mirror of
https://github.com/Visualize-ML/Book4_Power-of-Matrix.git
synced 2026-02-03 02:24:03 +08:00
161 lines
3.3 KiB
Plaintext
161 lines
3.3 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "73bd968b-d970-4a05-94ef-4e7abf990827",
|
||
"metadata": {},
|
||
"source": [
|
||
"Chapter 04\n",
|
||
"\n",
|
||
"# 迹\n",
|
||
"Book_4《矩阵力量》 | 鸢尾花书:从加减乘除到机器学习 (第二版)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8cc1d765-91db-4530-81ad-0220895c1e85",
|
||
"metadata": {},
|
||
"source": [
|
||
"该代码定义了一个 $3 \\times 3$ 矩阵 $A$,并计算其迹(trace)。矩阵 $A$ 的定义为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"A = \\begin{bmatrix} 1 & -1 & 0 \\\\ 3 & 2 & 4 \\\\ -2 & 0 & 3 \\end{bmatrix}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"矩阵的迹是其主对角线元素之和,公式为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"\\text{tr}(A) = A_{11} + A_{22} + A_{33}\n",
|
||
"$$\n",
|
||
"\n",
|
||
"因此,矩阵 $A$ 的迹为:\n",
|
||
"\n",
|
||
"$$\n",
|
||
"\\text{tr}(A) = 1 + 2 + 3 = 6\n",
|
||
"$$\n",
|
||
"\n",
|
||
"此代码展示了如何使用 `np.trace` 函数计算矩阵的迹。"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "ba8dee01-3887-4a76-93a9-274b079171a1",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 导入所需库"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"id": "650779c1-a190-44cc-a778-127b2c189962",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np # 导入NumPy库,用于数值计算"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5ff0a2c5-dcea-4891-84d4-7a72436e6772",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 定义矩阵A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "a1a28546-6d6c-4f65-a94f-c8cb27e5ead5",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"array([[ 1, -1, 0],\n",
|
||
" [ 3, 2, 4],\n",
|
||
" [-2, 0, 3]])"
|
||
]
|
||
},
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"A = np.array([[1, -1, 0], # 定义矩阵A\n",
|
||
" [3, 2, 4],\n",
|
||
" [-2, 0, 3]])\n",
|
||
"A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7b8f3355-005a-4b5f-be18-41ada700fc7b",
|
||
"metadata": {},
|
||
"source": [
|
||
"## 计算矩阵A的迹"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "9e5b87ef-8278-4900-b60c-6e96a60e5eef",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"6"
|
||
]
|
||
},
|
||
"execution_count": 3,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"tr_A = np.trace(A) # 计算矩阵A的迹\n",
|
||
"tr_A"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "85a80909-2aac-49ed-bb7a-f8cc6b80ee7d",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "ecd322f4-f919-4be2-adc3-69d28ef25e69",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.12.7"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|