Files
Book4_Power-of-Matrix/Book4_Ch20_Python_Codes/Bk4_Ch20_01.py
2022-07-22 08:11:16 -04:00

98 lines
2.6 KiB
Python

###############
# Authored by Weisheng Jiang
# Book 4 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
# Bk4_Ch20_01.py
import numpy as np
import matplotlib.pyplot as plt
alphas = np.linspace(0, 2*np.pi, 100)
# unit circle
r = np.sqrt(1.0)
z1 = r*np.cos(alphas)
z2 = r*np.sin(alphas)
Z = np.array([z1, z2]).T # data of unit circle
# scale
S = np.array([[2, 0],
[0, 0.5]])
thetas = np.array([0, 30, 45, 60, 90, 120])
for theta in thetas:
# rotate
print('==== Rotate ====')
print(theta)
theta = theta/180*np.pi
R = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
# translate
c = np.array([2, 1])
X = Z@S@R.T + c;
Q = R@np.linalg.inv(S)@np.linalg.inv(S)@R.T
print('==== Q ====')
print(Q)
LAMBDA, V = np.linalg.eig(Q)
print('==== LAMBDA ====')
print(LAMBDA)
print('==== V ====')
print(V)
x1 = X[:,0]
x2 = X[:,1]
fig, ax = plt.subplots(1)
ax.plot(z1, z2, 'b') # plot the unit circle
ax.plot(x1, x2, 'r') # plot the transformed shape
ax.plot(c[0],c[1],'xk') # plot the center
ax.quiver(0,0,1,0,color = 'b',angles='xy', scale_units='xy',scale=1)
ax.quiver(0,0,0,1,color = 'b',angles='xy', scale_units='xy',scale=1)
ax.quiver(0,0,-1,0,color = 'b',angles='xy', scale_units='xy',scale=1)
ax.quiver(0,0,0,-1,color = 'b',angles='xy', scale_units='xy',scale=1)
ax.quiver(0,0,c[0],c[1],color = 'k',angles='xy', scale_units='xy',scale=1)
ax.quiver(c[0],c[1],
V[0,0]/np.sqrt(LAMBDA[0]),
V[1,0]/np.sqrt(LAMBDA[0]),color = 'r',
angles='xy', scale_units='xy',scale=1)
ax.quiver(c[0],c[1],
V[0,1]/np.sqrt(LAMBDA[1]),
V[1,1]/np.sqrt(LAMBDA[1]),color = 'r',
angles='xy', scale_units='xy',scale=1)
ax.quiver(c[0],c[1],
-V[0,0]/np.sqrt(LAMBDA[0]),
-V[1,0]/np.sqrt(LAMBDA[0]),color = 'r',
angles='xy', scale_units='xy',scale=1)
ax.quiver(c[0],c[1],
-V[0,1]/np.sqrt(LAMBDA[1]),
-V[1,1]/np.sqrt(LAMBDA[1]),color = 'r',
angles='xy', scale_units='xy',scale=1)
plt.axvline(x=0, color= 'k', zorder=0)
plt.axhline(y=0, color= 'k', zorder=0)
ax.set_aspect(1)
plt.xlim(-2,4)
plt.ylim(-2,4)
plt.grid(linestyle='--')
plt.show()
plt.xlabel('$x_1$')
plt.ylabel('$x_2$')