mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 10:33:18 +08:00
154 lines
3.5 KiB
Plaintext
154 lines
3.5 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 02\n",
|
||
"\n",
|
||
"# 向量化内积\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "6f5b0126-e220-42a5-9c76-10b5c77dd35c",
|
||
"metadata": {},
|
||
"source": [
|
||
"此代码定义了两个 $2 \\times 2$ 的矩阵 $A$ 和 $B$,并使用 `np.vdot` 计算它们的向量化内积。`np.vdot` 会将矩阵元素展平成一维向量,然后执行逐元素的内积计算。\n",
|
||
"\n",
|
||
"矩阵 $A$ 和 $B$ 展开后为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A = \\begin{bmatrix} 1 & 2 & 3 & 4 \\end{bmatrix}, \\quad B = \\begin{bmatrix} 3 & 4 & 5 & 6 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"因此,内积的计算为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"1 \\cdot 3 + 2 \\cdot 4 + 3 \\cdot 5 + 4 \\cdot 6 = 3 + 8 + 15 + 24 = 50\n",
|
||
"$$\n",
|
||
"\n",
|
||
"代码使用 `np.vdot` 执行此向量化的内积计算,而不仅是逐元素矩阵乘法。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "004f7421-698b-4eb3-9d22-1517683ab9bc",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "f0b0c3a1-f413-487e-9f5f-9d8a1a37248f",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f3ab1198-85f2-47d5-9425-46145141e92e",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义两个矩阵"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "138d24b7-39e5-4ccc-9d5c-f554db5c2eb9",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.array([[1, 2], # 定义矩阵A\n",
|
||
" [3, 4]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "c79531e6-89d7-4c4c-91ae-afe500cec8bb",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"B = np.array([[3, 4], # 定义矩阵B\n",
|
||
" [5, 6]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "438b8825-fda5-4905-890a-6f690b7c11dd",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算矩阵的向量内积"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "8505b1bc-d105-424b-a163-25205e0f5e94",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"50"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_dot_B = np.vdot(A, B) # 使用np.vdot计算A和B的向量内积\n",
|
||
"A_dot_B\n",
|
||
"# [1,2,3,4]*[3,4,5,6].T # 向量化的点积计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|