mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 18:43:34 +08:00
250 lines
5.9 KiB
Plaintext
250 lines
5.9 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 04\n",
|
||
"\n",
|
||
"# 矩阵乘法操作\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "d134e1be-222a-4fec-b5d9-78dfd4fcb3cc",
|
||
"metadata": {},
|
||
"source": [
|
||
"该代码演示了 NumPy 中数组和矩阵的乘法操作,分别展示了逐元素乘法和矩阵乘法的不同结果。\n",
|
||
"\n",
|
||
"1. **逐元素乘法**:在第一个操作中,$A$ 和 $B$ 都是 `np.array` 类型。按逐元素方式进行乘法时,$A$ 将被广播到与 $B$ 形状相匹配,结果为:\n",
|
||
"\n",
|
||
" $$\n",
|
||
" A \\odot B = \\begin{bmatrix} 1 \\times 5 & 2 \\times 6 \\\\ 1 \\times 8 & 2 \\times 9 \\end{bmatrix} = \\begin{bmatrix} 5 & 12 \\\\ 8 & 18 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"2. **矩阵乘法**:在第二个操作中,$A$ 为 `np.array` 类型,而 $B$ 为 `np.matrix` 类型。此时 `*` 操作符按矩阵乘法执行,计算结果为:\n",
|
||
"\n",
|
||
" $$\n",
|
||
" A \\times B = \\begin{bmatrix} 1 \\times 5 + 2 \\times 8 & 1 \\times 6 + 2 \\times 9 \\end{bmatrix} = \\begin{bmatrix} 21 & 24 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"3. **矩阵乘法**:在第三个操作中,$A$ 和 $B$ 都是 `np.matrix` 类型,再次执行矩阵乘法,结果与第二个操作相同:\n",
|
||
"\n",
|
||
" $$\n",
|
||
" A \\times B = \\begin{bmatrix} 21 & 24 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"此代码展示了在 NumPy 中 `np.array` 和 `np.matrix` 类型的不同行为及 `*` 操作符在逐元素和矩阵乘法间的区别。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "e694f73c-5da9-404b-930b-1b15c38c149e",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "04dd0c40-af12-47f6-8f60-1bba1b377b51",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "9dab05d3-2be2-47c9-97a5-e1b779132a1f",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义数组A和B并进行逐元素乘法"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "87bb0d5c-67d8-4a10-95c8-c407a32932ad",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.array([[1, 2]]) # 定义数组A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "8b9a1b34-090e-4432-a096-d45934e8c0aa",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"B = np.array([[5, 6], # 定义数组B\n",
|
||
" [8, 9]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "ef365f07-ebfe-432e-9ea3-bc45cecc0335",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[ 5, 12],\n",
|
||
" [ 8, 18]])"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A * B # 打印A和B的逐元素乘法结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "00486c88-927e-4c24-b2be-d6f9e8672e0f",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义数组A和矩阵B并进行矩阵乘法"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "82d3c241-4790-40c4-aa1f-3a383250ba74",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.array([[1, 2]]) # 定义数组A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"id": "e6298ff4-cf44-4851-a835-d22563bd4d1d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"B = np.matrix([[5, 6], # 定义矩阵B\n",
|
||
" [8, 9]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"id": "c036b953-8d3d-443e-87eb-1fe46fcd6014",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"matrix([[21, 24]])"
|
||
]
|
||
},
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A * B # 打印A和B的矩阵乘法结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ab903f71-3eb5-4290-a835-ae58622e69a4",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义矩阵A和矩阵B并进行矩阵乘法"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"id": "ab60983c-0ad3-4263-ad82-84986df908d0",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.matrix([[1, 2]]) # 定义矩阵A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "6ccade11-529f-4962-8eab-139e08a62592",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"B = np.matrix([[5, 6], # 定义矩阵B\n",
|
||
" [8, 9]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "e60a1889-600c-4982-9b61-3001d9fbd32f",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"matrix([[21, 24]])"
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A * B # 打印A和B的矩阵乘法结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|