mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 18:43:34 +08:00
176 lines
4.1 KiB
Plaintext
176 lines
4.1 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 04\n",
|
||
"\n",
|
||
"# 矩阵逐项积\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "cb498579-9952-45fc-93e8-50479104f8f2",
|
||
"metadata": {},
|
||
"source": [
|
||
"\n",
|
||
"该代码定义了两个 $2 \\times 2$ 矩阵 $A$ 和 $B$,并计算它们的 Hadamard 积(逐元素乘积)。矩阵 $A$ 和 $B$ 分别为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A = \\begin{bmatrix} 1 & 2 \\\\ 3 & 4 \\end{bmatrix}, \\quad B = \\begin{bmatrix} 5 & 6 \\\\ 7 & 8 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"Hadamard 积(逐元素乘积)的结果为每个对应元素相乘,计算公式为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A \\odot B = \\begin{bmatrix} 1 \\cdot 5 & 2 \\cdot 6 \\\\ 3 \\cdot 7 & 4 \\cdot 8 \\end{bmatrix} = \\begin{bmatrix} 5 & 12 \\\\ 21 & 32 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"代码使用 `np.multiply` 函数和 `*` 操作符两种方式来计算逐元素乘积,二者等效。该操作用于生成对应元素相乘的矩阵。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "46ade452-7ec0-45e9-959c-1276be6d4724",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "c90949ae-66bd-4373-ac80-42341574da7c",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "9b8e04f7-6950-42d1-9981-81ee65208cce",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义矩阵A和B"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "bab49ebe-1142-4a6b-9662-ccc569aaf590",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.array([[1, 2], # 定义矩阵A\n",
|
||
" [3, 4]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "c63f1c20-b2b9-4688-ab7d-800ed8510add",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"B = np.array([[5, 6], # 定义矩阵B\n",
|
||
" [7, 8]])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "861a16bd-2946-438e-8aed-1b974e7d99d6",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算Hadamard积(逐元素乘积)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "f0947846-bc63-482d-a5ac-a6e891794832",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[ 5, 12],\n",
|
||
" [21, 32]])"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_times_B_piecewise = np.multiply(A, B) # 使用np.multiply计算A和B的逐元素乘积\n",
|
||
"A_times_B_piecewise"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "7e81c46d-d82b-45fa-b22b-5f99b812f2e4",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[ 5, 12],\n",
|
||
" [21, 32]])"
|
||
]
|
||
},
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A_times_B_piecewise_V2 = A * B # 使用*操作符计算A和B的逐元素乘积\n",
|
||
"A_times_B_piecewise_V2"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|