mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-02 18:21:08 +08:00
253 lines
5.7 KiB
Plaintext
253 lines
5.7 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 02\n",
|
||
"\n",
|
||
"# 逐项积\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ce4a4893-3f8c-402f-92c3-79d73b81d380",
|
||
"metadata": {},
|
||
"source": [
|
||
"\n",
|
||
"此代码定义了两个三维向量 $a$ 和 $b$,并计算了它们的逐元素积(即对应元素相乘)。代码中既使用了行向量形式也使用了列向量形式的 $a$ 和 $b$ 来演示逐元素乘法的计算。\n",
|
||
"\n",
|
||
"### 逐元素乘法公式\n",
|
||
"对于两个向量 $a = \\begin{bmatrix} a_1 \\\\ a_2 \\\\ a_3 \\end{bmatrix}$ 和 $b = \\begin{bmatrix} b_1 \\\\ b_2 \\\\ b_3 \\end{bmatrix}$,逐元素积定义为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"a \\odot b = \\begin{bmatrix} a_1 \\cdot b_1 \\\\ a_2 \\cdot b_2 \\\\ a_3 \\cdot b_3 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"代码中的计算展示了逐元素乘法的两种实现方式:使用 `np.multiply` 函数和直接使用 `*` 操作符。结果得到一个新向量,其中每个元素为对应元素相乘的值。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "370c070f-d704-40b0-90c9-ef2e2bee22ce",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "b92befcd-0d09-4301-aecc-cb3172ce2cd9",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "25572211-3dd7-487d-ab16-d62682d66f56",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义两个行向量"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "04b0208a-df81-48a4-8e85-f2ef347708c1",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"a = np.array([-2, 1, 1]) # 定义向量a"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "557a8b24-f13d-4995-9bc2-c8bc3fa19389",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"b = np.array([1, -2, -1]) # 定义向量b"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "4a95a30f-b3fc-4e2f-b2e7-ccd49cc48ed1",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算行向量的逐元素积"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "29eca8ec-ed59-4e60-90bf-8405a4a084e3",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([-2, -2, -1])"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a_times_b = np.multiply(a, b) # 计算a和b的逐元素积\n",
|
||
"a_times_b"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "91a581bf-ca56-44b2-8d21-8ae4a19ee309",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([-2, -2, -1])"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a_times_b_2 = a * b # 使用*操作符计算a和b的逐元素积\n",
|
||
"a_times_b_2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "65964628-e9f9-4626-9a49-adc10d2f4ecf",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义两个列向量"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "42eec7be-ccdc-4a9a-be68-0e074793c2a4",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"a_col = np.array([[-2], [1], [1]]) # 定义列向量a_col"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "b8757d8c-776a-400c-be13-0b7cac7ffdac",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"b_col = np.array([[1], [-2], [-1]]) # 定义列向量b_col"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "2269b17d-2fc2-47dc-b7eb-4f4ec992502f",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算列向量的逐元素积"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "c9f74e22-8432-4c40-bb9b-36f0a2d5e064",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[-2],\n",
|
||
" [-2],\n",
|
||
" [-1]])"
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a_times_b_col = np.multiply(a_col, b_col) # 计算a_col和b_col的逐元素积\n",
|
||
"a_times_b_col"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "7cd5c6c6-b2e3-4027-8eaa-7656594db66b",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[-2],\n",
|
||
" [-2],\n",
|
||
" [-1]])"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"a_times_b_col_2 = a_col * b_col # 使用*操作符计算a_col和b_col的逐元素积\n",
|
||
"a_times_b_col_2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|