更新构建树的Coding

This commit is contained in:
jiangzhonglian
2017-03-06 21:13:32 +08:00
parent a778798dd8
commit 10e1c2b577
9 changed files with 569 additions and 55 deletions

View File

@@ -20,10 +20,15 @@ randArray = random.rand(4, 4)
# 转化关系, 数组转化为矩阵
randMat = mat(randArray)
# .I表示对矩阵求逆
# .I表示对矩阵求逆(可以利用矩阵的初等变换
# # 意义逆矩阵是一个判断相似性的工具。逆矩阵A与列向量p相乘后将得到列向量qq的第i个分量表示p与A的第i个列向量的相似度。
# # 参考案例链接:
# # https://www.zhihu.com/question/33258489
# # http://blog.csdn.net/vernice/article/details/48506027
# .T表示对矩阵转置(行列颠倒)
invRandMat = randMat.I
# 输出结果
print randArray, '\n', randMat, '\n', invRandMat
print randArray, '\n---\n', randMat, '\n+++\n', invRandMat
# 矩阵和逆矩阵 进行求积 (单位矩阵对角线都为1嘛理论上4*4的矩阵其他的都为0)
myEye = randMat*invRandMat
# 误差

View File

@@ -98,6 +98,7 @@ def show_pdf(clf):
# from IPython.display import Image
# Image(graph.create_png())
if __name__ == '__main__':
x, y = createDataSet()

View File

@@ -77,9 +77,9 @@ def plotTree(myTree, parentPt, nodeTxt):
plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
for key in secondDict.keys():
# 判断该节点是否是Node节点
if type(secondDict[key]).__name__=='dict':
if type(secondDict[key]).__name__ == 'dict':
# 如果是就递归调用[recursion]
plotTree(secondDict[key],cntrPt,str(key))
plotTree(secondDict[key], cntrPt, str(key))
else:
# 如果不是,就在原来节点一半的地方找到节点的坐标
plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
@@ -121,7 +121,7 @@ def createPlot(inTree):
# 测试数据集
def retrieveTree(i):
listOfTrees =[
listOfTrees = [
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
{'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
]

View File

@@ -0,0 +1,16 @@
#!/usr/bin/python
# coding:utf8
'''
Created on 2017-03-06
Update on 2017-03-06
@author: jiangzhonglian
'''
class treeNode():
def __init__(self, feat, val, right, left):
self.featureToSplitOn = feat
self.valueOfSplit = val
self.rightBranch = right
self.leftBranch = left

