mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 02:24:03 +08:00
156 lines
4.0 KiB
Plaintext
156 lines
4.0 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 21\n",
|
||
"\n",
|
||
"# 判断正定矩阵\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "54195758-c635-45fc-be6a-ebae54b12d78",
|
||
"metadata": {},
|
||
"source": [
|
||
"这段代码的功能是判断一个矩阵是否为正定矩阵。首先,正定矩阵 \\( A \\) 的定义要求其必须是对称矩阵,即满足 \\( A = A^T \\)。若矩阵 \\( A \\) 是对称矩阵,代码进一步检查是否可以对其进行 Cholesky 分解。Cholesky 分解是一种将正定矩阵 \\( A \\) 表示为下三角矩阵 \\( L \\) 和其转置 \\( L^T \\) 的操作,即\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A = L L^T\n",
|
||
"$$\n",
|
||
"\n",
|
||
"若分解成功,则说明 \\( A \\) 是正定矩阵,函数返回 `True`;若分解失败(引发 `LinAlgError` 异常),则矩阵不是正定矩阵,函数返回 `False`。在这段代码中,示例矩阵\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A = \\begin{bmatrix} 1 & 0 \\\\ 0 & 0 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"不是正定矩阵,因此代码会输出 `False`。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "53cb4618-5e9f-4388-b8e2-893534f3cfbe",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入 numpy 进行数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "74d9b36f-c406-4573-a99e-db75e9380e36",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义判断正定矩阵的函数"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "7abef436-2925-4561-90ae-dc85e1fd34f4",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def is_pos_def(A): # 函数 is_pos_def 用于判断矩阵是否为正定矩阵\n",
|
||
" if np.array_equal(A, A.T): # 检查矩阵是否为对称矩阵\n",
|
||
" try:\n",
|
||
" np.linalg.cholesky(A) # 尝试进行 Cholesky 分解\n",
|
||
" return True # 若成功,则矩阵为正定矩阵\n",
|
||
" except np.linalg.LinAlgError: # 若分解失败,捕获异常\n",
|
||
" return False # 分解失败则矩阵不是正定矩阵\n",
|
||
" else:\n",
|
||
" return False # 若矩阵不对称,则直接返回 False"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7632f259-4cc2-40b5-8886-5c2c670b876c",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义待检测的矩阵"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "11933a91-89ae-4529-b5f6-302fa7eebf2b",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"A = np.array([[1, 0], \n",
|
||
" [0, 0]]) # 定义矩阵 A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "7bb2c23d-c6ef-4f9a-8c48-01f55905fa97",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"## 打印结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"id": "6f4d7b05-2a48-40b5-879a-12e58b6ff62a",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"False\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"print(is_pos_def(A)) # 调用函数 is_pos_def,打印矩阵 A 是否为正定矩阵"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|