mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 18:43:34 +08:00
182 lines
4.3 KiB
Plaintext
182 lines
4.3 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 04\n",
|
||
"\n",
|
||
"# 矩阵乘幂比较\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f7cb8538-a1e9-4d16-9e49-6772327912c0",
|
||
"metadata": {},
|
||
"source": [
|
||
"\n",
|
||
"该代码展示了 `np.matrix` 和 `np.array` 在平方操作中的不同行为。\n",
|
||
"\n",
|
||
"1. **矩阵平方(`np.matrix` 类型)**:当 $A$ 是 `np.matrix` 类型时,`A**2` 计算的是矩阵乘法,即 $A @ A$。对于矩阵:\n",
|
||
"\n",
|
||
" $$\n",
|
||
" A = \\begin{bmatrix} 1 & 3 \\\\ 2 & 4 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
" 其平方 $A^2$ 计算为:\n",
|
||
"\n",
|
||
" $$\n",
|
||
" A^2 = \\begin{bmatrix} 1 & 3 \\\\ 2 & 4 \\end{bmatrix} @ \\begin{bmatrix} 1 & 3 \\\\ 2 & 4 \\end{bmatrix} = \\begin{bmatrix} 7 & 15 \\\\ 10 & 22 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"2. **逐元素平方(`np.array` 类型)**:当 $B$ 是 `np.array` 类型时,`B**2` 计算的是逐元素平方,即每个元素单独平方。对于数组:\n",
|
||
"\n",
|
||
" $$\n",
|
||
" B = \\begin{bmatrix} 1 & 3 \\\\ 2 & 4 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
" 逐元素平方的结果为:\n",
|
||
"\n",
|
||
" $$\n",
|
||
" B\\odot B = \\begin{bmatrix} 1^2 & 3^2 \\\\ 2^2 & 4^2 \\end{bmatrix} = \\begin{bmatrix} 1 & 9 \\\\ 4 & 16 \\end{bmatrix}\n",
|
||
" $$\n",
|
||
"\n",
|
||
"此代码展示了 `np.matrix` 和 `np.array` 在平方操作上的关键差异:一个执行矩阵乘法,另一个进行逐元素运算。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "9734eeec-2b37-40f9-add5-c4ccd409546a",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "4b42a3b3-504c-45eb-8c6b-2830e6a11be8",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "79f50411-80c3-487e-b20d-e42867cea09a",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义矩阵A并计算其矩阵平方"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "5879a711-cd82-4352-a41f-c9b950865d71",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.matrix([[1, 3], # 定义为np.matrix类型的矩阵A\n",
|
||
" [2, 4]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "02a0e4c0-e50d-4955-8e72-351468e22d57",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[[ 7 15]\n",
|
||
" [10 22]]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(A**2) # 打印矩阵A的矩阵平方结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8dee9c28-b297-4f4d-9f0b-b0c8880d792e",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义数组B并计算其逐元素平方"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "7ab6ed46-fca3-46de-aa69-8d1a16b67d24",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"B = np.array([[1, 3], # 定义为np.array类型的数组B\n",
|
||
" [2, 4]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "8e1194bb-59fa-40a2-b0a2-e2c85b7cc667",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"[[ 1 9]\n",
|
||
" [ 4 16]]\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(B**2) # 打印数组B的逐元素平方结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|