View File

@@ -9,25 +9,136 @@ Tree-Based Regression Methods Source Code for Machine Learning in Action Ch. 9
'''
from numpy import *
def loadDataSet(fileName): #general function to parse tab -delimited floats
dataMat = [] #assume last column is target value
# 默认解析的数据是用tab分隔并且是数值类型
# general function to parse tab -delimited floats
def loadDataSet(fileName):
"""loadDataSet(解析每一行并转化为float类型)
Args:
fileName 文件名
Returns:
dataMat 每一行的数据集array类型
Raises:
"""
# 假定最后一列是结果值
# assume last column is target value
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine) #map all elements to float()
# 将所有的元素转化为float类型
# map all elements to float()
fltLine = map(float, curLine)
dataMat.append(fltLine)
return dataMat
def binSplitDataSet(dataSet, feature, value):
mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:][0]
mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:][0]
return mat0,mat1
"""binSplitDataSet(将数据集按照feature列的value进行 二元切分)
def regLeaf(dataSet):#returns the value used for each leaf
return mean(dataSet[:,-1])
Args:
fileName 文件名
Returns:
dataMat 每一行的数据集array类型
Raises:
"""
# # 测试案例
# print 'dataSet[:, feature]=', dataSet[:, feature]
# print 'nonzero(dataSet[:, feature] > value)[0]=', nonzero(dataSet[:, feature] > value)[0]
# print 'nonzero(dataSet[:, feature] <= value)[0]=', nonzero(dataSet[:, feature] <= value)[0]
# dataSet[:, feature] 取去每一行中第1列的值(从0开始算)
# nonzero(dataSet[:, feature] > value) 返回结果为true行的index下标
mat0 = dataSet[nonzero(dataSet[:, feature] > value)[0], :]
mat1 = dataSet[nonzero(dataSet[:, feature] <= value)[0], :]
return mat0, mat1
# 返回每一个叶子结点的均值
# returns the value used for each leaf
def regLeaf(dataSet):
return mean(dataSet[:, -1])
# 计算总方差=方差*样本数
def regErr(dataSet):
return var(dataSet[:,-1]) * shape(dataSet)[0]
# shape(dataSet)[0] 表示行数
return var(dataSet[:, -1]) * shape(dataSet)[0]
# 1.用最佳方式切分数据集
# 2.生成相应的叶节点
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)):
"""chooseBestSplit(用最佳方式切分数据集 和 生成相应的叶节点)
Args:
dataSet 数据集
leafType 计算叶子节点的函数
errType 求总方差
ops [容许误差下降值,切分的最少样本数]
Returns:
bestIndex feature的index坐标
bestValue 切分的最优值
Raises:
"""
tolS = ops[0]
tolN = ops[1]
# 如果结果集(最后一列为1个变量),就返回推出
# .T 对数据集进行转置
# .tolist()[0] 转化为数组并取第0列
if len(set(dataSet[:, -1].T.tolist()[0])) == 1:
# exit cond 1
return None, leafType(dataSet)
# 计算行列值
m, n = shape(dataSet)
print m, n
# 无分类误差的总方差和
# the choice of the best feature is driven by Reduction in RSS error from mean
S = errType(dataSet)
# inf 正无穷大
bestS, bestIndex, bestValue = inf, 0, 0
# 循环处理每一列对应的feature值
for featIndex in range(n-1):
for splitVal in set(dataSet[:, featIndex].T.tolist()[0]):
# 对该列进行分组然后组内的成员的val值进行 二元切分
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
# 判断二元切分的方式的元素数量是否符合预期
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
continue
newS = errType(mat0) + errType(mat1)
# 如果二元切分,算出来的误差在可接受范围内,那么就记录切分点,并记录最小误差
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
# 判断二元切分的方式的元素误差是否符合预期
# if the decrease (S-bestS) is less than a threshold don't do the split
if (S - bestS) < tolS:
return None, leafType(dataSet)
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
# 对整体的成员进行判断,是否符合预期
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
return None, leafType(dataSet)
return bestIndex, bestValue
# assume dataSet is NumPy Mat so we can array filtering
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1, 4)):
# 选择最好的切分方式: feature索引值最优切分值
# choose the best split
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
# if the splitting hit a stop condition return val
if feat is None:
return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
lSet, rSet = binSplitDataSet(dataSet, feat, val)
retTree['right'] = createTree(lSet, leafType, errType, ops)
retTree['left'] = createTree(rSet, leafType, errType, ops)
return retTree
def linearSolve(dataSet): #helper function used in two places
m,n = shape(dataSet)
@@ -49,43 +160,7 @@ def modelErr(dataSet):
yHat = X * ws
return sum(power(Y - yHat,2))
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
tolS = ops[0]; tolN = ops[1]
#if all the target variables are the same value: quit and return value
if len(set(dataSet[:,-1].T.tolist()[0])) == 1: #exit cond 1
return None, leafType(dataSet)
m,n = shape(dataSet)
#the choice of the best feature is driven by Reduction in RSS error from mean
S = errType(dataSet)
bestS = inf; bestIndex = 0; bestValue = 0
for featIndex in range(n-1):
for splitVal in set(dataSet[:,featIndex]):
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue
newS = errType(mat0) + errType(mat1)
if newS < bestS:
bestIndex = featIndex
bestValue = splitVal
bestS = newS
#if the decrease (S-bestS) is less than a threshold don't do the split
if (S - bestS) < tolS:
return None, leafType(dataSet) #exit cond 2
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): #exit cond 3
return None, leafType(dataSet)
return bestIndex,bestValue#returns the best feature to split on
#and the value used for that split
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):#assume dataSet is NumPy Mat so we can array filtering
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)#choose the best split
if feat == None: return val #if the splitting hit a stop condition return val
retTree = {}
retTree['spInd'] = feat
retTree['spVal'] = val
lSet, rSet = binSplitDataSet(dataSet, feat, val)
retTree['left'] = createTree(lSet, leafType, errType, ops)
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
def isTree(obj):
return (type(obj).__name__=='dict')
@@ -137,4 +212,21 @@ def createForeCast(tree, testData, modelEval=regTreeEval):
yHat = mat(zeros((m,1)))
for i in range(m):
yHat[i,0] = treeForeCast(tree, mat(testData[i]), modelEval)
return yHat
return yHat
if __name__ == "__main__":
# # 测试数据集
# testMat = mat(eye(4))
# print testMat
# print type(testMat)
# mat0, mat1 = binSplitDataSet(testMat, 1, 0.5)
# print mat0, '\n-----------\n', mat1
# 获取数据集
# myDat = loadDataSet('testData/RT_data1.txt')
myDat = loadDataSet('testData/RT_data2.txt')
myMat = mat(myDat)
myTree = createTree(myMat)
print myTree