
|
||
"A @ B"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|