Files
Iris Series: Visualize Math -- From Arithmetic Basics to Machine Learning 79be5dda7d Add files via upload
2025-02-01 17:06:45 +08:00

161 lines
3.3 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"cells": [
{
"cell_type": "markdown",
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
"metadata": {},
"source": [
"Chapter 04\n",
"\n",
"# 迹\n",
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
]
},
{
"cell_type": "markdown",
"id": "8cc1d765-91db-4530-81ad-0220895c1e85",
"metadata": {},
"source": [
"该代码定义了一个 $3 \\times 3$ 矩阵 $A$并计算其迹trace。矩阵 $A$ 的定义为:\n",
"\n",
"$$\n",
"A = \\begin{bmatrix} 1 & -1 & 0 \\\\ 3 & 2 & 4 \\\\ -2 & 0 & 3 \\end{bmatrix}\n",
"$$\n",
"\n",
"矩阵的迹是其主对角线元素之和,公式为:\n",
"\n",
"$$\n",
"\\text{tr}(A) = A_{11} + A_{22} + A_{33}\n",
"$$\n",
"\n",
"因此,矩阵 $A$ 的迹为:\n",
"\n",
"$$\n",
"\\text{tr}(A) = 1 + 2 + 3 = 6\n",
"$$\n",
"\n",
"此代码展示了如何使用 `np.trace` 函数计算矩阵的迹。"
]
},
{
"cell_type": "markdown",
"id": "ba8dee01-3887-4a76-93a9-274b079171a1",
"metadata": {},
"source": [
"## 导入所需库"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "650779c1-a190-44cc-a778-127b2c189962",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np # 导入NumPy库用于数值计算"
]
},
{
"cell_type": "markdown",
"id": "5ff0a2c5-dcea-4891-84d4-7a72436e6772",
"metadata": {},
"source": [
"## 定义矩阵A"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a1a28546-6d6c-4f65-a94f-c8cb27e5ead5",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 1, -1, 0],\n",
" [ 3, 2, 4],\n",
" [-2, 0, 3]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A = np.array([[1, -1, 0], # 定义矩阵A\n",
" [3, 2, 4],\n",
" [-2, 0, 3]])\n",
"A"
]
},
{
"cell_type": "markdown",
"id": "7b8f3355-005a-4b5f-be18-41ada700fc7b",
"metadata": {},
"source": [
"## 计算矩阵A的迹"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "9e5b87ef-8278-4900-b60c-6e96a60e5eef",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"6"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tr_A = np.trace(A) # 计算矩阵A的迹\n",
"tr_A"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}